Aging and “rejuvenation” of resident stem cells — a new way to active longevity?

Cover Page

Cite item

Full Text

Abstract

This review presents the current data on the methodology for assessing the biological and epigenetic age, describes the concept of the epigenetic clock, and characterizes the main types of resident stem cells and the specifics of their aging. It has been shown that age-related changes in organs and tissues, as well as age-related diseases, are largely due to the aging of resident stem cells. The latter represent an attractive target for cell rejuvenation, as they can be isolated, cultured ex vivo, modified, and re-introduced into the resident niches. Two main methodologies for the cellular rejuvenation are presented: genetic reprogramming with «zeroing» the age of a cell using transient expression of transcription factors, and various approaches to epigenetic rejuvenation. The close relationship between aging, regeneration, and oncogenesis, and between these factors and the functioning of resident stem cell niches requires further precision studies, which, we are sure, can result in the creation of an effective anti-aging strategy and prolongation of human active life.

About the authors

Vladimir P. Baklaushev

Federal Scientific and Clinical Center for Specialized Medical Assistance and Medical Technologies of the Federal Medical Biological Agency; Engelhardt Institute of Molecular Biology; Pulmonology Scientific Research Institute under Federal Medical and Biological Agency of Russian Federation

Email: baklaushev.vp@fnkc-fmba.ru
ORCID iD: 0000-0003-1039-4245
SPIN-code: 3968-2971
https://fnkc-fmba.ru/about/komanda-upravleniya/

MD, PhD, Chief Scientific Officer

Russian Federation, 28, Orekhovy blvd, Moscow, 115682; Moscow; Moscow

Ekaterina M. Samoilova

Federal Scientific and Clinical Center for Specialized Medical Assistance and Medical Technologies of the Federal Medical Biological Agency; Engelhardt Institute of Molecular Biology

Email: samoyket@gmail.com
ORCID iD: 0000-0002-0485-6581
SPIN-code: 3014-6243

MD

Russian Federation, 28, Orekhovy blvd, Moscow, 115682; Moscow

Vladimir A. Kalsin

Federal Scientific and Clinical Center for Specialized Medical Assistance and Medical Technologies of the Federal Medical Biological Agency; Engelhardt Institute of Molecular Biology

Author for correspondence.
Email: vkalsin@mail.ru
ORCID iD: 0000-0003-2705-3578
SPIN-code: 1046-8801

научный сотрудник лаборатории клеточных технологий

Russian Federation, 28, Orekhovy blvd, Moscow, 115682; Moscow

Gaukhar M. Yusubalieva

Federal Scientific and Clinical Center for Specialized Medical Assistance and Medical Technologies of the Federal Medical Biological Agency; Engelhardt Institute of Molecular Biology

Email: gaukhar@gaukhar.org
ORCID iD: 0000-0003-3056-4889
SPIN-code: 1559-5866

MD, PhD

Russian Federation, 28, Orekhovy blvd, Moscow, 115682; Moscow

References

  1. Atlantis E, Martin SA, Haren MT, et al.; Florey Adelaide Male Aging Study. Lifestyle factors associated with age-related differences in body composition: the Florey Adelaide Male Aging Study. Am J Clin Nutr. 2008;88(1):95–104. doi: 10.1093/ajcn/88.1.95
  2. Haynes L, Maue AC. Effects of aging on T cell function. Curr Opin Immunol. 2009;21(4):414–417. doi: 10.1016/j.coi.2009.05.009
  3. Samson RD, Barnes CA. Impact of aging brain circuits on cognition. Eur J Neurosci. 2013;37(12):1903–1915. doi: 10.1111/ejn.12183
  4. Samoilova EM, Belopasov VV, Ekusheva EV, et al. Epigenetic clock and circadian rhythms in stem cell aging and rejuvenation. J Pers Med. 2021;(11):1050. doi: 10.3390/jpm11111050
  5. Hannum G, Guinney J, Zhao L, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49(2):359–367. doi: 10.1016/j.molcel.2012.10.016
  6. Horvath S. DNA methylation age of human tissues and cell types [published correction appears in Genome Biol. 2015;16:96]. Genome Biol. 2013;14(10):R115. doi: 10.1186/gb-2013-14-10-r115
  7. Field AE, Robertson NA, Wang T, et al. DNA methylation clocks in aging: categories, causes, and consequences. Mol Cell. 2018;71(6):882–895. doi: 10.1016/j.molcel.2018.08.008
  8. Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 2018;19(6): 371–384. doi: 10.1038/s41576-018-0004-3
  9. López-Otín C, Blasco MA, Partridge L, et al. The hallmarks of aging. Cell. 2013;153(6):1194–1217. doi: 10.1016/j.cell.2013.05.039
  10. Teschendorff AE, Menon U, Gentry-Maharaj A, et al. Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome research. 2010;20(4):440–446. doi: 10.1101/gr.103606.109
  11. Lister R, Pelizzola M, Dowen RH, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462(7271):315–322. doi: 10.1038/nature08514
  12. Rose NR, Klose RJ. Understanding the relationship between DNA methylation and histone lysine methylation. Biochim Biophys Acta. 2014;1839(12):1362–1372. doi: 10.1016/j.bbagrm.2014.02.007
  13. Reddington JP, Perricone SM, Nestor CE, et al. Redistribution of H3K27me3 upon DNA hypomethylation results in de-repression of Polycomb target genes. Genome Biology. 2013;14(3):R25. doi: 10.1186/gb-2013-14-3-r25
  14. Berger SL, Sassone-Corsi P. Metabolic signaling to chromatin. Cold Spring Harb. Perspect Biol. 2016;8(11):1–63. doi: 10.1101/cshperspect.a019463
  15. Bocklandt S, Lin W, Sehl ME, et al. Epigenetic predictor of age. PLoS One. 2011;6(6):e14821. doi: 10.1371/journal.pone.0014821
  16. Levine ME, Lu AT, Quach A, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging. 2018;10(4):573–591. doi: 10.18632/aging.101414
  17. Consortium MM, Lu AT, Fei Z, et al. Universal DNA methylation age across mammalian tissues. BioRxiv. 2021. doi: 2021.01.18.426733
  18. Lu AT, Quach A, Wilson JG, et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging. 2019;11(2): 303–327. doi: 10.18632/aging.101684
  19. Lu Y, Brommer B, Tian X, et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature. 2020; 588(7836):124–129. doi: 10.1038/s41586-020-2975-4
  20. Trapp A, Kerepesi C, Gladyshev VN. Profiling epigenetic age in single cells. BioRxiv. 2021. doi: 10.1101/2021.03.13.435247
  21. Fahy GM, Brooke RT, Watson JP, et al. Reversal of epigenetic aging and immunosenescent trends in humans. Aging Cell. 2019;18(6):e13028. doi: 10.1111/acel.13028
  22. Horvath S, Singh K, Raj K, et al. Reversing age: dual species measurement of epigenetic age with a single clock. BioRxiv. 2020. doi: 10.1101/2020.05.07.082917
  23. Schultz MB, Sinclair DA. When stem cells grow old: phenotypes and mechanisms of stem cell aging. Development. 2016;143(1):3–14. doi: 10.1242/dev.130633
  24. Dykstra B, Olthof S, Schreuder J, et al. Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J Exp Med. 2011;208(13):2691–2703. doi: 10.1084/jem.20111490
  25. Beerman I, Bhattacharya D, Zandi S, et al. Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proc Natl Acad Sci USA. 2010;107(12):5465–5470. doi: 10.1073/pnas.1000834107
  26. Jaiswal S, Fontanillas P, Flannick J, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488–2498. doi: 10.1056/NEJMoa1408617
  27. Rossi DJ, Bryder D, Zahn JM, et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci USA. 2005;102(26):9194–9199. doi: 10.1073/pnas.0503280102
  28. Linton PJ, Dorshkind K. Age-related changes in lymphocyte development and function. Nat Immunol. 2004;5(2):133–139. doi: 10.1038/ni1033
  29. Lichtman MA, Rowe JM. The relationship of patient age to the pathobiology of the clonal myeloid diseases. Semin Oncol. 2004;31(2):185–197. doi: 10.1053/j.seminoncol.2003.12.029
  30. Mareschi K, Ferrero I, Rustichelli D, et al. Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow. J Cell Biochem. 2006;97(4):744–754. doi: 10.1002/jcb.20681
  31. Musina RA, Bekchanova ES, Sukhikh GT. Comparison of mesenchymal stem cells obtained from different human tissues. Bull Exp Biol Med. 2005;139(4):504–509. doi: 10.1007/s10517-005-0331-1
  32. Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem. 1997;64(2):278–294. doi: 10.1002/(sici)1097-4644(199702)64:2<278::aid-jcb11>3.0.co;2-f
  33. Watanabe S, Kawamoto S, Ohtani N, Hara E. Impact of senescence-associated secretory phenotype and its potential as a therapeutic target for senescence-associated diseases. Cancer Sci. 2017;108(4):563–569. doi: 10.1111/cas.13184
  34. Noren HN, Evans MK. Techniques to induce and quantify cellular senescence. J Vis Exp. 2017;(123):55533. doi: 10.3791/55533
  35. Zhai W, Yong D, El-Jawhari JJ, et al. Identification of senescent cells in multipotent mesenchymal stromal cell cultures: current methods and future directions. Cytotherapy. 2019;21(8): 803–819. doi: 10.1016/j.jcyt.2019.05.001
  36. Biteau B, Hochmuth CE, Jasper H. JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut. Cell Stem Cell. 2008;3(4):442–455. doi: 10.1016/j.stem.2008.07.024
  37. Choi NH, Kim JG, Yang DJ, et al. Age-related changes in Drosophila midgut are associated with PVF2, a PDGF/VEGF-like growth factor. Aging Cell. 2008;7(3):318–334. doi: 10.1111/j.1474-9726.2008.00380.x
  38. Takeda N, Jain R, LeBoeuf MR, et al. Interconversion between intestinal stem cell populations in distinct niches. Science. 2011;334(6061):1420–1424. doi: 10.1126/science.1213214
  39. Martin K, Potten CS, Roberts SA, Kirkwood TB. Altered stem cell regeneration in irradiated intestinal crypts of senescent mice. J Cell Sci. 1998;111(Pt 16):2297–2303.
  40. Merlos-Suárez A, Barriga FM, Jung P, et al. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell. 2011;8(5):511–524. doi: 10.1016/j.stem.2011.02.020
  41. Sherwood RI, Christensen JL, Conboy IM, et al. Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell. 2004;119(4):543–554. doi: 10.1016/j.cell.2004.10.021
  42. Beauchamp JR, Morgan JE, Pagel CN, Partridge TA. Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J Cell Biol. 1999;144(6):1113–1122. doi: 10.1083/jcb.144.6.1113
  43. Brack AS, Bildsoe H, Hughes SM. Evidence that satellite cell decrement contributes to preferential decline in nuclear number from large fibres during murine age-related muscle atrophy. J Cell Sci. 2005;118(Pt 20):4813–4821. doi: 10.1242/jcs.02602
  44. Collins CA, Zammit PS, Ruiz AP, et al. A population of myogenic stem cells that survives skeletal muscle aging. Stem Cells. 2007;25(4):885–894. doi: 10.1634/stemcells.2006-0372
  45. Bernet JD, Doles JD, Hall JK, et al. p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat Med. 2014;20(3):265–271. doi: 10.1038/nm.3465
  46. Cosgrove BD, Gilbert PM, Porpiglia E, et al. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat Med. 2014;20(3):255–264. doi: 10.1038/nm.3464
  47. Sousa-Victor P, Gutarra S, García-Prat L, et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature. 2014;506(7488):316–321. doi: 10.1038/nature13013
  48. Brack AS, Conboy MJ, Roy S, et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science. 2007;317(5839):807–810. doi: 10.1126/science.1144090
  49. Carlson ME, Conboy MJ, Hsu M, et al. Relative roles of TGF-beta1 and WNT in the systemic regulation and aging of satellite cell responses. Aging Cell. 2009;8(6):676–689. doi: 10.1111/j.1474-9726.2009.00517.x
  50. Conboy IM, Conboy MJ, Smythe GM, Rando TA. Notch-mediated restoration of regenerative potential to aged muscle. Science. 2003;302(5650):1575–1577. doi: 10.1126/science.1087573
  51. Sinha M, Jang YC, Oh J, et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science. 2014;344(6184):649–652. doi: 10.1126/science.1251152
  52. Price FD, von Maltzahn J, Bentzinger CF, et al. Inhibition of JAK-STAT signaling stimulates adult satellite cell function [published correction appears in Nat Med. 2014 Oct;(10):1217]. Nat Med. 2014;20(10):1174–1181. doi: 10.1038/nm.3655
  53. Jurkowski MP, Bettio LK, Woo E, et al. Beyond the hippocampus and the SVZ: adult neurogenesis throughout the brain. Front Cell Neurosci. 2020;14:576444. doi: 10.3389/fncel.2020.576444
  54. Basak O, Krieger TG, Muraro MJ, et al. Troy+ brain stem cells cycle through quiescence and regulate their number by sensing niche occupancy. Proc Natl Acad Sci USA. 2018;115(4):E610–E619. doi: 10.1073/pnas.1715911114
  55. Ibrayeva A, Bay M, Pu E, et al. Early stem cell aging in the mature brain. Cell Stem. 2021;28(5):955–966.e7. doi: 10.1016/j.stem.2021.03.018
  56. Urbán N, Blomfield IM, Guillemot F. Quiescence of adult mammalian neural stem cells: a highly regulated rest. Neuron. 2019;104(5):834–848. doi: 10.1016/j.neuron.2019.09.026
  57. Kalamakis G, Brüne D, Ravichandran S, et al. Quiescence modulates stem cell maintenance and regenerative capacity in the aging brain. Cell. 2019;176(6):1407–1419.e14. doi: 10.1016/j.cell.2019.01.040
  58. Smith LK, He Y, Park JS, et al. β2-Microglobulin is a systemic pro-aging factor that impairs cognitive function and neurogenesis. Nat Med. 2015;21:932–937.
  59. Pineda JR, Daynac M, Chicheportiche A, et al. Vascular-derived TGF-β increases in the stem cell niche and perturbs neurogenesis during aging and following irradiation in the adult mouse brain. EMBO Mol Med. 2013;5(4):548–562. doi: 10.1002/emmm.201202197
  60. Villeda SA, Plambeck KE, Middeldorp J, et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med. 2014;20(6):659–663. doi: 10.1038/nm.3569
  61. Okamoto M, Inoue K, Iwamura H, et al. Reduction in paracrine Wnt3 factors during aging causes impaired adult neurogenesis. FASEB J. 2011;25(10):3570–3582. doi: 10.1096/fj.11-184697
  62. Dulken BW, Buckley MT, Navarro NP, et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature. 2019;571(7764):205–210. doi: 10.1038/s41586-019-1362-5
  63. Leeman DS, Hebestreit K, Ruetz T, et al. Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging. Science. 2018;359(6381):1277–1283. doi: 10.1126/science.aag3048
  64. Spalding KL, Bergmann O, Alkass K, et al. Dynamics of hippocampal neurogenesis in adult humans. Cell. 2013;153(6): 1219–1227. doi: 10.1016/j.cell.2013.05.002
  65. Sorrells SF, Paredes MF, Cebrian-Silla A, et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature. 2018;555(7696):377–381. doi: 10.1038/nature25975
  66. Dennis CV, Suh LS, Rodriguez ML, et al. Human adult neurogenesis across the ages: an immunohistochemical study. Neuropathol Appl Neurobiol. 2016;42(7):621–638. doi: 10.1111/nan.12337
  67. Keyes BE, Segal JP, Heller E, et al. Nfatc1 orchestrates aging in hair follicle stem cells. Proc Natl Acad Sci USA. 2013; 110(51):E4950–E4959. doi: 10.1073/pnas.1320301110
  68. Rittié L, Stoll SW, Kang S, et al. Hedgehog signaling maintains hair follicle stem cell phenotype in young and aged human skin. Aging Cell. 2009;8(6):738–751. doi: 10.1111/j.1474-9726.2009.00526.x
  69. Nishimura EK. Melanocyte stem cells: a melanocyte reservoir in hair follicles for hair and skin pigmentation. Pigment Cell Melanoma Res. 2011;24(3):401–410. doi: 10.1111/j.1755-148X.2011.00855.x
  70. Inomata K, Aoto T, Binh NT, et al. Genotoxic stress abrogates renewal of melanocyte stem cells by triggering their differentiation. Cell. 2009;137(6):1088–1099. doi: 10.1016/j.cell.2009.03.037
  71. Paul C, Nagano M, Robaire B. Aging results in molecular changes in an enriched population of undifferentiated rat spermatogonia. Biol Reprod. 2013;89(6):147. doi: 10.1095/biolreprod.113.112995
  72. Zhang X, Ebata KT, Robaire B, Nagano MC. Aging of male germ line stem cells in mice. Biol Reprod. 2006;74(1):119–124. doi: 10.1095/biolreprod.105.045591
  73. Antonio-Rubio NR, Porras-Gómez TJ, Moreno-Mendoza N. Identification of cortical germ cells in adult ovaries from three phyllostomid bats: artibeus jamaicensis, glossophaga soricina and sturnira lilium. Reprod Fertil Dev. 2013;25(5):825–836. doi: 10.1071/RD12126
  74. Inserra PI, Leopardo NP, Willis MA, et al. Quantification of healthy and atretic germ cells and follicles in the developing and post-natal ovary of the South American plains vizcacha, lagostomus maximus: evidence of continuous rise of the germinal reserve. Reproduction. 2013;147(2):199–209. doi: 10.1530/REP-13-0455
  75. Hernandez SF, Vahidi NA, Park S, et al. Characterization of extracellular DDX4-or Ddx4-positive ovarian cells. Nat Med. 2015;21(10):1114–1116. doi: 10.1038/nm.3966
  76. Zhang Y, Yang Z, Yang Y, et al. Production of transgenic mice by random recombination of targeted genes in female germline stem cells. J Mol Cell Biol. 2011;3(2):132–141. doi: 10.1093/jmcb/mjq043
  77. White YA, Woods DC, Takai Y, et al. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat Med. 2012;18(3):413–421. doi: 10.1038/nm.2669
  78. Zhang H, Liu L, Li X, et al. Life-long in vivo cell-lineage tracing shows that no oogenesis originates from putative germline stem cells in adult mice. Proc Natl Acad Sci USA. 2014;111(50): 17983–17988. doi: 10.1073/pnas.1421047111
  79. Zhang H, Panula S, Petropoulos S, et al. Adult human and mouse ovaries lack DDX4-expressing functional oogonial stem cells. Nat Med. 2015;21(10):1116–1118. doi: 10.1038/nm.3775
  80. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–676. doi: 10.1016/j.cell.2006.07.024
  81. Samoylova EM, Baklaushev VP. Cell reprogramming preserving epigenetic age: advantages and limitations. Biochemistry (Mosc). 2020;85(9):1035–1047. doi: 10.1134/S0006297920090047
  82. Buganim Y, Faddah DA, Cheng AW, et al. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell. 2012;150(6):1209–1222. doi: 10.1016/j.cell.2012.08.023
  83. Polo JM, Anderssen E, Walsh RM, et al. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell. 2012;151(7):1617–1632. doi: 10.1016/j.cell.2012.11.039
  84. Hansson J, Rafiee MR, Reiland S, et al. Highly coordinated proteome dynamics during reprogramming of somatic cells to pluripotency. Cell Rep. 2012;2(6):1579–1592. doi: 10.1016/j.celrep.2012.10.014
  85. Olova N, Simpson DJ, Marioni RE, Chandra T. Partial reprogramming induces a steady decline in epigenetic age before loss of somatic identity. Aging Cell. 2019;18(1):e12877. doi: 10.1111/acel.12877
  86. Ocampo A, Reddy P, Martinez-Redondo P, et al. In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell. 2016;167(7):1719–1733.e12. doi: 10.1016/j.cell.2016.11.052
  87. Sheng C, Jungverdorben J, Wiethoff H, et al. A stably self-renewing adult blood-derived induced neural stem cell exhibiting patternability and epigenetic rejuvenation. Nature Com. 2018; 9(1):4047. doi: 10.1038/s41467-018-06398-5
  88. Marion RM, Strati K, Li H, et al. Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell. 2009;4(2):141–154. doi: 10.1016/j.stem.2008.12.010
  89. Prigione A, Fauler B, Lurz R, et al. The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells. 2010;28(4):721–733. doi: 10.1002/stem.404
  90. Suhr ST, Chang EA, Tjong J, et al. Mitochondrial rejuvenation after induced pluripotency. PloS One. 2010;5(11):e14095. doi: 10.1371/journal.pone.0014095
  91. Abad M, Mosteiro L, Pantoja C, et al. Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature. 2013;502(7471):340–345. doi: 10.1038/nature12586
  92. Sarkar TJ, Quarta M, Mukherjee S, et al. Transient non-integrative expression of nuclear reprogramming factors promotes multifaceted amelioration of aging in human cells. Nat Commun. 2020;11(1):1545. doi: 10.1038/s41467-020-15174-3
  93. Gill D, Parry A, Santos F, et al. Multi-omic rejuvenation of human cells by maturation phase transient reprogramming. BioRxiv. 2021.01.15.426786. doi: 10.1101/2021.01.15.426786
  94. Mareschi K, Ferrero I, Rustichelli D, et al. Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow. J Cell Biochem. 2006;97(4):744–754. doi: 10.1002/jcb.20681
  95. Madrigal M, Rao KS, Riordan NH. A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. J Transl Med. 2014;12:260. doi: 10.1186/s12967-014-0260-8
  96. Childs BG, Li H, van Deursen JM. Senescent cells: a therapeutic target for cardiovascular disease. J Clin Invest. 2018; 128(4):1217–1228. doi: 10.1172/JCI95146
  97. Landgraf K, Brunauer R, Lepperdinger G, Grubeck-Loebenstein B. The suppressive effect of mesenchymal stromal cells on T cell proliferation is conserved in old age. Transpl Immunol. 2011;25(2-3):167–172. doi: 10.1016/j.trim.2011.06.007
  98. Zhang J, Lv S, Liu X, et al. Umbilical cord mesenchymal stem cell treatment for Crohn’s disease: a randomized controlled clinical trial. Gut Liver. 2018;12(1):73–78. doi: 10.5009/gnl17035
  99. Al Demour S, Jafar H, Adwan S, et al. Safety and potential therapeutic effect of two intracavernous autologous bone marrow derived mesenchymal stem cells injections in diabetic patients with erectile dysfunction: an open label phase I clinical trial. Urol Int. 2018;101(3):358–365. doi: 10.1159/000492120
  100. Iacobaeus E, Kadri N, Lefsihane K, et al. Short and long term clinical and immunologic follow up after bone marrow mesenchymal stromal cell therapy in progressive multiple sclerosis-A phase I study. J Clin Med. 2019;8(12):2102. doi: 10.3390/jcm8122102
  101. Gyöngyösi M, Wojakowski W, Lemarchand P, et al. Meta-Analysis of Cell-based CaRdiac stUdiEs (ACCRUE) in patients with acute myocardial infarction based on individual patient data. Circ Res. 2015;116(8):1346–1360. doi: 10.1161/CIRCRESAHA.116.304346
  102. Abdelmohsen K, Gorospe M. Noncoding RNA control of cellular senescence. Wiley Interdiscip Rev RNA. 2015;6(6):615–629. doi: 10.1002/wrna.1297
  103. Ocansey DK, Pei B, Yan Y, et al. Improved therapeutics of modified mesenchymal stem cells: an update. J Transl Med. 2020;18(1):42. doi: 10.1186/s12967-020-02234-x
  104. Zhou X, Hong Y, Zhang H, Li X. Mesenchymal stem cell senescence and rejuvenation: current status and challenges. Front Cell Dev Biol. 2020;8:364. doi: 10.3389/fcell.2020.00364
  105. Spitzhorn LS, Megges M, Wruck W, et al. Human iPSC-derived MSCs (iMSCs) from aged individuals acquire a rejuvenation signature. Stem Cell Res Ther. 2019;10(1):100. doi: 10.1186/s13287-019-1209-x
  106. Göbel C, Goetzke R, Eggermann T, Wagner W. Interrupted reprogramming into induced pluripotent stem cells does not rejuvenate human mesenchymal stromal cells. Sci Rep. 2018;8(1):11676. doi: 10.1038/s41598-018-30069-6
  107. Fernandez-Rebollo E, Franzen J, Goetzke R, et al. Senescence-associated metabolomic phenotype in primary and iPSC-derived mesenchymal stromal cells. Stem Cell Reports. 2020;14(2):201–209. doi: 10.1016/j.stemcr.2019.12.01
  108. Liang C, Liu Z, Song M, et al. Stabilization of heterochromatin by CLOCK promotes stem cell rejuvenation and cartilage regeneration. Cell Res. 2021;31(2):187–205. doi: 10.1038/s41422-020-0385-7
  109. Jiao H, Walczak BE, Lee MS, et al. GATA6 regulates aging of human mesenchymal stem/stromal cells. Stem Cells. 2021; 39(1):62–77. doi: 10.1002/stem.3297
  110. O’Kane GM, Grünwald BT, Jang GH, et al. GATA6 expression distinguishes classical and basal-like subtypes in advanced pancreatic cancer. Clin Cancer Res. 2020;26(18): 4901–4910. doi: 10.1158/1078-0432.CCR-19-3724
  111. Fu L, Hu Y, Song M, et al. Up-regulation of FOXD1 by YAP alleviates senescence and osteoarthritis. PLoS Biol. 2019; 17(4):e3000201. doi: 10.1371/journal.pbio.3000201
  112. Deng L, Ren R, Liu Z, et al. Stabilizing heterochromatin by DGCR8 alleviates senescence and osteoarthritis. Nat Commun. 2019;10(1):3329. doi: 10.1038/s41467-019-10831-8
  113. Ren X, Hu B, Song M, et al. Maintenance of nucleolar homeostasis by CBX4 alleviates senescence and osteoarthritis. Cell Rep. 2019;26(13):3643–3656.e7. doi: 10.1016/j.celrep.2019.02.088
  114. So AY, Jung JW, Lee S, et al. DNA methyltransferase controls stem cell aging by regulating BMI1 and EZH2 through microRNAs. PLoS One. 2011;6(5):e19503. doi: 10.1371/journal.pone.0019503
  115. Kornicka K, Marycz K, Marędziak M, et al. The effects of the DNA methyltranfserases inhibitor 5-Azacitidine on ageing, oxidative stress and DNA methylation of adipose derived stem cells. J Cell Mol Med. 2017;21(2):387–401. doi: 10.1111/jcmm.12972
  116. Yang M, Teng S, Ma C, et al. Ascorbic acid inhibits senescence in mesenchymal stem cells through ROS and AKT/mTOR signaling. Cytotechnology. 2018;70(5):1301–1313. doi: 10.1007/s10616-018-0220-x
  117. Park SY, Jeong AJ, Kim GY, et al. Lactoferrin protects human mesenchymal stem cells from oxidative stress-induced senescence and apoptosis. J Microbiol Biotechnol. 2017;27(10):1877–1884. doi: 10.4014/jmb.1707.07040
  118. Lee JH, Jung HK, Han YS, et al. Antioxidant effects of Cirsium setidens extract on oxidative stress in human mesenchymal stem cells. Mol Med Rep. 2016;14(4):3777–3784. doi: 10.3892/mmr.2016.5706
  119. Lee JH, Yoon YM, Song KH, et al. Melatonin suppresses senescence-derived mitochondrial dysfunction in mesenchymal stem cells via the HSPA1L-mitophagy pathway. Aging Cell. 2020; 19(3):e13111. doi: 10.1111/acel.13111
  120. Seok J, Jung HS, Park S, et al. Alteration of fatty acid oxidation by increased CPT1A on replicative senescence of placenta-derived mesenchymal stem cells. Stem Cell Res Ther. 2020; 11(1):1. doi: 10.1186/s13287-019-1471-y
  121. Li X, Hong Y, He H, et al. FGF21 mediates mesenchymal stem cell senescence via regulation of mitochondrial dynamics. Oxid Med Cell Longev. 2019;2019:4915149. doi: 10.1155/2019/4915149
  122. Zhang Y, Xu J, Liu S, et al. Embryonic stem cell-derived extracellular vesicles enhance the therapeutic effect of mesenchymal stem cells. Theranostics. 2019;9(23):6976–6990. doi: 10.7150/thno.35305
  123. Chen B, Sun Y, Zhang J, et al. Human embryonic stem cell-derived exosomes promote pressure ulcer healing in aged mice by rejuvenating senescent endothelial cells. Stem Cell Res Ther. 2019;10(1):142. doi: 10.1186/s13287-019-1253-6
  124. Khanh VC, Yamashita T, Ohneda K, et al. Rejuvenation of mesenchymal stem cells by extracellular vesicles inhibits the elevation of reactive oxygen species. Sci Rep. 2020;10(1):17315. doi: 10.1038/s41598-020-74444-8

Copyright (c) 2022 Baklaushev V.P., Samoilova E.M., Kalsin V.A., Yusubalieva G.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies