Frailty and senile apathy in the everyday clinical practice in the conditions of COVID-19

Cover Page

Cite item

Full Text

Abstract

The article covers the pathogenesis, clinical manifestations, and diagnostic criteria of frailty and senile apathy in the elderly. Special attention is paid to sarcopenia: the phenotypic classification and modern approaches to the treatment are discussed. The knowledge and understanding of the main pathogenetic links of sarcopenia, frailty and senile apathy, as well as the development of a single therapeutic line for these pathological conditions can significantly improve the life quality and expectancy of the elderly.

About the authors

Daria К. Veselova

Astrakhan State Medical University

Author for correspondence.
Email: dorozhe_zolota007@mail.ru
ORCID iD: 0000-0002-9777-5130
Russian Federation, 121, Bakinskaya Street, Astrakhan, 414000

Vladimir V. Belopasov

Astrakhan State Medical University

Email: belopasov@yandex.ru
ORCID iD: 0000-0003-0458-0703
SPIN-code: 6098-1321

MD, PhD, Doctor of Medical Sciences, Professor, Head of the Department of Neurology and Neurosurgery with a course of postgraduate education 

Russian Federation, 121, Bakinskaya Street, Astrakhan, 414000

References

  1. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31. doi: 10.1093/ageing/afy169
  2. Турушева А.В., Фролова Е.В., Дегриз Ж.M. Эволюция теории старческой астении // Вестник Северо-Западного государственного медицинского университета. 2017. T. 9, № 1. P. 117–124. [Turusheva AV, Frolova EV, Degriz JM. Evolution of the theory of senile asthenia. Bulletin of the North-Western State Medical University. 2017;9(1):117–124. (In Russ).]
  3. Wan H, Goodkind D, Kowal P. International Population Reports. P95/16-1. An Aging World: 2015 Washington. dC: u.S. Government Publishing Office; 2016. 165 р.
  4. Cardoso AL, Fernandes A, Aguilar-Pimentel JA, et al. Towards frailty biomarkers: candidates from genes and pathways regulated in aging and age-related diseases. Aging Res Rev. 2018; 47:214–277. doi: 10.1016/j.arr.2018.07.004
  5. Woodhouse KW, Wynne H, Baillie S, James OF, Rawlins MD. Who are the frail elderly? Q J Med. 1988 Jul;68(255):505-6. doi: 10.1093/ OXFORDJOURNALS.QJMED.A068216
  6. Buchner DM, Wagner EH. Preventing frail health. Clin Geriatr Med. 1992;8(1):1–17.
  7. Клинические рекомендации «Старческая астения». Москва, 2020. 88 с. [Clinical recommendations «Senile asthenia». Moscow; 2020. 88 p. (In Russ).]
  8. Щербакова Е.М. Старение населения мира по оценкам ООН 2019 года // Демоскоп Weekly. 2019. № 837-838. С. 1–26. [Shcherbakova EM. The aging of the world’s population according to UN estimates in 2019. Demoscope Weekly. 2019;(837-838):1–26. (In Russ).]
  9. Faller JW, Pereira DN, de Souza S, et al. Instruments for the detection of frailty syndrome in older adults: a systematic review. PLOS One. 2019;14(4):55–64. doi: 10.1371/journal.pone.0216166
  10. Guidet B, de Lange DW, Boumendil A, et al. The contribution of frailty, cognition, activity of daily life and comorbidities on outcome in acutely admitted patients over 80 years in European ICUs: the VIP2 study. Intensive Care Med. 2020;46(1):57–69. doi: 10.1007/s00134-019-05853-1
  11. Penteado CT, Loureiro JC, Pais MV, et al. Mental health status of psychogeriatric patients during the 2019 new coronavirus disease (COVID-19) pandemic and effects on caregiver burden. Front Psychiatry. 2020;11:578672. doi: 10.3389/fpsyt.2020.578672
  12. Fried LP, Ferrucci L, Darer J, et al. Untangling the concepts of disability, frailty, and comorbidity: implications for improved targetingand care. J Gerontol A Biol Sci Med Sci. 2004;59(3): 255–263. doi: 10.1093/gerona/glaa280
  13. Чукаева И.И., Ларина В.Н., Карпенко Д.Г., Ларин В.Г. Новое направление в оценке приверженности лечению — акцент на гериатрические синдромы // Кардиоваскулярная терапия и профилактика. 2017. Т. 16, № 3. С. 46–51. [Chukaeva II, Larina VN, Karpenko DG, Larin VG. A new direction in assessing treatment adherence — emphasis on geriatric syndromes. Cardiovascular Therapy and Prevention. 2017;16(3):46–51. (In Russ).] doi: 10.15829/1728-8800-2017-3-46-51
  14. Carini G, Musazzi L, Bolzetta F, et al. The potential role of miRNAs in cognitive frailty. Front Aging Neurosci. 2021;13:763110. doi: 10.3389/fnagi.2021.763110
  15. He B, Chen W, Zeng J, et al. MicroRNA-326 decreases tau phos-phorrylation and neuron apoptosis through inhibition of the JNK signaling pathway by targeting VAV1 in Alzheimer’s disease. J Cell Physiol. 2020;235:480–493. doi: 10.1002/jcp.28988
  16. Zhang Q, Wu X, Yang J. MiR-194-5p protects against myocardial ischemia/reper-fusion injury via MAPK1/PTEN/AKT pathway. Ann Transl Med. 2021;9:654. doi: 10.21037/atm-21-807
  17. Vatic M, von Haehling S, Ebner N. Inflammatory biomarkers of frailty. Exp Gerontol. 2020;133:110858. doi: 10.1016/j.exger.2020.110858
  18. Mitnitski AB, Mogilner AJ, Rockwood K. Accumulation of deficits as a proxy measure of aging. Scientific World J. 2001;1: 323–336. doi: 10.1100/tsw.2001.58
  19. Ткачева О.Н., Котовская Ю.В., Рунихина Н.К., и др. Клинические рекомендации «Старческая астения» // Российский журнал гериатрической медицины. 2020. № 1. С. 11–46. [Tkacheva ON, Kotovskaya YuV, Runikhina NK, et al. Clinical recommendations «Senile asthenia». Russian Journal of Geriatric Medicine. 2020;(1):11–46. (In Russ).] doi: 10.37586/2686-8636-1-2020-11-46
  20. Сафонова Ю.А., Зоткин Е.Г. Диагностическая значимость функциональных тестов для оценки возраст-ассоциированной саркопении // Остеопороз и остеопатии. 2016. Т. 19, № 2. С. 109–109. [Safonova YuA, Zotkin EG. Diagnostic significance of functional tests for the assessment of age-associated sarcopenia. Osteoporosis and Osteopathies. 2016;19(2):109–109. (In Russ).] doi: 10.14341/osteo20162109-109
  21. Сафонова Ю.А. Саркопения как фактор риска падений и переломов // Клиницист. 2019. Т. 13, № 3-4. С. 22–28. [Safonova YuA. Sarcopenia as a risk factor for falls and fractures. Clinician. 2019;13(3-4):22–28. (In Russ).]
  22. Клинические тесты в гериатрии. Методические рекомендации / под ред. проф. О.Н. Ткачевой. Москва: Прометей, 2019. 62 с. [Clinical tests in geriatrics. Methodological recommendations. Ed. by O.N. Tkacheva. Moscow: Prometey; 2019. 62 p. (In Russ).]
  23. Полищук Ю.И., Летников З.В. Синдром старческой астении в геронтологии и гериатрии с точки зрения геронтопсихиатрии // Социальная и клиническая психиатрия. 2018. Т. 28, № 4. С. 71–74. [Polishchuk YuI, Letnikova ZV. Senile asthenia syndrome in gerontology and geriatrics from the point of view of gerontopsychiatry. Social and Clinical Psychiatry. 2018;28(4):71–74. (In Russ).]
  24. Rosenberg PB, Lanctôt KL, Drye LT, et al. ADMET Investigators. Safety and efficacy of methylphenidate for apathy in Alzheimer’s disease: a randomized, placebo-controlled trial. J Clin Psychiatry. 2013;74(8):810–816.
  25. Turner G, Clegg A; British Geriatrics Society; Age UK; Royal College of General Practione. Best practice guidelines for the management of frailty: a British Geriatrics Society, Age UK and Royal College of General Practitioners report. Age Ageing. 2014;43(6):744–747. doi: 10.1093/ageing/afu138
  26. García ML, Fernández A, Solas MT. Mitochondria, motor neurons and aging. J Neurol Sci. 2013;330(1-2):18–26. doi: 10.1016/j.jns.2013.03.019
  27. Gonzalez-Freire M, de Cabo R, Studenski SA, Ferrucci L. The neuro-muscular junction: aging at the crossroad between nerves and muscle. Front Aging Neurosci. 2014;6:208. doi: 10.3389/fnagi.2014.00208
  28. Da Luz MC, Pinho CP, Bezerra GK, et al. SARC-F and SARC-CalF in screening for sarcopenia in older adults with Parkinson’s disease. Exp Gerontol. 2021;144:111183. doi: 10.1016/j.exger.2020.111183
  29. Waite SJ, Maitland S, Thomas A, Yarnall AJ. Sarcopenia and frailty in individuals with dementia: a systematic review. Arch Gerontol Geriatr. 2021;92:104268. doi: 10.1016/j.archger.2020.10426
  30. Gómez-Gómez ME, Zapico SC. Frailty, cognitive decline, neurodegenerative diseases and nutrition interventions. Int J Mol Sci. 2019;20(11):2842. doi: 10.3390/ijms20112842
  31. Hofmeister F, Baber L, Ferrari U, et al. Late-onset neuromuscular disorders in the differential diagnosis of sarcopenia. BMC Neurol. 2021;21(1):241. doi: 10.1186/s12883-021-02264-y
  32. Королева М.В., Кудашкина Е.В, Шарова А.А., и др. Саркопения как предиктор снижения социализации и качества жизни у пациентов старшего возраста // Научные результаты биомедицинских исследований. 2019. Т. 5, № 4. С. 150–159. [Koroleva MV, Kudashkina EV, Sharova AA, et al. Sarcopenia as a predictor of decreased socialization and quality of life in older patients. Scientific Results of Biomedical Research. 2019;5(4): 150–159. (In Russ).]
  33. Гуляев Н.И., Ахметшин И.М., Гордиенко А.В., и др. Саркопения. Взгляд терапевта // Клиническая патофизиология. 2019. Т. 25, № 1. С. 3–8. [Gulyaev NI, Akhmetshin IM, Gordienko AV, et al. Sarcopenia. The therapist’s view. Clinical Pathophysiology. 2019;25(1):3–8. (In Russ).]
  34. Сулейманова А.К., Сафонова Ю.А., Баранова И.А. Частота саркопении у пациентов со стабильной хронической обструктивной болезнью легких: сравнение диагностических алгоритмов Европейской рабочей группы по саркопении у пожилых людей (редакция 2010 и 2018 гг.) // Пульмонология. 2019. Т. 29, № 5. С. 564–570. [Suleymanova AK, Safonova YuA, Baranova IA. Frequency of sarcopenia in patients with stable chronic obstructive pulmonary disease: comparison of diagnostic algorithms of the European Working Group on Sarcopenia in the Elderly (revision 2010 and 2018). Pulmonology. 2019;29(5):564–570. (In Russ).] doi: 10.18093/0869-0189-2019-29-5-564-570
  35. Ахметшин И.М. Диагностическое значение саркопении в оценке фильтрационной функции почек у больных хронической сердечной недостаточностью: Дис. … канд. мед. наук. Санкт-Петербург, 2020. 149 с. [Akhmetshin IM. Diagnostic significance of sarcopenia in the assessment of filtration function of kidneys in patients with chronic heart failure [dissertation]. Saint Petersburg; 2020. 149 p. (In Russ).]
  36. Beeri MS, Leugrans SE, Delbono O, et al. Sarcopenia is associated with incident Alzheimer’s dementia, mild cognitive impairment, and cognitive decline. J Am Geriatr Soc. 2021; 69(7):1826–1835. doi: 10.1111/jgs.17206
  37. Yuksel H, Balaban M, Tan OO, Mungan S. Sarcopenia in patients with multiple sclerosis. Mult Scler Relat Disord. 2021; 58:103471. doi: 10.1016/j.msard.2021.103471
  38. Мокрышева Н.Г., Крупинова Ю.А., Володичева В.Л., и др. Саркопения глазами эндокринолога // Ожирение и метаболизм. 2018. Т. 15, № 3. С. 21–27. [Mokrysheva NG, Krupinova YuA, Volodicheva VL, et al. Sarcopenia through the eyes of an endocrinologist. Obesity and Metabolism. 2018;15(3):21–27. (In Russ).] doi: 10.14341/OMET9792
  39. Ali S, Garcia JM. Sarcopenia, cachexia and aging: diagnosis, mechanisms and therapeutic options — a mini-review. Gerontology. 2014;60(4):294–305. doi: 10.1159/000356760
  40. Park CH, Do JG, Lee YT, Yoon KJ. Sarcopenic obesity associated with high-sensitivity C-reactive protein in age and sex comparison: a two-center study in South Korea. BMJ Open. 2018;8:e021232. doi: 10.1136/bmjopen-2017-021232
  41. Kaji H. Interaction between Muscle and Bone. J Bone Metab. 2014;21(1):29–40. doi: 10.11005/jbm.2014.21.1.29
  42. Correa-de-Araujo R, Addison O, Miljkovic I, et аl. Myosteatosis in the contxt of skeletal muscle function deficit: an interdisciplinary workshop at the national institute on aging. Front Physiol. 2020;11:963. doi: 10.3389/fphys.2020.00963
  43. Choi KM. Sarcopenia and sarcopenic obesity. Korean J Intern Med. 2016;31(6):1054–1060. doi: 10.3904/kjim.2016.193
  44. Сулейманова А.К. Синдром остеосаркопении у пациентов с хронической обструктивной болезнью легких: Автореф. дис. … канд. мед. наук. Москва, 2020. 23 с. [Suleymanova AK. Osteosarcopenia syndrome in patients with chronic obstructive pulmonary disease [abstract dissertation]. Moscow; 2020. 23 p. (In Russ).]
  45. Тополянская С.В. Роль интерлейкина 6 при старении и возрастассоциированных заболеваниях // Клиницист. 2020. Т. 14, № 3-4. С. 10–17. [Topolyanskaya SV. The role of interleukin 6 in aging and age-associated diseases. Clinician. 2020;14(3-4):10–17. (In Russ).] doi: 10.17650/1818-8338-2020-14-3-4-K633
  46. Тополянская С.В. Саркопения, ожирение, остеопороз и старость // Сеченовский вестник. 2020. Т. 11, № 4. С. 23–35. [Topolyanskaya SV. Sarcopenia, obesity, osteoporosis and old age. Sechenovsky Bulletin. 2020;11(4):23–35. (In Russ).] doi: 10.47093/2218-7332.2020.11.4.23-35
  47. Григорьева И.И., Раскина Т.А., Летаева М.В., и др. Саркопения: особенности патогенеза и диагностики // Фундаментальная и клиническая медицина. 2019. Т. 4, № 4. С. 105–116. [Grigorieva II, Raskina TA, Letaeva MV, et al. Sarcopenia: features of pathogenesis and diagnosis. Fundamental and Clinical Medicine. 2019;4(4):105–116. (In Russ).] doi: 10.23946/2500-0764-2019-4-4-105-116
  48. Шостак Н.А., Мурадянц А.А., Кондрашов А.А. Саркопения и перекрестные синдромы — значение в клинической практике // Клиницист. 2016. Т. 10, № 3. С. 10–14. [Shostak NA, Muradyants AA, Kondrashov AA. Sarcopenia and cross syndromes — significance in clinical practice. Clinician. 2016;10(3):10–14. (In Russ).] doi: 10.17650/1818-8338-2016-10-3-10-14
  49. Tagliafico AS, Bignotti B, Torri L, Rossi F. Sarcopenia: how to measure, when and why. Radiol Med. 2022. doi: 10.1007/s11547-022-01450-3
  50. Mohieldin S, Batsis JA, Minor CM, et al. Band Pass: a bluetooth- enabled remote monitoring device for sarcopenia. IEEE Int Conf Commun Workshops. 2021;2021:10.1109/iccworkshops50388.2021.9473520. doi: 10.1109/iccworkshops50388.2021.9473520
  51. Закревский А.И., Федорова А.А., Пасечник И.Н., Кутепов Д.Е. Саркопения: как ее диагностировать? // Клиническое питание и метаболизм. 2021. Т. 2, № 1. С. 13–22. [Zakrevsky AI, Fedorova AA, Pasechnik IN, Kutepov DE. Sarcopenia: how to diagnose it? Clinical Nutrition and Metabolism. 2021;2(1):13–22. (In Russ).] doi: 10.178-16/clinutr71107
  52. Масенко В.Л., Коков А.Н., Григорьева И.И., Кривошапова К.Е. Лучевые методы диагностики саркопении // Исследования и практика в медицине. 2019. Т. 6, № 4. С. 127–137. [Masenko VL, Kokov AN, Grigorieva II, Krivoshapova KE. Radiation methods of diagnosis of sarcopenia. Research and Practice in Medicine. 2019;6(4):127–137. (In Russ).] doi: 10.17709/2409-2231-2019-6-4-13
  53. Lee K, Shin Y, Huh J, et al. Recent issues on body composition imaging for sarcopenia evaluation. Korean J Radiol. 2019;20(2): 205–217. doi: 10.3348/kjr.2018.0479
  54. Albano D, Messina C, Vitale J, Sconfienza LM. Imaging of sarcopenia: old evidence and new insights. Eur Radiol. 2020; 30(4):2199–2208. doi: 10.1007/s00330-019-06573-2
  55. Cohen E, Bay AA, Ni L, Hackney ME. Apathy-related symptoms appear early in parkinson’s disease. Healthcare (Basel). 2022;10(1):91. doi: 10.3390/healthcare1001-0091
  56. Radakovic R, Colville S, Cranley D, et al. Multi-dimensional apathy in behavioral variant frontotemporal dementia, primary prog-ressive aphasia, and Alzheimer disease. J Geriatr Psychiatry Neurol. 2021;34(5):349–356. doi: 10.1177/0891988720924716
  57. Jonsson M, Edman А, Lind K, et al. Apathy is a prominent neuropsychiatric feature of radiological white-matter changes in patients with dementia. Int J Geriatr Psychiatry. 2010;25(6):588–595. doi: 10.1002/gps.2379
  58. Аведисова А.С., Гехт А.Б., Захарова К.В., и др. Апатия в структуре психических и неврологических расстройств позднего возраста // Журнал неврологии и психиатрии им. С.С. Корсакова. 2014. Т. 114, № 6. С. 77–85. [Avedisova AS, Geht AB, Zakharova KV, et al. Apathy in the structure of mental and neurological disorders of late age. J Neurology and Psychiatry named after S.S. Korsakov. 2014;114(6):77–85. (In Russ).]
  59. Furneri G, Platania S, Privitera A, et al. The Apathy Evaluation Scale (AES-C): psychometric properties and invariance of Italian version in mild cognitive impairment and Alzheimer’s disease. Int J Environ Res Public Health. 2021;18(18):89597. doi: 10.3390/ijerph18189597
  60. Levy R, Dubois B. Apathy and the functional anatomy of the prefrontal cortex-basal ganglia circuits. Cerebral Cortex. 2006;16(7):916–928. doi: 10.1093/cercor/bhj043
  61. Robert P, Onyike CU, Leentjens AF, et al. Proposed diagnostic criteria for apathy in Alzheimer´s disease and other neuropsychiatric disorders. Eur Psychiatry. 2009;24(2):98–104. doi: 10.1016/j.eurpsy.2008.09.001
  62. Guercio BJ, Donovan NJ, Munro CE, et al. The apathy evaluation scale: a comparison of subject, informant, and clinician report in cognitively normal elderly and mild cognitive impairment. J Alzheimers Dis. 2015;47(2):421–432. doi: 10.3233/JAD-150146
  63. Robert P, Lanctôt KL, Agüera-Ortiz L, et al. Is it time to revise the diagnostic criteria for apathy in brain disorders? The 2018 international consensus group. Eur Psychiatry. 2018;71–76. doi: 10.1016/j.eurpsy.2018.07.008
  64. Золотарева А.А. Теоретический анализ проблемы диагностики апатии // Клиническая и специальная психология. 2021. Т. 10, № 3. С. 17–30. [Zolotareva AA. Theoretical analysis of the problem of apathy diagnosis. Clinical and Special Psychology. 2021;10(3):17–30. (In Russ).] doi: 10.17759/cpse.2021100302
  65. Прокопенко С.В., Баранкин Б.В., Марьина Н.М., и др. Клинический случай применения ПЭТ/КТ в ранней диагностике болезни Альцгеймера // Анналы клинической и экспериментальной неврологии. 2017. Т. 11, № 4. С. 65–70. [Prokopenko SV, Barankin BV, Maryina NM, et al. Clinical case of PET application/CT in the early diagnosis of Alzheimer’s disease. Annals of Clinical and Experimental Neurology. 2017;11(4):65–70. (In Russ).] doi: 10.18454/ACEN.2017.4.7
  66. Jonsson M, Edman А, Lind K, et al. Apathy is a prominent neuropsychiatric feature of radiological white-matter changes in patients with dementia. J Clin Exp Neuropsychol. 2010;25(6): 588–595. doi: 10.1002/gps.2379.65
  67. Le Heron C, Apps MA, Husain M. The anatomy of apathy: a neurocognitive framework for amotivated behaviour. Neuropsychologia. 2018;118(PtB):54–67. doi: 10.1016/j.neuropsycho-logia.2017.07.003
  68. Chilovi BV, Rozzini L, Bertoletti E, et al. Angiotensin converting enzyme (ACE) inhibitors modulate the rate of progression of amnestic mild cognitive impairment. Int J Geriatr Psychiatry. 2006;21(6):550–555. doi: 10.1002/gps.1523
  69. Ruthirakuhan M, Herrmann N, Vieira D, et al. The roles of apathy and depression in predicting Alzheimer disease: a longitudinal analysis in older adults with mild cognitive impairment. Am J Geriatr Psychiatry. 2019;27(8):873–882. doi: 10.1016/j.jagp.2019.02.003
  70. Ma L. Depression, anxiety, and apathy in mild cognitive impairment: current perspectives. Front Aging Neurosci. 2020;12:9. doi: 10.3389/fnagi.2020.00009
  71. Roberto N, Portella MJ, Marquié M, et al. Neuropsychiatric profiles and conversion to dementia in mild cognitive impairment, a latent class analysis. Sci Rep. 2021;11(1):6448. doi: 10.1038/s41598-021-83126-y
  72. Федулкина В.А., Ватазин А.В., Кильдюшевский А.В., и др. Иммуносенесценция как причина индивидуализированной иммуносупрессивной терапии при трансплантации почки // Вестник трансплантологии и искусственных органов. 2021. Т. 23, № 3. С. 171–179. [Fedulkina VA, Vatazin AV, Kildyushevsky AV, et al. Immunosenescence as a cause of individualized immunosuppressive therapy in kidney transplantation. Bulletin of Transplantology and artificial Organs. 2021;23(3):171–179. (In Russ).] doi: 10.15825/1995-1191-2021-3-171-179
  73. Martins PN, Tullius SG, Markmann JF. Immunosenescence and immune response in organ transplantation. Int Rev Immunol. 2014;33(3):162–173. doi: 10.3109/08830185.2013.829469
  74. Ali AM, Kunugi H. Screening for sarcopenia (physical frailty) in the COVID-19 era. Int J Endocrinol. 2021;2021:5563960. doi: 10.1155/2021/5563960
  75. Hussien H, Nastasa A, Apetrii M, et al. Different aspects of frailty and COVID-19: points to consider in the current pandemic and future ones. BMC Geriatrics. 2021;21(1):389. doi: 10.1186/s12877-021-02316-5
  76. Lengelé L, Locquet M, Moutschen M, et al. Frailty but not sarcopenia nor malnutrition increases the risk of developing COVID-19 in older community-dwelling adults. Aging Clin Exp Res. 2022;34(1):223–234. doi: 10.1007/s40520-021-01991-z
  77. Kundi H, Çetin EH, Canpolat U, et al. The role of frailty on adverse outcomes among older patients with COVID-19. J Infect. 2020;81(6):944–951. doi: 10.1016/j.jinf.2020.09.029
  78. Pilotto A, Veronese N, Siri G, et al. Association between the multidimensional prognostic index and mortality over 15 years of follow-up in the inchianti study. J Gerontol A Biol Sci Med Sci. 2020;76:1678–1685. doi: 10.1093/gerona/glaa237
  79. Morley J, Kalantar-Zadeh K, Anker S. COVID-19: a major cause of cachexia and sarcopenia? J Cachexia Sarcopenia Muscle. 2020;11(4):863–865. doi: 10.1002/jcsm.12589
  80. Meftahi G, Jangravi Z, Sahraei H, Bahari Z. The possible pathophysiology mechanism of cytokine storm in elderly adults with COVID-19 infection: the contribution of “inflame-aging”. Inflamm Res. 2020;69(9):825–839. doi: 10.1007/s00011-020-01372-8
  81. Mittal A, Dua A, Gupta S, Injeti E. A research update: significance of cytokine storm and diaphragm in COVID-19. Curr Res Pharmacol Drug Discov. 2021;2:100031. doi: 10.1016/j.crphar.2021.100031
  82. Yi X, Liu H, Zhu L, et al. Myosteatosis predicting risk of transition to severe COVID-19 infection. Clin Nutr. 2021; S0261-5614(21)00281-8. doi: 10.1016/j.clnu.2021.05.031
  83. Ohara D, Pegorari M, Oliveira Dos Santos N, et al. Cross-sectional study on the association between pulmonary function and sarcopenia in brazilian community-dwelling elderly from the amazon region. J Nutr Health Aging. 2020;24(2):181–187. doi: 10.1007/s12603-019-1290-y
  84. Shi Z, de Vries HJ, Vlaar AP, et al.; Dutch COVID-19 Diaphragm Investigators. Diaphragm pathology in critically ill patients with COVID-19 and postmortem findings from 3 medical centers. JAMA Intern Med. 2021;181(1):122–124. doi: 10.1001/jamainternmed.2020.6278
  85. Antonarelli M, Fogante M. Chest CT-derived muscle analysis in COVID-19 patients. Tomography. 2022;8(1):414–422. doi: 10.3390/tomography8010034
  86. Chianca V, Albano D, Messina C, et al. Sarcopenia: imaging assessment and clinical application. Abdom Radiol (NY). 2021;1–12. doi: 10.1007/s00261-021-03294-3
  87. Schiaffino S, Albano D, Cozzi A, et al. CT-derived chest muscle metrics for outcome prediction in patients with COVID-19. Radiology. 2021;300(2):E328–E336. doi: 10.1148/radiol.2021204141
  88. Loosen SH, Schulze-Hagen M, Püngel T, et al. Skeletal muscle composition predicts outcome in critically ill patients. Crit Care Explor. 2020;2(8):e0171. doi: 10.1097/CCE.0000000000000171
  89. Corradi F, Isirdi A, Malacarne P, et al.; UCARE (Ultrasound in Critical care and Anesthesia Research Group). Low diaph-ragm muscle mass predicts adverse outcome in patients hospitalized for COVID-19 pneumonia: an exploratory pilot study. Minerva Anestesiol. 2021;87(4):432–438. doi: 10.23736/S0375-9393.21.15129-6
  90. FitzMaurice TS, McCann C, Walshaw M, Greenwood J. Unilateral diaphragm paralysis with COVID-19 infection. BMJ Case Rep. 2021;14(6):e243115. doi: 10.1136/bcr-2021-243115
  91. Nasir S, Shahid O, Nasir SA, Khan MW. Unilateral diaphragmatic paralysis in a patient with COVID-19 pneumonia. Ali Cureus. 2021;13(11):e19322. doi: 10.7759/cureus.19322
  92. Poggiali E, Vercelli A, Demichele E, et al. Diaphragmatic rupture and gastric perforation in a patient with COVID-19 pneumonia. Eur J Case Rep Intern Med. 2020;7(6):001738. doi: 10.12890/2020_001738
  93. Atiyat R, Veeraballi S, Al-Atiyat N, et al. Rare case report of persistent hiccups as an atypical presentation of COVID-19. Cureus. 2021;13(3):e13625. doi: 10.7759/cureus.13625
  94. Patel Z, Franz CK, Bharat A, et al. Diaphragm and phrenic nerve ultrasound in covid-19 patients and beyond: imaging technique, findings, and clinical applications. J Ultrasound Med. 2022;41(2): 285–299. doi: 10.1002/jum.15706
  95. Белопасов В.В., Журавлева Е.Н., Нугманова Н.П., Абдрашитова А.Т. Постковидные неврологические синдромы // Клиническая практика. 2021. Т. 12, № 2. С. 69–82. [Belopasov VV, Zhuravleva EN, Nugmanova NP, Abdrashitova AT. Postcovid neurological syndromes. Journal of Clinical Practice. 2021;12(2): 69–82. (In Russ).] doi: 10.17816/clin-pract71137
  96. Soares MN, Eggelbusch M, Naddaf E, et al. Skeletal muscle alterations in patients with acute COVID-19 and post-acute sequelae of COVID-19. J Cachexia Sarcopenia Muscle. 2022;13(1):11–22. doi: 10.1002/jcsm.12896
  97. Farr E, Wolfe AR, Deshmukh S, et al. Diaphragm dysfunction in severe COVID-19 as determined by neuromuscular ultrasound. Ann Clin Transl Neurol. 2021;8(8):1745–1749. doi: 10.1002/acn3.51416
  98. Kardas H, Thormann M, Bär C, et al. Impact of pectoral muscle values on clinical outcomes in patients with severe COVID-19 disease. In Vivo. 2022;36(1):375–380. doi: 10.21873/invivo.12713
  99. Carfì A, Bernabei R, Landi F. Persistent symptoms in patients after acute COVID‐19. JAMA. 2020;324:603–605.
  100. Gracia-García P, Modrego P, Lobo A. Apathy and neurocognitive correlates: review from the perspective of ‘precision psychiatry’. Curr Opin Psychiatry. 2021;34(2):193–198. doi: 10.1097/YCO.0000000000000677
  101. Lara B, Carnes A, Dakterzada F, et al. Neuropsychiatric symptoms and quality of life in Spanish patients with Alzheimer’s disease during the COVID-19 lockdown. Eur J Neurol. 2020; 27(9):1744–1747. doi: 10.1111/ene.14339
  102. Ramasamy MN, Minassian AM, Ewer KJ, et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet. 2021;396(10267):1979–1993. doi: 10.1016/S0140-6736(20)32466-1
  103. Torjesen I. Covid-19: doctors in Norway told to assess severely frail patients for vaccination. BMJ. 2021;372:n167. doi: 10.1136/bmj.n167
  104. Ensrud KE, Kats AM, Schousboe JT, et al. Frailty phenotype and healthcare costs and utilization in older women. J Am Geriatr Soc. 2018;66(7):1276–1283. doi: 10.1111/jgs.15381
  105. Rolfson DB, Majumdar SR, Tsuyuki RT, et al. Validity and reliability of the Edmonton frail scale. Age Ageing. 2006;35(5): 526–529. doi: 10.1093/ageing/afl041
  106. Gilbert T, Neuburger J, Kraindler J, et al. Development and validation of a hospital frailty risk score focusing on older people in acute care settings using electronic hospital records: an observational study. Lancet. 2018;391(10132):1775–1782. doi: 10.1016/s0140-6736(18)30668-8
  107. O’Caoimh R, Costello M, Small C, et al. Comparison of frailty screening instruments in the emergency department. Int J Environ Res Public Health. 2019;16(19):3626. doi: 10.3390/ijerph16193626
  108. Morley JE, Malmstrom TK, Miller DK. A simple frailty questionnaire (FRAIL) predicts outcomes in middle aged African Americans. J Nutr Health Aging. 2012;16(7):601–608. doi: 10.1007/s12603-012-0084-2
  109. Dent E, Morley JE, Cruz-Jentoft AJ, et al. Physical frailty: ICFSR international clinical practice guidelines for identification and management. J Nutr Health Aging. 2019;23(9):771–787. doi: 10.1007/s12603-019-1273-z
  110. Searle SD, Mitnitski A, Gahbauer EA, et al. A standard procedure for creating a frailty index. BMC Geriatr. 2008;8(1):24. doi: 10.1186/1471-2318-8-24
  111. Steinmeyer Z, Vienne-Noyes S, Piau A, et al. Acute care of older patients with COVID-19: clinical characteristics and outcomes. Geriatrics. 2020;5(4):65. doi: 10.3390/geriatrics5040065

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Key pathological links determining the unfavorable outcome of COVID-19 in patients with senile asthenia syndrome.

Download (1MB)

Copyright (c) 2022 Veselova D.К., Belopasov V.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies