培养的人脐带粘膜结缔组织(Wharton)细胞群的免疫表型

封面

如何引用文章

详细

论证。在创伤后缺损替代方法层出不穷的背景下,利用组织工程产品和人工培养的人体细胞修复受损组织的方法在医疗实践中越来越广泛。文献报道,人类脐带组织的免疫原性很弱,这使得这些细胞成为再生医学产品中很有前途的成分。由于细胞在培养过程中可能发生自发转化,以及外植体选择过程中的误差,因此有必要对组织外植体及其进一步培养过程中获得的细胞表型进行可靠的鉴定。因此,从人体脐带粘膜结缔组织(也称为Wharton果冻)中获得多能间充质细胞的特异性需要对获得的细胞类型进行可靠的鉴定。

目的。利用免疫酶标记法检测从人类脐带粘膜结缔组织中获取的细胞群中是否存在间充质干细胞。

材料和方法。该研究采用细胞培养、流式细胞荧光测定法和免疫细胞化学法来确定间充质干细胞的表面和细胞内标志物。

结果。在鉴定从人体脐带粘膜结缔组织培养中获得的群体细胞的工作中,确定了构成群体的细胞类型的异质性。它们中的大多数都带有荧光标记 CD45、CD73、CD34、CD29、CD90、CD44、CD105,这与国际细胞治疗学会(International Society for Cell Therapy)定义的间充质干细胞的免疫表型一致。根据应用标记物的比例,我们可以将粘膜结缔组织片段直接外植获得的细胞群归属于间充质干细胞。肉眼观察证实了标记抗体在培养细胞表面的定位。结果还表明,培养物中没有血管肌肉细胞。

结论。通过对粘膜结缔组织碎片外植并进一步培养获得的细胞进行鉴定实验,通过免疫荧光细胞光度法确定其属于间充质干细胞。

作者简介

Vladimir E. Chernov

Military Medical Academy

编辑信件的主要联系方式.
Email: vmeda-nio@mail.ru
ORCID iD: 0000-0002-2440-3782
SPIN 代码: 8315-1161

Cand. Sci. (Biology)

俄罗斯联邦, Saint Petersburg

Margarita O. Sokolova

Military Medical Academy

Email: vmeda-nio@mail.ru
ORCID iD: 0000-0002-3457-4788
SPIN 代码: 3683-6054
俄罗斯联邦, Saint Petersburg

Arina A. Kokorina

Military Medical Academy

Email: arina.alexandrovna.vmeda-nio@mail.ru
ORCID iD: 0000-0002-6783-3088
SPIN 代码: 9371-3658
俄罗斯联邦, Saint Petersburg

Galina I. Pendinen

N.I. Vavilov All-Russian Institute of Plant Genetic Resources

Email: pendinen@mail.ru
ORCID iD: 0000-0003-2814-7074
SPIN 代码: 2120-5925

Cand. Sci. (Biology)

俄罗斯联邦, Saint Petersburg

参考

  1. Pal’tsev MA. Stem cells and cell technologies: the present and the future. Remedium. 2006;(8):6–13. (In Russ.) EDN: HOCEWV
  2. Tolar J, Le Blanc K, Keating A, Blazar BR. Concise review: hitting the right spot with mesenchymal stromal cells (MSCs). Stem Cells. 2010;28(8):1446–1455. doi: 10.1002/stem.459
  3. Meleshina AV, Bystrova AS, Rogovaya OS, et al. Skin tissue-engineered constructs and stem cells application for the skin equivalents creation (review). Modern technologies in medicine. 2017;9(1): 198–218. EDN: YIZWKF doi: 10.17691/stm2017.9.1.24
  4. Payushina OV, Domаrackaya EI, Sheveleva ON. Participation of mesenchymal stromal cells in muscle tissue regeneration. Zhurnal obshchey biologii. 2019;80(1):3–13. (In Russ.) EDN: YWYFRZ doi: 10.1134/S0044459619010044
  5. Kalyuzhnaya LI, Kharkevich ON, Schmidt AA, Protasov OV. Regenerative properties of human extraembryonal organs in tissue engineering. Bulletin of the Russian Military Medical Academy. 2018;(4(64)):192–198. (In Russ.) EDN: VMOCMF
  6. Shamanskaya TV, Osipova EYu, Rumyantcev SA. Mesenchymal stem cells ex vivo cultivation technologies for clinical use. Onkogematologia. 2009;4(3):69–76. (In Russ.) EDN: MNICAJ doi: 10.17650/1818–8346-2009-0-3-69-76
  7. Aleksandrov VN, Kamilova TA, Martynov BV, Kalyuzhnaya LI. Cell therapy in ischemic stroke. Bulletin of the Russian Military Medical Academy 2013;(3(43)):199–205. (In Russ.) EDN: RCLBMV
  8. Aisenstadt AA, Enukashvili NI, Zolina TL, et al. Comparison of proliferation and immunophenotype of MSC, obtained from bone marrow, adipose tissue and umbilical cord. Herald of north-western state medical university named after I.I. Mechnikov. 2015;7(2):14–22. EDN: UZAGDP
  9. Ali H, Al-Yatama MK, Abu-Farna M, et al. Multi-lineage differentiation of human umbilical cord Wharton’s Jelly Mesenchymal Stromal Cells mediates changes in the expression profile of stemness markers. PLoS One. 2015;10(4):e0122465. doi: 10.1371/journal.pone.0122465
  10. Ramos TL, Sánchez-Abarca LI, Muntión S, et al. MSC surface markers (CD44, CD73, and CD90) can identify human MSC-derived extracellular vesicles by conventional flow cytometry. Cell Commun Signal. 2016;14:2. doi: 10.1186/s12964-015-0124-8
  11. Chernov VE, Sokolova MO, Ivanova AK, et al. Iniciation and cultivation of multipotent mesenchimal human umbilical stroma cells in a laboratory experiment. Russian Military Medical Academy Reports. 2022;41(3):283–291. (In Russ.) EDN: AEJEXW doi: 10.17816/rmmar104363

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. MSC culture: А, Б — staining with haematoxylin and eosin; В — immunocytochemical staining for the presence of smooth muscle a-actin in the cytoskeleton of cells obtained from umbilical cord, Г — stained rat myometrial cells

下载 (415KB)
3. Fig. 2. Results of immunofluorescence labelling of surface antigens (SD) of mesenchymal cells of human umbilical cord Warton’s stool tissue. А — mesenchymal cell before labelling; Б, В, Г — images of cells labelled with different antibodies: Б — absence of conjugation with antibody (DAPI contrasting); В, Г — presence of conjugation with labelled antibody

下载 (236KB)
4. Fig. 3. Distribution of surface markers in the obtained population of human umbilical cord MSCs: А — CD34, CD44; Б — CD45, CD73; В — CD29, Г — CD90; Д — CD105

下载 (263KB)

版权所有 © Eco-Vector, 2024

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).