Vitamin D level and indicators of bone tissue metabolism in kazakh infants

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Insufficiency and deficiency of vitamin D are recorded in a significant part of the population. Vitamin D, along with the formation of bone tissue, is included in all types of metabolism, determining the growth and development of the body, immunity, and the normal development of the nervous system. The consequences of deficiency can be long-term and in some cases irreversible. The problem of deficiency in infants is not well understood.

AIM: To determine the content of vitamin D and indicators of bone metabolism in children of the first year of life of the Kazakh population.

MATERIALS AND METHODS: 250 infants of the Kazakh population were examined. The content of vitamin D in the blood was determined. The state of bone metabolism was assessed by the results of a blood test to determine the serum concentration of calcium, phosphorus, parathyroid hormone, osteocalcin, calcitonin, and in the urine — deoxypyridinoline.

RESULTS: There is a wide prevalence (77.8%) of vitamin D insufficiency/deficiency in children under one year old in the Kazakh population. The greatest decrease in vitamin D was found in newborns. Statistically significant differences were found in the levels of bone metabolism indicators, such as total calcium, phosphorus, calcitonin and osteocalcin in different age groups. Indicators of bone metabolism, such as total calcium, phosphorus, parathyroid hormone, osteocalcin, depend on the degree of decrease in vitamin D levels. The most sensitive indicator that responds to changes in vitamin D levels is osteocalcin. The level of serum vitamin D can be used as a marker for the preclinical diagnosis of metabolic disorders of bone homeostasis in children.

CONCLUSIONS: The study confirms the effect of vitamin D on metabolic processes in the skeletal system. The most sensitive indicator that responds to changes in vitamin D levels is osteocalcin. Research in this direction may be the basis for discussing the feasibility of vitamin D substitution and clarifying prenatal care schemes.

About the authors

Akmaral K. Zhumalina

West Kazakhstan Medical University named after Marat Ospanov

Email: zumalina@mail.ru
ORCID iD: 0000-0002-4583-5779

md, dr. sci. (med.), professor

Kazakhstan, Aktobe

Irina S. Kim

West Kazakhstan Medical University named after Marat Ospanov

Email: irina.kim.90@mail.ru
ORCID iD: 0000-0003-0304-3156

assistant

Kazakhstan, Aktobe

Wassili M. Delyagin

Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology

Author for correspondence.
Email: delyagin-doktor@yandex.ru
ORCID iD: 0000-0001-8149-7669

md, dr. sci. (med.), professor

Russian Federation, 1 Samory Machela St., Moscow, 117997

References

  1. Cui A, Zhang T, Xiao P, et al. Global and regional prevalence of vitamin D deficiency in population-based studies from 2000 to 2022: A pooled analysis of 7.9 million participants. Front. Nutr. 2023;10:1070808. doi: 10.3389/fnut.2023.1070808
  2. Vitamin D. Vol. 1: Biochemistry, Physiology and Diagnostics. Vol. 2: Health, Disease and Therapeutics. Hewison M, Bouillon R, Giovannucci E, Goltzman D. (Eds.). 4th ed. Elsevier; 2017.
  3. Eyles D, Smith S, Kinobe R, et al. Distribution of the vitamin D receptor and 1 alphahydroxylase in human brain. J Chem Neuroanat. 2005;29(1):21–30. doi: 10.1016/j.jchemneu.2004.08.006
  4. Eyles D, Feron F, Cui X, et al. Developmental vitamin D deficiency causes abnormal brain development. Psychoneuroendocrinology. 2009;34 (suppl 1):S247–S257. doi: 10.1016/j.psyneuen.2009.04.015
  5. Glabska D, Kolota A, Lachowicz K, et al. The influence of vitamin D intake and status on mental health in children: a systematic review. Nutrients. 2021;13(3):952. doi: 10.3390/nu13030952
  6. Khoshbakht Y, Bidaki R, Salehi-Abargouei A. Vitamin D status and attention deficit hyperactivity disorder: a systematic review and meta-analysis of observational studies. Adv Nutr. 2018;9(1):9–20. doi: 10.1093/advances/nmx002
  7. Shresthal D, Budhathoki S, Pokhrel S, et al. Prevalence of vitamin D deficiency in pregnant women and their babies in Bhaktapur, Nepal. BMC Nutr. 2019;5:31. doi: 10.1186/s40795-019-0294-7
  8. Kanike N, Kannekanti N, Camacho J. Vitamin D deficiency in pregnant women and newborn [Internet]. In: Vitamin D. Ed. by Ö. Özdemir. IntechOpen; 2021. P. 282–335. Available from: http://dx.doi.org/10.5772/intechopen.98454
  9. Narogan MV, Ryumina II, Krokhina KN, et al. Vitamin D in newborns and premature babies. Neonatology: news, opinions, training. 2018;6(3(21)):134–138. (In Russ.)
  10. Basha M, Majid H, Razali N, et al. Longitudinal vitamin D deficiency among malaysian pregnant women and its correlation with neonatal serum 25-hydroxyvitamin D levels. Front Public Health. 2021;9:654292. doi: 10.3389/fpubh.2021.654292
  11. Boghosian N, Koo W, Liu A, et al. Longitudinal measures of maternal vitamin D and neonatal body composition. Eur J Clin Nutr. 2019;73:424–431. doi: 10.1038/s41430-018-0212-0

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).