Proposed mechanisms of systemic cardiovascular action of gliflosins

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The literature review is devoted to the study of the mechanisms of the cardioprotective action of a new class of glucose-lowering drugs glyflozins, which inhibit the joint transport of sodium and glucose in the proximal renal tubules. The large-scale clinical trials carried out in recent years have demonstrated the beneficial effect of these compounds not only on glycemic control, but also on the progression of heart failure in patients with diabetes mellitus. Analysis of literature data shows that the effect under consideration is due to both the positive systemic cardiovascular and direct cardiotropic action of the drugs. The first part of the review examines the systemic effect of drugs, including their diuretic, natriuretic and antihypertensive effects, increased hematocrit, vascular effects that influence arterial stiffness, smooth muscle tone, and endothelial dysfunction. The metabolic effects of type 2 sodium and glucose co-transport inhibitors are discussed separately, including an increase in lipolysis, the role of glucagon and activation of ketogenesis, and their contribution to the development of a probable cardioprotective effect.

About the authors

Yakov F. Zverev

Altai State Medical University

Author for correspondence.
Email: zveryasha@mail.ru
ORCID iD: 0000-0002-8101-103X
SPIN-code: 4520-7720

MD, PhD, Dr. Sci. (Med.)

Russian Federation, 40 Lenina str., 656038, Barnaul

Anna Ya. Rykunova

Barnaul Law Institute

Email: zveranna@mail.ru
ORCID iD: 0000-0002-5889-7071
SPIN-code: 4355-8205

PhD, Cand. Ci. (Med.), Assistant Professor

Russian Federation, Barnaul

References

  1. Yuan CM, Nee R, Ceckowski KA, et al. Diabetic nephropathy as the cause of end-stage kidney disease reported on the medical evidence from CMS2728 at a single center. Clin Kidney J. 2017;10(2):257–262. doi: 10.1093/ckj/cfw112
  2. Einarson TR, Acs A, Ludwig C, Panton UH. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc Diabetol. 2018;17(1):83. doi: 10.1186/s12933-018-0728-6
  3. Bonora BM, Avogarj A, Fadini GP. Extraglycemic effects of SGLT2 inhibitors: a review of the evidence. Diabetes Metab Syndr Obes. 2020;13:161–174. doi: 10.2147/DMSO.S233538
  4. Kobalava ZhD, Yeshniyazov NV, Medovchshikov VV, Khasanova ER. Type 2 diabetes mellitus and heart failure: innovative possibilities for management of prognosis. Kardiologiia. 2019;59(4):76–87. (In Russ.) doi: 10.18087/cardio.2019.4.10253
  5. Penman A, Hancock H, Papavasilciou E., et al., Risk factors for proliferative diabetic retinopathy in African Americans with type 2 diabetes. Ophthalmic Epidemiol. 2016;23(2):88–93. DOI: 10.3109/ 09286586.2015.1119287
  6. Kaul S, Bolger AF, Herrington D, et al. Thiazolidinedione drugs and cardiovascular risks: a science advisory from the American Heart Association and American College Of Cardiology Foundation. J Am Coll Cardiol. 2010;55(17):1885–1894. doi: 10.1016/j.jacc.2010.02.014
  7. Douros A, Dell’Aniello S, Yu OH, et al. Sulfonylureas as second line drugs in type 2 diabetes and the risk of cardiovascular and hypoglycaemic events: popoulation based cohort study. BMJ. 2018;362: k2693. doi: 10.1136/bmj.k2693
  8. Powell WR, Christiansen CL, Miller DR. Meta-analysis of sulfonylurea therapy on long-term risk of mortality and cardiovascular events compared to other oral glucose-lowering treatments. Diabetes Ther. 2018;9(4):1431–1440. doi: 10.1007/s13300-018-0443-z
  9. Fitchett DH, Udell JA, Inzucchi SE. Heart failure outcomes with diabetes. Eur J Heart Fail. 2017;19(1):43–53. doi: 10.1002/ejhf.633
  10. Lo KB, Gul F, Ram P, et al. The effects of SGLT2 inhibitors on cardiovascular and renal outcomes in diabetic patients: A systematic review and meta-analysis. Cardiorenal Med. 2019;10 (1):1–10. doi: 10.1159/000503919
  11. Salukhov VV, Demidova TYu. Empagliflozin As a new management strategy on outcomes in patients with type 2 diabetes mellitus. Diabetes mellitus. 2016;19(6):494–510. (In Russ.) doi: 10.14341/DM8216
  12. Mosikyan AA, Chzhao V, Galankin TL, Kolbin AS. Analiz issledovaniy EMPA-REG OUTCOME, LEADER i SUSTAIN-6: vozmozhnie mekhanizmi snizheniya serdechno-sosudistogo riska pod deistviem novikh sakharosnizhayuschikh sredstv. Clinical pharmacology and therapy. 2017;26(2):77–82. (In Russ.)
  13. Kobalava ZhD, Kiyakbaev GK. Type 2 diabetes and cardiovascular complications: is it possible to improve prognosis by glucose lowering therapy? Russian Journal of Cardiology. 2018;23(8):79–91. (In Russ.) doi: 10.15829/1560-4071-2018-8-79-91
  14. Kobalava ZhD, Lazarev PV, Villevalde SV. SGLT2 inhibitors: rationale and perspectives of use in heart failure. Kardiologiia. 2018;58(2):42–54. (In Russ.) doi: 10.18087/cardio.2018.2.10087
  15. Shestakova MV. DECLARE-TIMI 58 trial in the context of EMPA-REG OUTCOME and CANVAS. Diabetes mellitus. 2019;22(6):592–601. (In Russ.) doi: 10.14341/DM10289
  16. Lopaschuk GD, Verma S. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors. A state-of-the-Art Review. JACC Basic Transl Sci. 2020;5(6):632–644. doi: 10.1016/j.jacbts.2020.02.004
  17. Maejima Y. SGLT2 inhibitors play a salutary role in heart failure via modulation of the mitochondrial function. Front Cardiovasc Med. 2020;6:186. doi: 10.3389/fcvm.2019.00186
  18. PessoaTD, Campos LC, Carraro-Lacroix L, et al. Functional role of glucose metabolism, osmotic stress, and sodium-glucose cotransporter isoform-mediated transport on Na+/H+ exchanger isoform 3 activity in the renal proximal tubule. J Am Soc Nephrol. 2014;25(9):2028–2039. doi: 10.1681/ASN.2013060588
  19. Sha S, Polidori D, Heise T, et al. Effect of the sodium glucose cotransporter 2 inhibitor canagliflozin on plasma volume in patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2014;16(11):1087–1095. doi: 10.1111/dom.12322
  20. Salocinski K, Richards J, All S, et al. Transcriptional regulation of NHE3 and SGLT1 by the circadian clock protein Per1 in proximal tubule cells. Am J Physiol Renal Physiol. 2015;309(11): F933–F942. doi: 10.1152/ajprenal.00197.2014
  21. Shestakova MV, Sukhareva OYu. Gliflozins: glucose-lowering and nonglycemic effects of new class of antidiabetic medications. Clinical pharmacology and therapy. 2016;25(2):65–71. (In Russ.)
  22. Nespoux J, Vallon V. Renal effects of SGLT2 inhibitors: an alternative search. Curr Opin Nephrol Hypertens. 2020;29(2):190–198. doi: 10.1097/MNH.0000000000000584
  23. Fu Y, Gerasimova M, Mayoux E, et al. SGLT2 inhubitor empagliflozin increases renal NHE3 phosphorilation in diabetic Akita mice: possible implications for the prevention of glomerular hyperfiltration. Diabetes. 2014;63(Suppl. 1): A132.
  24. Packer M. Activation and inhibition of sodium-hydrogen exchenger is a mechanism that links the pathophysiology and treatment of diabetes mellitus with that of heart failure. Circulation. 2017;136(16): 1548–1559. doi: 10.1161/CIRCULATIONAHA.117.030408
  25. Layton AT, Vallon V, Edwards A. Predicted cosequnces of diabetes and SGLT2 inhibition on transport and oxygen consumption along a rat nephron. Am J Physiol. Renal Physiol. 2016;310(12): F1269–F1283. doi: 10.1152/ajprenal.00543.2015
  26. Mima A. Renal protection by sodium-glucose cotransporter 2 inhibitors and its underlying mechanisms in diabetic kidney disease. J Diabetes Complicatiions. 2018;32(7):720–725. doi: 10.1016/j.jdiacomp.2018.04.011
  27. Hallow KM, Helmlinger G, Greasley PJ, et al. Why do SGLT2 inhibitors reduce heart failure hospitalization? A different volume regulation hypothesis. Diabetes Obes Metab. 2018;20(3):479–487. doi: 10.1111/dom.13126
  28. Ansary TM, Nakano D, Nishiyama A. Diuretic effects of sodium glucose cotransporter 2 inhibitors and their influence on the renin-angiotensin system. Int J Mol Sci. 2019;20(3):629. doi: 10.3390/ijms20030629
  29. Filippatos TD, Liontos A, Papakitsou I, Elisaf MS. SGLT2 inhibitors and cardioprotection: a matter of debate and multiple hypothesis. Postgrad Med. 2019;131(2):82–88. doi: 10.1080/00325481.2019.1581971.
  30. Hwang IC, Cho GY, Yoon YE, et al. Different effects of SGLT2 inhibitors according to the presence and types of heart failure in type 2 diabetic patients. Cardiovasc Diabetol. 2020;19(1):69. doi: 10.1186/s12933-020-01042-3
  31. Karg MV, Bosch A, Kannenkeri D, et al. SGLT2-inhibition with dapagliflozin reduces tissue sodium content: A randomised controlled trial. Cardiovasc Diabetol. 2018;17(1):5. doi: 10.1186/s12933-017-0654-z
  32. Titze J. A different view on sodium balance. Curr Opin Nephrol Hypertens. 2015;24(1):14–20. doi: 10.1097/MNH.0000000000000085
  33. Schneider MP, Raff U, Kopp C, et al. Skin sodium concentration correlates with left ventricular hypertrophy in CKD. J Am Soc Nephrol. 2017;28(6):1867–1876. doi: 10.1681/ASN.2016060662
  34. Hirose S, Nakajima S, Iwahashi Y, et al. Impact of the 8-week administration of Tofogliflozin for glycemic control and body composition in Japanese patients with type 2 diabetes mellitus. Intern Med. 2016;55(22):3239–3245. doi: 10.2169/internalmedicine.55.6367
  35. Sano M, Goto S. Possible mechanism of hematocrit elevation by sodium glucose cotransporter 2 inhibitors and associated beneficial renal and cardio-vascular effects. Circulation. 2019;139(17): 1985–1987. doi: 10.1161/CIRCULATIONAHA.118.038881
  36. Mazer CD, Hare GMT, Connely PW, et al. Effect of empagliflozin on erythropoietin levels, iron stores and red blood morphology in patients with type 2 diabetes and coronary artery disease. Circulation. 2020;141(8):704–707. doi: 10.1161/CIRCULATIONAHA.119.044235
  37. Haase VH. Hypoxia-inducible fsctors in the kidney. Am J Physiol Renal Physiol. 2006;291(2): F271–F281. doi: 10.1152/ajprenal.00071
  38. Chang YK, Choi H, Jeong JY, et al. Dapagliflozin, SGLT2 inhibitor, attenuates renal ischemia-reperfusion injury. PLoS One. 2016;11(7): e0158810. doi: 10.1371/journal.pone.0158810
  39. Ghanim H, Hejna JM, Abuaysheh S, et al. Dapagliflozin supresses plasma hepcidin concentrations. Diabetes. 2018;67(Suppl. 1): 1116–1117. doi: 10.2337/db18-1116-P
  40. Van der Meer P, Lipsic E. Erythropoietin: repair o the failing heart. J Am Coll Cardiol. 2006;48(1):185–186. doi: 10.1016/j.jacc.2006.04.007
  41. Kohan DE, Fioretto P, Tang W, List JF. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int. 2014;85(4):962–971. doi: 10.1038/ki.2013.356
  42. Vasilakou D, Karagiannis T, Athanasiadou E, et al. Sodium-glucose cotransporter 2 inhibitors for Type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2013;159(4):262–274. doi: 10.7326/0003-4819-159-4-201308200-00007
  43. Cai X, Yang W, Gao X, et al. The association between the dosage of SGLT2 inhibitor and weight reduction in type 2 diabetes patients: a meta-analysis. Obesity (Silver Spring). 2018;26(1):70–80. doi: 10.1002/oby.22066
  44. Suzuki M, Takeda M, Kito A, et al. Tofogliflozin, a sodium/glucose cotransporter 2 inhibitor, attenuates body weight gain and fat accumulation in diabetic and obese animal models. Nutr Diabetes. 2014;4(7):e125. doi: 10.1038/nutd.2014.20
  45. Yokono M, Takasu T, Hayashizaki Y, et al. SGLT2 selective inhibitor ipragliflozin reduces body fat mass by increasing fatty acid oxidation in high-fat diet-induced obese rats. Eur J Pharmacol. 2014;727:66–74. doi: 10.1016/j.ejphar.2014.01.040
  46. Jeong JW, Jeong MH, Yun KH, et al. Echocardiographic epicardial fat thickness and coronary artery disease. Circ J. 2007;71(4): 536–539. doi: 10.1253/circj.71.536
  47. Tentolouris A, Vlachakis P, Tzeravini E, et al. SGLT2 inhibitors: a review of their antidiabetic and cardioprotective effects. Int J Eviron Res Public Health. 2019;16(16):2965. doi: 10.3390/ijerph16162965
  48. Timothy Garvey W, Van Gaal L, Leiter LA, et al. Effects of canagliflozin versus glimepiride on adipokines and inflammatory biomarkers in type 2 diabetes. Metabolism. 2018;85:32–37. doi: 10.1016/j.metabol.2018.02.002
  49. Packer M. Do sodium-glucose co-transporter-2 inhibitors prevent heart failure with a preserved ejection fraction by counterbalancing the effects of leptin? A novel hypothesis. Diabetes Obes Metab. 2018;20(6):1361–1366. doi: 10.1111/dom.13229
  50. Ott C, Schmid A, Toennes SW, et al. Central pulse pressure predicts BP reduction after renal denervation in patients with treatment-resistant hypertension. Eurointervention. 2015;11(1):110–116. doi: 10.4244/EIJV11I1A19
  51. Bosch A, Ott C, Jung S, et al. How does empagliflozin improve arterial stiffness in patients with type 2 diabetes mellitus? Sub analysis of a critical trial. Cardiovasc Diabetol. 2019;18(1):44. doi: 10.1186/s12933-019-0839-8
  52. Ott C, Jumar A, Striepe K, et al. A randomized study of the impact of the SGLT2 inhibitor dapagliflozin on microvascular and macrovascular circulation. Cardiovasc Diabetol. 2017;16(1):26. doi: 10.1186/s12933-017-0510-1
  53. Solini A, Sebastiani G, Nigi L, et al. Dapagliflozin modulates glucagon secretion in an SGLT2-independent manner in murine alpha cells. Diabetes Metab. 2017;43(6):512–520. doi: 10.1016/j.diabet.2017.04.002
  54. Chilton R, Tikkanen I, Cannon CP, et al. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab. 2015;17(12):1180–1193. doi: 10.1111/dom.12572
  55. Striepe K, Jumar A, Ott C, et al. Effects of the selective sodium-glucose cotransporter 2 inhibitor empagliflozin on vascular function and central hemodynamics in patients with type 2 diabetes mellitus. Circulation. 2017;136(12):1167–1169. doi: 10.1161/CIRCULATIONAHA.117.029529
  56. Ramirez AJ, Sanchez MJ, Sanchez RA. Diabetic patients with essential hypertension treated with amlodipine: blood pressure and arterial stiffness effects of canagliflozin or perindopril. J Hypertens. 2019;37(3):636–642. doi: 10.1097/HJH.0000000000001907
  57. Pfeifer M, Townsend RR, Davies MJ, et al. Effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, on blood pressure and markers of arterial stiffness in patients with type 2 diabetes mellitus: a post hoc analysis. Cardiovasc Diabetol. 2017;16(1):29. doi: 10.1186/s12933-017-0511-0
  58. Bekki M, Tahara N, Tahara A., et al. Switching dipeptidyl peptidase-4 inhibitors to tofogliflozin, a selective inhibitor of sodium-glucose cotransporter 2 improves arterial stiffness evaluated by cardio-ankle vascular index in patients with type 2 diabetes: a pilot study. Curr Vasc Pharmacol. 2019;17(4):411–420. doi: 10.2174/1570161116666180515154555
  59. Ojima A, Matsui T, Nishino Y, et al. Empagliflozin, an inhibitor of sodium-glucose cotransporter 2 exerts anti-inflammatory and antifibrotic effects on experimental diabetic nephropathy partly by suppressing AGEs-receptor axis. Hormone Metab Res. 2015;47(9): 686–692. doi: 10.1055/s-0034-13956509
  60. Xu L, Nagata N, Nagashimada M, et al. SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice. EBioMedicine. 2017;20:137–149. doi: 10.1016/j.ebiom.2017.05.028
  61. Aroor AR, Das NA, Carpenter AJ, et al. Glycemic control by the SGLT2 inhibitor empagliflozin decreases aortic stiffness, renal resistivity index and kidney injury. Cardiovasc Diabetol. 2018;17(1):108. doi: 10.1186/s12933-018-0750-8
  62. Sanchis P, Rivera R, Fortuny R, et al. Role of Advanced Glycation End Products on Aortic Calcification in Patients with Type 2 Diabetes Mellitus. J Clin Med. 2020;9(6):1751. doi: 10.3390/jcm9061751
  63. Shigiyama F, Kumashiro N, Miyagi M, et al. Effectiveness of dapagliflozin on vascular endothelial function and glycemic control in patients with early-stage type 2 diabetes mellitus: DEFENCE study. Cardiovasc Diabetol. 2017;16(6):84. doi: 10.1186/s12933-017-0564-0
  64. Salim HM, Fukuda D, Yagi S, et al. Glycemic control with ipragliflozin, a novel slective SGLT2 inhibitor, ameliorated endothelial dysfunction in streptozotocin-induced diabetic mouse. Front Cardiovasc Med. 2016;(3):43. doi: 10.3389/fcvm.2016.00043
  65. Solini A, Giannini L, Seghieri M, et al. Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: a pilot study. Cardiovasc Diabetol. 2017;16(1):138. doi: 10.1186/s12933-017-0621-8
  66. Sugiyama S, Jinnouchi H, Kurinami N, et al. The SGLT2 inhibitor dapagliflozin significantly improves the peripheral microvascular endothelial function in patients with uncontrolled type 2 diabetes mellitus. Intern Med. 2018;57(15):2147–2156. doi: 10.2169/internalmedicine.0701-17
  67. Zainordin NA, Hatta SFWM, Mohamed Shah FZ, et al. Effects of dapagliflozin on endothelial dysfunction in type 2 diabetes with established ischemic heart disease (EDIFIED). J Endocr Soc. 2020;4(1): bvz017. doi: 10.1210/jendso/bvz017
  68. Tanaka A, Shimabukuro M, Okada Y, et al. Rationale and design of an investigator-initiated, multicenter, prospective open-label, randomized trial to evaluate the effect of ipragliflozin on endothelial dysfunction in type 2 diabetes and chronic kidney disease: the PROCEED trial. Cardiovasc Diabetol. 2020;19(1):85. doi: 10.1186/s12933-020-01065-w
  69. Tahara A, Kurosaki E, Yokono M, et al. Effects of sodium-glucose cotransporter 2 selective inhibitor ipragliflozin on hyperglycaemia, oxidative stress, inflammation and liver injury in streptozotocin-induced type 1 diabetic rats. J Pharm Pharmacol. 2014;66(7):975–987. doi: 10.1111/jphp.12223
  70. Oelze M, Kröller-Schön S, Welschof P, et al. The sodium-glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity. PLoS One. 2014;9(11):e112394. doi: 10.1371/journal.pone.0112394
  71. Terami N, Ogawa D, Tachibana H, et al. Long-term treatment with sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice. PLoS One. 2014;9(6):e100777. doi: 10.1371/journal.pone.0100777
  72. Juni RP, Kuster DWD, Goebel M, et al. Cardiac Microvascular Endothelial Enhancement of Cardiomyocyte Function is Impaired by Inflammation and Restored by Empagliflozin. JACC Basic Transl Sci. 2019;4(5):575–591. doi: 10.1016/j.jacbts.2019.04.003
  73. Uthman L, Homayr A, Juni RP, et al. Empagliflozin and dapagliflozin reduce ROS generation and restore NO bioavailability in tumor necrosis factor α-stimulated human coronary arterial endothelial cells. Cell Physiol Biochem. 2019;53(5):865–886. doi: 10.33594/000000178
  74. Andreadou I, Bell RM, Bøtker H, Zuurbier C. SGLT2 inhibitors reduce infarct size in reperfused ischemic heart and improve cardiac function during ischemic episodes in preclinical models. Biochim Biophys Acta Mol Basic Dis. 2020;1866(7):165770. doi: 10.1016/j.bbadis.2020.165770
  75. Sayour AA, Korkmaz-Icoz S, Loganathan S, et al. Acute canagliflozin treatment protects against in vivo myocardial ischemia-reperfusion injury in non-diabetic male rats and enhances endothelium-dependent vasorelaxation. J Transl Med. 2019;17(1):127. DOI: 10.10.1186/s12967-019-1881-8
  76. Franssen C, Chen S, Unger A, et al. Myocardial microvascular inflammatory endothelial activation in heart failure with preserved ejection fraction. J Am Coll Cardiol Heart Fail. 2016;4(4):312–324. doi: 10.1016/j.jchf.2015.10.007
  77. Gevaert AB, Lemmens K, Vrints CJ, Van Craenenbroeck EM. Targeting endothelial function to treat heart failure with preserved ejection fraction: the promise of exercise training. Oxid Med Cell Longev. 2017;2017:4865756. doi: 10.1155/2017/486575
  78. Zhang N, Feng B, Ma X, et al. Dapagliflozin impoves left ventricular remodeling and aorta sympathetic tone in a pig model of heart failure with preserved ejection fraction. Cardiovasc Diabetol. 2019;18(1):107. doi: 10.1186/s12933-019-0914-1
  79. Khemais-Benkhiat S, Belcastro E, Idris-Khodja N, et al. Angiotensin II-induced redox-sensitive SGLT1 and 2 expression promotes high glucose-induced endothelial cell senescence. J Cell Mol Med. 2020;24(3):2109–2122. doi: 10.1111/jcmm.14233
  80. Park S-H, Farooq MA, Gaertner S, et al. Empagliflozin improved systolic blood pressure, endothelial dysfunction and heart remodeling in the metabolic syndrome ZSF1 rat. Cardiovasc Diabetol. 2020;19(1):19. doi: 10.1186/s12933-020-00997-7
  81. Li H, Shin SE, Seo MS, et al. The anti-diabetic drug dapagliflozin induces vasodilation via activation of PKG and Kv channels. Life Sci. 2018;197:46–55. doi: 10.1016/j.lfs.2018.01.032
  82. Thomas MC, Cherney DZI. The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure. Diabetologia. 2018;61(10):2098–2107. doi: 10.1007/s00125-018-4669-0
  83. Chilton RJ. Effects of sodium-glucose cotransporter-2 inhibitors on the cardiovascular and renal complications of type 2 diabetes. Diabetes Obes Metab. 2020;22(1):16–29. doi: 10.1111/dom.13854
  84. Nakagawa Y, Kuwahara K. Sodium-glucose cotransporter-2 inhibitors are potential therapeutic agents for treatment of non-diabetic heart failure patients. J Cardiol. 2020;76(2):123–131. doi: 10.1016/j.jjcc.2020.03.009
  85. Sano M, Chen S, Imazeki H, et al. Changes in heart rate in patients with type 2 diabetes mellitus after treatment with luseogliflozin: subanalysis of placebo-controlled, double-blind clinical trials. J Diabetes Investig. 2018;9(3):638–641. doi: 10.1111/jdi.12726
  86. Matthews VB, Eliot RH, Rudnicka C, et al. Role of the sympathetic nervous system in regulation of the sodium glucose cotransporter 2. J Hypertens. 2017;35(10):2059–2068. doi: 10.1097/HJH.0000000000001434
  87. Santos-Gallego CG, Requena-Ibanez JA, San Antonio R, et al. Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics. J Am Coll Cardiol. 2019;73(15):1931–1944. DOI: 1016/j.jacc.2019.01.056
  88. Ferrannini E, Muscelli E, Frascerra S, et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest. 2014;124(2):499–508. doi: 10.1172/JCI72227
  89. Saponaro C, Gmyr V, Thévenet J, et al. The GLP1R agonist liraglutide reduces hyperglucagonemia induced by the sglt2 inhibitor dapagliflozin via somatostatin release. Cell Reports. 2019;28(6):1447–1454.e4. doi: 10.1016/j.celrep.2019.07.009
  90. Kuhre RE, Ghiasi SM, Adriaenssens AE, et al. No direct effect of SGLT2 activity on glucagon secretion. Diabetologia. 2019;62(6): 1011–1023. doi: 10.1007/s00125-019-4849-6
  91. Suga T, Kikuchi O, Kobayashi M, et al. SGLT1 in pancreatic α cells regulates glucagon secretion in mice, possibly explaining the distinct effects of SGLT2 inhibitors on plasma glucagon levels. Mol Metab. 2019;19:1–12. doi: 10.1016/j.molmet.2018.10.009
  92. Dai C, Walker JT, Shostak A, et al. Dapagliflozin does not directly affect human α or β cells. Endocrinology. 2020;161(8): bqaa080. doi: 10.1210/endocr/bqaa080
  93. Saponaro C, Mȕhlemann M, Acosta-Montalvo A, et al. Interindividual heterogeneity of SGLT2 expression and function in human pancreatic islets. Diabetes. 2020;69(5):902–914. doi: 10.2337/db19-0888
  94. Hodson DJ, Rorsman P. A variation on the theme: SGLT2 inhibition and glucagon secretion in human islets. Diabetes. 2020;69(5):864–866. doi: 10.2337/dbi19-0035
  95. Rotkvić PG, Berković MC, Bulj N, Rotkvić L. Minireview: are SGLT2 inhibitors heart savers in diabetes? Heart Fail Rev. 2019;25(6): 899–905. doi: 10.1007/s10741-019-09849-3
  96. Qiu H, Novikov A, Vallon V. Ketosis and diabetic ketoacidosis in response to SGLT2 inhibitors: Basic mechanisms and therapeutic perspectives. Diabetes Metab Res Rev. 2017;33(5): e2886. doi: 10.1002/dmrr.2886
  97. Bonora BM, Avogaro A, Fadini GP. Sodium-glucose co-transporter-2 inhibitors and diabetic ketoacidosis: an updated review of the literature. Diabetes Obes Metab. 2018;20(1):25–33. doi: 10.1111/dom. 13012
  98. Kaku K, Watada H, Iwamoto Y, et al. Efficacy and safety of monotherapy with the novel sodium/glucose cotransporter-2 inhibitor tofogliflozin in Japanese patients with type 2 diabetes mellitus: a combined Phase 2 and 3 randomized, placebo-controlled, double-blind, parallel-group comparative study. Cardiovasc Diabetol. 2014;13:65. doi: 10.1186/1475-2840-13-65
  99. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–2128. doi: 10.1056/NEJMoa1504720
  100. Erondu N, Desai M, Ways K, Meininger G. Diabetic ketoacidosis and related events in the canagliflozin type 2 diabetes clinical program. Diabetes Care. 2015;38(9):1680–1686. doi: 10.2337/dc15-1251
  101. Rosenstock J, Ferrannini E. Euglycemic diabetic ketoacidosis: a predictable, detectable, and preventable safety concern with SGLT2 inhibitors. Diabetes Care. 2015;38(9):1638–1642. doi: 10.2337/dc15-1380
  102. Verma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: A state-of-the-art review. Diabetologia. 2018;61(10):2108–2117. doi: 10.1007/s00125-018-4670-7
  103. Voulgari C, Papadogiannis D, Tentolouris N. Diabetic cardiomyopathy: from the pathophysiology of the cardiac myocytes to current diagnosis and management strategies. Vasc Health Risk Manag. 2010;6:883-903. doi: 10.2147/VHRM.S11681
  104. Garcia-Ropero A, Santos-Gallego CG, Zafar MU, Badimon JJ. Metabolism of the failing heart and the impact of SGLT2 inhibitors. Expert Opin Drug Metab Toxicol. 2019;15(4):275–285. doi: 10.1080/17425255.2019.1588886
  105. Ferrannini E, Mark M, Mayoux E. CV Protection in the EMPA-REG OUTCOME Trial: a “thrifty substrate” hypothesis. Diabetes Care. 2016;39(7):1108–1114. doi: 10.2337/dc16-0330
  106. Lopaschuk GD, Verma S. Empagliflozin’s fuel hypothesis: not so soon. Cell Metab. 2016;24(2):200–202. doi: 10.1016/j.cmet.2016.07.018
  107. Mudaliar S, Alloju S, Henry RR. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME Study? A unifying hypothesis. Diabetes Care. 2016;39(7): 1115–1122. doi: 10.2337/dc160542
  108. Uchihashi M, Hoshino A, Okawa Y, et al. Cardiac-specific Bdh1 overexpression ameliorates oxidative stress and cardiac remodeling in pressure overload-induces heart failure. Circ Heart Fail. 2017;10(12): e004417. doi: 10.1161/CIRCHEARTFAILURE.117.004417
  109. Schugar RC, Moll AR, Andre d’Avignon D, et al. Cardiomyocyte-specific deficiency of ketone body metabolism promotes accelerated pathological remodeling. Mol Metab. 2014;3(7):754–769. doi: 10.1016/j.molmet.2014.07.010
  110. Ferrannini E, Baldi S, Frascerra S, et al. Shift to Fatty Substrate Utulization in Response to Sodium-glucose Cotransporter 2 Inhibition in Subjects Without Diabetes and Patients With Type 2 Diabetes. Diabetes. 2016;65(5):1190–1195. doi: 10.2337/db15-1356
  111. Sun H, Olsen KC, Gao C, et al. Catabolic defect of branched-chain amino acids promotes heart failure. Circulation. 2016;133(21): 2038–2049. doi: 10.1161/CIRCULATIONAHA.115.020226
  112. Kappel BA, Lehrke M, Schutt K, et al. Effect of empagliflozin on the metabolic signature of patients with type 2 diabetes mellitus and cardiovascular disease. Circulation. 2017;136(10):969–972. doi: 10.1161/CIRCULATIONAHA.117.029166
  113. Shimazu T, Hirshey MD, Newman J, et al. Suppression of oxidative stress by beta-hydroxybutirate, an endogenous histone deacetylase inhibitor // Science. 2013;339(6116):211–214. doi: 10.1126/science.1227166
  114. Newman JC, Verdin E. Beta-hydroxybutyrate: much more than a metabolite. Diabetes Res Clin Pract. 2014;106(2):173–181. doi: 10.1016/j.diabres.2014.08.009
  115. Lkhagva B, Lin YK, Kao YH, et al. Novel histone deacetylase inhibitor modulates cardiac peroxisome proliferator-activated receptors and inflammatory cytokines in heart failure. Pharmacology. 2015;96(3–4):184–191. doi: 10.1159/000438864
  116. Kimura I, Inoue D, Maeda T, et al. Short-chain fatty acids and ketones directly regulates sympathetic nervous system via G protein-coupled receptor 41 (GRP41). Proc Natl Acad Sci USA. 2011;108(19):8030–8035. doi: 10.1073/pnas.1016088108

Copyright (c) 2021 Zverev Y.F., Rykunova A.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».