How to improve the selectivity of drugs
- Authors: Dumpis M.A.1, Brusina M.A.1, Litasova E.V.1, Iljin V.V.1, Nikolayev D.N.1, Piotrovskiy L.B.1
-
Affiliations:
- Institute of Experimental Medicine
- Issue: Vol 18, No 4 (2020)
- Pages: 313-326
- Section: Reviews
- URL: https://journals.rcsi.science/RCF/article/view/56958
- DOI: https://doi.org/10.17816/RCF184313-326
- ID: 56958
Cite item
Abstract
The review discusses in detail the causes of side effects of drugs, caused, inter alia, by the high complexity of the organism. The different ways are represented to overcome this problem by creating, in particular, targeted delivery systems. But nevertheless, drugs whose activity is manifested in milligram doses have minimal side effects.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Marina A. Dumpis
Institute of Experimental Medicine
Author for correspondence.
Email: levon-piotrovsky@yandex.ru
Leading Researcher, Laboratory of Nanotechnology of Drugs, Department of Neuropharmacology
Russian Federation, Saint PetersburgMarija A. Brusina
Institute of Experimental Medicine
Email: mashasemen@gmail.com
PhD, Junior Scientific Researcher of the Laboratory for the Synthesis and Nanotechnology of Drugs of S.V. Anichkov, Department of Neuropharmacology
Russian Federation, Saint PetersburgElena V. Litasova
Institute of Experimental Medicine
Email: llitasova@mail.ru
PhD (Pharmacology), Leading Researcher, Laboratory of Nanotechnology of Drugs of S.V. Anichkov, Department of Neuropharmacology
Russian Federation, Saint PetersburgViktor V. Iljin
Institute of Experimental Medicine
Email: victor.iljin@mail.ru
Leading Researcher, Laboratory of Nanotechnology of Drugs of S.V. Anichkov, Department of Neuropharmacology
Russian Federation, Saint PetersburgDmitrii N. Nikolayev
Institute of Experimental Medicine
Email: pp225@yandex.ru
Scientific Researcher, Laboratory of Synthesis and Nanothechnology of Drugs of S.V. Anichkov, Department of Neuropharmacology
Russian Federation, Saint PetersburgLevon B. Piotrovskiy
Institute of Experimental Medicine
Email: levon-piotrovsky@yandex.ru
Dr. Biol. Sci., Professor, Head, Laboratory of Nanotechnology of Drugs of S.V. Anichkov, Department of Neuropharmacology
Russian Federation, Saint PetersburgReferences
- Всемирная организация здравоохранения. МКБ-10. Международная статистическая классификация болезней и проблем, связанных со здоровьем. Десятый пересмотр. Том 1. – Женева: ВОЗ, 1992. [World Health Organization. ICD-10. International Statistical Classification of Diseases and Related Health Problems. Tenth Revision. Vol. 1. Geneva: WHO; 1992. (In Russ.)]
- Drews J, Ryser S. The role of innovation in drug development. Nat Biotechnol. 1997;15(13):1318-1319. https://doi.org/10.1038/nbt1297-1318.
- Goldstein I, Burnett AL, Rosen RC, et al. The Serendipitous Story of Sildenafil: An Unexpected Oral Therapy for Erectile Dysfunction. Sex Med Rev. 2019;7(1):115-128. https://doi.org/10.1016/j.sxmr.2018.06.005.
- Marth JD. A unified vision of the building blocks of life. Nat Cell Biol. 2008;10(9):1015-1016. https://doi.org/10.1038/ncb0908-1015.
- Свердлов Е.Д. Системная биология и персонализированная медицина: быть или не быть? // Российский физиологический журнал им. И.М.Сеченова. – 2014. – Т. 100. – № 5. – С. 505–541. [Sverdlov ED. Systems biology and personalized medicine: to be or not to be? Ross Fiziol Zh Im I M Sechenova. 2014;100(5):505-541. (In Russ.)]
- Mendel CM, Mendel DB. ‘Non-specific’ binding. The problem, and a solution. Biochem J. 1985;228(1): 269-272. https://doi.org/10.1042/bj2280269.
- Wallace JL. Prostaglandins, NSAIDs, and gastric mucosal protection: why doesn’t the stomach digest itself? Physiol Rev. 2008;88(4):1547-1565. https://doi.org/10.1152/physrev.00004.2008.
- Loucks J, Yost S, Kaplan B. An introduction to basic pharmacokinetics. Transplantation. 2015;99(5):903-907. https://doi.org/10.1097/TP.0000000000000754.
- Хочачка П., Сомеро Дж. Биохимическая адаптация. – М.: Мир, 1988. – 568 с. [Khochachka P, Somero Dzh. Biokhimicheskaya adaptatsiya. Moscow: Mir; 1988. 568 p. (In Russ.)]
- Greek R, Hansen LA. Questions regarding the predictive value of one evolved complex adaptive system for a second: exemplified by the SOD1 mouse. Prog Biophys Mol Biol. 2013;113(2):231-253. https://doi.org/10.1016/j.pbiomolbio.2013.06.002.
- Bizzarri M, Palombo A, Cucina A. Theoretical aspects of Systems Biology. Prog Biophys Mol Biol. 2013;112(1-2): 33-43. https://doi.org/10.1016/j.pbiomolbio.2013.03.019.
- Woods A. Medium-range weather prediction: The European approach. The story of the European Centre for Medium-Range Weather Forecasts. New York: Springer; 2005. 118 p.
- ru.wikipedia.org [интернет]. Эффект бабочки [доступ от 03.11.2020]. Доступ по ссылке: https://ru.wikipedia.org/wiki/эффект бабочки. [ru.wikipedia.org [Internet]. Effekt babochki [cited 2020 Nov 2]. Available from: https://ru.wikipedia.org/wiki/effekt babochki. (In Russ.)]
- Deichmann WB, Henschler D, Holmstedt B, Keil G. What is there that is not poison? A study of the Third Defense by Paracelsus. Arch Toxicol. 1986;58(4):207-213. https://doi.org/10.1007/BF00297107.
- Перфилова В.Н., Тюренков И.Н. Глутаматные ионотропные рецепторы: структура, локализация, функции // Успехи физиологических наук. – 2016. – Т. 47. – № 1. – С. 80–96. [Perfilova VN, Tyurenkov IN. Glutamate ionotropic receptors: structure, localisation, function. Usp Fiziol Nauk. 2016;47(1);80-96. (In Russ.)]
- Перфилова ВН, Тюренков ИН. Глутаматные метаботропные рецепторы: структура, локализация, функции // Успехи физиологических наук. – 2016. – Т. 47. – № 2. – С. 98–112. [Glutamate metabotropic receptors: structure, localisation, functions. Usp Fiziol Nauk. 2016;47(2);98-112. (In Russ.)]
- Brauner-Osborne H, Egebjerg J, Nielsen EO, et al. Ligands for glutamate receptors: design and therapeutic prospects. J Med Chem. 2000;43(14):2609-2645. https://doi.org/10.1021/jm000007r.
- Сергеев П.В., Шимановский Н.Л., Петров В.И. Рецепторы физиологически активных веществ. – М. – Волгоград: Высшая школа, 1999. – 639 с. [Sergeev PV, Shimanovskiy NL, Petrov VI. Retseptory fiziologicheski aktivnykh veshchestv. Moscow-Volgograd: Vysshaya shkola; 1999. 639 p. (In Russ.)]
- Katritsis DG, Gersh BJ Camm AJ. Clinical Cardiology: Current Practice Guidelines. OUP Oxford; 2013.
- Sanchez-Soto M, Casado-Anguera V, Yano H, et al. alpha2A- and alpha2C-Adrenoceptors as Potential Targets for Dopamine and Dopamine Receptor Ligands. Mol Neurobiol. 2018;55(11):8438-8454. https://doi.org/10.1007/s12035-018-1004-1.
- Eccles JC. The Physiology of Synapses. Elsevier; 1964. 328 p. https://doi.org/10.1016/C2013-0-08188-1.
- Monaghan DT, Jane DE. Pharmacology of NMDA Receptors. In: Biology of the NMDA Receptor. Ed. by AM Van Dongen AM. Boca Raton (FL): CRC Press/Taylor & Francis; 2009. Chapter 12.
- Antonov SM, Johnson JW, Lukomskaya NY, et al. Novel adamantane derivatives act as blockers of open ligand-gated channels and as anticonvulsants. Mol Pharmacol. 1995;47(3):558-67.
- Тихонов Д.Б., Магазаник Л.Г. Разнообразие механизмов блокады ионных каналов -путь к дизайну новых фармакологических агентов // Российский физиологический журнал им. И.М. Сеченова. – 2010. – Т. 96. – № 7. – С. 726–739. [Tikhonov D.B., Magazanik L.G. The diversity of mechanisms of blockade of ion channels as a pathway to the design of new pharmacological agents. Ross Fiziol Zh Im I M Sechenova. 2012;42(1):111-119. (In Russ.)] https://doi.org/ 10.1007/s11055-011-9542-2.
- Харкевич Д.А. Фармакология. – М. ГЭОТАР-Медиа, 2017. – 760 с. [Kharkevich DA. Farmakologiya. Moscow: GEOTAR-Media; 2017. 760 p. (In Russ.)]
- Shargel L. Applied Biopharmaceutics & Pharmacokinetics. New York: McGraw-Hill, Medical Pub. Division; 2005.
- Leo A, Hansch C, Elkins D. Partition coefficients and their uses. Chem Rev. 1971;71(6):525-616. https://doi.org/10.1021/cr60274a001.
- Oprea TI. Current trends in lead discovery: are we looking for the appropriate properties? Mol Divers. 2002;5(4):199-208. https://doi.org/10.1023/a:1021368007777.
- Fichert T, Yazdanian M, Proudfoot JR. A structure-Permeability study of small drug-like molecules. Bioorg Med Chem Lett. 2003;13(4):719-722. https://doi.org/10.1016/s0960-894x(02)01035-1.
- High throughput synthesis: principles and practices. Ed. by I. Sucholeiki, M. Dekker. New York; 2001. 400 p.
- Macarron R, Banks MN, Bojanic D, et al. Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov. 2011;10(3):188-195. https://doi.org/10.1038/nrd3368.
- Wermuth CG, Ganellin CR, Lindberg P, Mitscher LA. Glossary of terms used in medicinal chemistry (IUPAC Recommendations 1998). Pure Appl Chem. 1998;70(5): 1129-1143. https://doi.org/10.1351/pac199870051129.
- Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004; 1(4):337-341. https://doi.org/10.1016/j.ddtec.2004. 11.007.
- Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1-3):3-26. https://doi.org/10.1016/s0169-409x(00)00129-0.
- Dyabina AS, Radchenko EV, Palyulin VA, Zefirov NS. Prediction of blood-brain barrier permeability of organic compounds. Dokl Biochem Biophys. 2016;470(1):371-374. https://doi.org/10.1134/S1607672916050173.
- Radchenko EV, Dyabina AS, Palyulin VA, Zefirov NS. Prediction of human intestinal absorption of drug compounds. Russ Chem Bull. 2016;65(2):576-580. https://doi.org/10.1007/s11172-016-1340-0.
- Radchenko EV, Rulev YA, Safanyaev AY, et al. Computer-aided estimation of the hERG-mediated cardiotoxicity risk of potential drug components. Dokl Biochem Biophys. 2017;473(1):128-131. https://doi.org/10.1134/S1607672917020107.
- qsar.chem.msu.ru [Internet]. ADMET Prediction Service [cited 2020 Nov 3]. Available from: http://qsar.chem.msu.ru/admet/
- Головенко Н.Я. Физико-химическая фармакология. – Одесса: АстроПринт, 2004. – 718 с. [Golovenko NYa. Fiziko-khimicheskaya farmakologiya. Odessa: AstroPrint; 2004. 718 p. (In Russ.)]
- Pond SM, Tozer TN. First-pass elimination. Basic concepts and clinical consequences. Clin Pharmacokinet. 1984;9(1):1-25. https://doi.org/10.2165/00003088-198409010-00001.
- Mahase E. FDA recalls ranitidine medicines over potential cancer causing impurity. BMJ. 2019;367: l5832. https://doi.org/10.1136/bmj.l5832.
- Di Marzo V. The endocannabinoid system: its general strategy of action, tools for its pharmacological manipulation and potential therapeutic exploitation. Pharmacol Res. 2009;60(2):77-84. https://doi.org/10.1016/j.phrs.2009.02.010.
- Flores A, Maldonado R, Berrendero F. Cannabinoid-hypocretin cross-talk in the central nervous system: what we know so far. Front Neurosci. 2013;7:256. https://doi.org/10.3389/fnins.2013.00256.
- Torchilin VP. Drug targeting. Eur J Pharm Biopharm. 2000;11: S81-S91. https://doi.org/10.1016/s0928-0987(00)00166-4.
- Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx. 2005;2(1):3-14. https://doi.org/10.1602/neurorx.2.1.3.
- Lodish H, Berk A, Zipursky SL, et al. Molecular Cell Biology. 4th ed. New York; 2000.
- Чехонин В.П., Жирков Ю.А., Дмитриева Т.Б. Направленная доставка лекарственных средств в мозг // Вестник РАМН. – 2006. – № 8. – C. 30–37. [Chekhonin VP, Zhirkov YuA, Dmitrieva TB. Direct drug delivery to the brain. Vestn Ross Akad Med Nauk. 2006;(8):30-37. (In Russ.)]
- Lentacker I, Vandenbroucke RE, Lucas B, et al. New strategies for nucleic acid delivery to conquer cellular and nuclear membranes. J Control Release. 2008;132(3): 279-288. https://doi.org/10.1016/j.jconrel.2008.06.023.
- Lin CY, Liu TM, Chen CY, et al. Quantitative and qualitative investigation into the impact of focused ultrasound with microbubbles on the triggered release of nanoparticles from vasculature in mouse tumors. J Control Release. 2010;146(3):291-298. https://doi.org/10.1016/j.jconrel.2010.05.033.
- Пиотровский Л.Б. Очерки о наномедицине. – СПб.: Европейский дом, 2013. – 206 с. [Piotrovskiy LB. Ocherki o nanomeditsine. Saint Petersburg: Evropeyskiy dom; 2013. 206 p. (In Russ.)]
- Bodor N, Brewster ME. Chemical Delivery Systems. In: Targeted Drug Delivery. Handbook of Experimental Pharmacology. Ed. by R.L. Julian. Berlin, Heidelberg: Springer; 1991. P. 231-284.
- Hoffman AS. The origins and evolution of “controlled” drug delivery systems. J Control Release. 2008;132(3): 153-163. https://doi.org/10.1016/j.jconrel.2008. 08.012.
- Jain KK. Drug delivery systems – an overview. Methods Mol Biol. 2008;437:1-50. https://doi.org/10.1007/978-1-59745-210-6_1.
- Butcher SP, Davis S, Morris RGM. A dose-related impairment of spatial learning by the NMDA receptor antagonist, 2-amino-5-phosphonovalerate (AP5). Eur Neuropsychopharmacol. 1990;1(1):15-20. https://doi.org/10.1016/0924-977x(90)90005-u.
- Butcher SP, Hamberger A, Morris RG. Intracerebral distribution of DL-2-amino-phosphonopentanoic acid (AP5) and the dissociation of different types of learning. Exp Brain Res. 1991;83(3):521-526. https://doi.org/10.1007/BF00229829.
- Staples M, Daniel K, Cima MJ, Langer R. Application of micro- and nano-electromechanical devices to drug delivery. Pharm Res. 2006;23(5):847-863. https://doi.org/10.1007/s11095-006-9906-4.
- Nascimento LGL, Casanova F, Silva NFN, et al. Casein-based hydrogels: A mini-review. Food Chem. 2020;314:126063. https://doi.org/10.1016/j.foodchem. 2019.126063.
- Luo Z, Dai Y, Gao H. Development and application of hyaluronic acid in tumor targeting drug delivery. Acta Pharm Sin B. 2019;9(6):1099-1112. https://doi.org/10.1016/j.apsb.2019.06.004.
- Esquivel-Castro TA, Ibarra-Alonso MC, Oliva J, Martinez-Luevanos A. Porous aerogel and core/shell nanoparticles for controlled drug delivery: A review. Mater Sci Eng C Mater Biol Appl. 2019;96:915-940. https://doi.org/10.1016/j.msec.2018.11.067.
- Bae YH, Park K. Targeted drug delivery to tumors: myths, reality and possibility. J Control Release. 2011;153(3):198-205. https://doi.org/10.1016/j.jconrel.2011.06.001.
- Walther R, Rautio J, Zelikin AN. Prodrugs in medicinal chemistry and enzyme prodrug therapies. Adv Drug Deliv Rev. 2017;118:65-77. https://doi.org/10.1016/j.addr.2017.06.013.
- Abet V, Filace F, Recio J, et al. Prodrug approach: An overview of recent cases. Eur J Med Chem. 2017;127: 810-827. https://doi.org/10.1016/j.ejmech.2016.10.061.
- Albert A. Selective Toxicity The physico-chemical basis of therapy. Chapman & Hall; 1985. 750 p.
- Johnson DS, Weerapana E, Cravatt BF. Strategies for discovering and derisking covalent, irreversible enzyme inhibitors. Future Med Chem. 2010;2(6):949-964. https://doi.org/10.4155/fmc.10.21.
- Olbe L, Carlsson E, Lindberg P. A proton-pump inhibitor expedition: the case histories of omeprazole and esomeprazole. Nat Rev Drug Discov. 2003;2(2):132-139. https://doi.org/10.1038/nrd1010.
- Пиотровский Л.Б., Думпис М.А. Пролекарства: цели, принципы и перспективы // Фармакология и токсикология. – 1988. – Т. 51. – № 6. – С. 17–25. [Piotrovskiy LB, Dumpis MA. Prolekarstva: tseli, printsipy i perspektivy. Farmakol Toksikol. 1988;51(6):17-25. (In Russ.)]
- Stella VJ, Charman WN, Naringrekar VH, Prodrugs. Do they have advantages in clinical practice? Drugs. 1985;29(5):455-4573. https://doi.org/ 10.2165/00003495-198529050.
- Roche VF. The chemically elegant proton pump inhibitors. Am J Pharm Educ. 2006;70(5):101. https://doi.org/10.5688/aj7005101.
- Kusano M, Kuribayashi S, Kawamura O, et al. A Review of the Management of Gastric Acid-Related Diseases: Focus on Rabeprazole. Clin Med Gastroenterol. 2011;4: CGast.S5133. https://doi.org/10.4137/CGast.S5133.
- Bodor N, Simpkins JW. Redox delivery system for brain-specific, sustained release of dopamine. Science. 1983;221(4605):65-67. https://doi.org/10.1126/science. 6857264.
- Notari RE. Prodrug design. Pharmacol Ther. 1981; 14(1):25-53. https://doi.org/10.1016/0163-7258(81) 90009-7.
- Bodor N, AbdelAlim AM. Improved delivery through biological membranes XIX: Novel redox carriers for brain-specific chemical delivery systems. J Pharm Sci. 1985;74(3): 241-245. https://doi.org/10.1002/jps.2600740304.
- Notari RE. Theory and practice of prodrug kinetics. Meth Enzymol. 1985;112:309-323. https://doi.org/10.1016/s0076-6879(85)12026-4.
- Zaza G, Tomei P, Granata S, et al. Monoclonal antibody therapy and renal transplantation: focus on adverse effects. Toxins (Basel). 2014;6(3):869-891. https://doi.org/10.3390/toxins6030869.
- psoriaz.ru [интернет]. Моноклональные антитела при псориазе [доступ от 03.11.2020]. Доступ по ссылке: https://1psoriaz.ru/lekarstvo-ot-psoriaza/monoklonalnye-antitela/. [1psoriaz.ru [Internet]. Monoklonal’nye antitela pri psoriaze [cited 2020 Nov 3]. Available from: https://1psoriaz.ru/lekarstvo-ot-psoriaza/monoklonalnye-antitela/. (In Russ.)]
- Wang T, Wu X, Guo C, et al. Development of Inhibitors of the Programmed Cell Death-1/Programmed Cell Death-Ligand 1 Signaling Pathway. J Med Chem. 2019;62(4):1715-1730. https://doi.org/10.1021/acs.jmedchem.8b00990.
- Мазуров В.И., Трофимов Е.А. Инновационные методы лечения системных аутоиммунных заболеваний // Вестник российской академии медицинских наук. – 2015. – Т. 70. – № 2. – С. 165–168. [Mazurov VI, Trofimov VA. Innovative methods of some systemic autoimmune disease treatment. Vestn Ross Akad Med Nauk. 2015;70(2):165-168. (In Russ.)]
- Пиотровский Л.Б., Белоусова И.М., Данилов О.Б., Киселев О.И. Фуллерены: фотодинамические процессы и новые подходы в медицине. – СПб.: Роза мира, 2005. – 139 с. [Piotrovskiy LB, Belousova IM, Danilov OB, Kiselev OI. Fullereny: fotodinamicheskie protsessy i novye podkhody v meditsine. Saint Petersburg: Roza mira; 2005. 139 p. (In Russ.)]
- Yamakoshi YN, Yagami T, Sueyoshi S, Miyata N. Acridine Adduct of [60]Fullerene with Enhanced DNA-Cleaving Activity. J Org Chem. 1996;61(21):7236-7237. https://doi.org/10.1021/jo961210q.
- Kasai H, Nagashima M, Shimoda R, et al. Formation of 8-hydroxyguanine in DNA by oxygen radicals and its repair. In: Frontiers of Reactive Oxygen Species in Biology and Medicine. Ed. by K. Asada, T. Yoshikawa. Amsterdam: Excerpta Medica; 1994. P. 157-160.
- Boutorine AS, Takasugi M, Hélène C, et al. Fullerene-Oligonucleotide Conjugates: Photoinduced Sequence-Specific DNA Cleavage. Angew Chem Int Ed Engl. 1995;33(2324):2462-2465. https://doi.org/10.1002/anie.199424621.
- Nakamura E, Tokuyama H, Yamago S, et al. Biological Activity of Water-Soluble Fullerenes. Structural Dependence of DNA Cleavage, Cytotoxicity, and Enzyme Inhibitory Activities Including HIV-Protease Inhibition. Bull Chem Soc Jpn. 1996;69(8):2143-2151. https://doi.org/10.1246/bcsj.69.2143.
- Tokuyama H, Yamago S, Nakamura E, et al. Photoinduced biochemical activity of fullerene carboxylic acid. J Am Chem Soc. 1993;115(17):7918-7919. https://doi.org/10.1021/ja00070a064.
- Da Ros T, Spalluto G, Prato M. Biological applications of fullerene derivatives: a brief overview. Croatica Chemica Acta, 2001;74(4):743-755.
- Tabata Y, Ikada Y. Biological functions of fullerene. Pure and Applied Chemistry. 1999;71(11):2047-2053. https://doi.org/10.1351/pac199971112047.
- Пиотровский Л.Б., Киселев О.И. Фуллерены в биологии. – СПб.: Росток, 2006. – 336 с. [Piotrovskiy LB, Kiselev OI. Fullereny v biologii. Saint Petersburg: Rostok; 2006. 336 p. (In Russ.)]
- Kandel ER, Schwartz JH, Jessell TM. Principles of neural science, 4th ed. New York: McGraw-Hill; 2000.
- Zakhari JS, Kinoyama I, Hixon MS, et al. Formulating a new basis for the treatment against botulinum neurotoxin intoxication: 3,4-Diaminopyridine prodrug design and characterization. Bioorg Med Chem. 2011;19(21): 6203-6209. https://doi.org/10.1016/j.bmc.2011. 09.019.
- Young SC, Fabio KM, Huang MT, et al. Investigation of anticholinergic and non-steroidal anti-inflammatory prodrugs which reduce chemically induced skin inflammation. J Appl Toxicol. 2012;32(2):135-141. https://doi.org/10.1002/jat.1645.
- Dominguez E, Iyengar S, Shannon HE, et al. Two prodrugs of potent and selective GluR5 kainate receptor antagonists actives in three animal models of pain. J Med Chem. 2005;48(13):4200-4203. https://doi.org/10.1021/jm0491952.
- Yasuhara A, Nakamura M, Sakagami K, et al. Prodrugs of 3-(3,4-dichlorobenzyloxy)-2-amino-6-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (MGS0039): a potent and orally active group II mGluR antagonist with antidepressant-like potential. Bioorg Med Chem. 2006;14(12):4193-4207. https://doi.org/10.1016/j.bmc. 2006.01.060.
- Kellner M, Muhtz C, Stark K, et al. Effects of a metabotropic glutamate2/3 receptor agonist (LY544344/LY354740) on panic anxiety induced by cholecystokinin tetrapeptide in healthy humans: preliminary results. Psychopharmacology (Berl). 2005;179(1):310-315. https://doi.org/10.1007/s00213-004-2025-1.
- Rorick-Kehn LM, Perkins EJ, Knitowski KM, et al. Improved bioavailability of the mGlu2/3 receptor agonist LY354740 using a prodrug strategy: in vivo pharmacology of LY544344. J Pharmacol Exp Ther. 2006;316(2):905-913. https://doi.org/10.1124/jpet.105. 091926.
