Assessment of dose-dependent effects of anxiolytics of benzodiazepine structure with diazepam as an example in Danio Rerio
- Authors: Devyashin A.S.1, Blazhenko A.A.1, Lebedev V.A.1, Lebedev A.A.1, Bychkov E.R.1, Shabanov P.D.1
-
Affiliations:
- Institute of Experimental Medicine
- Issue: Vol 18, No 1 (2020)
- Pages: 43-49
- Section: Experimental Pharmacology
- URL: https://journals.rcsi.science/RCF/article/view/34065
- DOI: https://doi.org/10.17816/RCF18143-49
- ID: 34065
Cite item
Full Text
Abstract
Abstract. The effect of benzodiazepine anxiolytic diazepam in Danio rerio was investigated.
Methods. A stress test on novelty situation was used: a fish was placed first in a beaker with a dissolved pharmacological substance (or water) and then into a novel tank for 6 min, where the trajectory, the path length, the number of movements to the upper part of the novel tank, the number and time of the pattern of “freezing” of the experiment were measured.
Results. In response to the novelty of tank, the fish was shown to react by submerging to the bottom, increasing the freezing, and reducing the number of movements to the upper half of the novel tank. After diazepam exposure (administration), the fish was not only in the lower, but also in the upper part of the novel tank. A pharmacological analysis of diazepam effect in Danio rerio showed that in a certain dose range of 1–10 mg/l anxiolytic reduces (in comparison with the control group of fish) the number and time of freezing, increases the number of movements in the upper half of the tank and the swimming time in upper part of the tank. Diazepam causes a disinhibition of motor activity at doses of 1 and 5 mg/l, which may be explained by the effect of small doses of tranquilizers on presynaptic GABA-A autoreceptors. Diazepam 20 mg/l has a depriving effect.
Conclusion. Diazepam acts in a higher dose range (1–10 mg/l) than phenazepam (0.1–1 mg/l) in Danio rerio. At the same time, diazepam is characterized by a domed dose-dependent effect, in contrast to the action of phenazepam. The prospect of using Danio rerio as an animal model in behavioral pharmacology is not inferior to studies in rodents.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Aleksandr S. Devyashin
Institute of Experimental Medicine
Author for correspondence.
Email: alexsanta93@mail.ru
Post-graduate Fellow, Dept. of Neuropharmacology
Russian Federation, Saint PetersburgAleksandra A. Blazhenko
Institute of Experimental Medicine
Email: alexandrablazhenko@gmail.com
Post-graduate Fellow, Dept. of Neuropharmacology
Russian Federation, Saint PetersburgViktor A. Lebedev
Institute of Experimental Medicine
Email: aalebedev-iem@rambler.ru
PhD (Pharmacology), Junior Researcher, Dept. of Neuropharmacology
Russian Federation, Saint PetersburgAndrei A. Lebedev
Institute of Experimental Medicine
Email: aalebedev-iem@rambler.ru
Dr. Biol. Sci. (Pharmacology), Head of the Laboratory of General Pharmacology, Dept. of Neuropharmacology
Russian Federation, Saint PetersburgEugenii R. Bychkov
Institute of Experimental Medicine
Email: bychkov@mail.ru
PhD (Pathophysiology), Head of the Laboratory of Chemistry and Pharmacology of Medicinal Compounds, Dept. of Neuropharmacology
Russian Federation, Saint PetersburgPetr D. Shabanov
Institute of Experimental Medicine
Email: pdshabanov@mail.ru
Dr. Med. Sci. (Pharmacology), Professor and Head, Dept. of Neuropharmacology
Russian Federation, Saint PetersburgReferences
- Лебедев А.А., Пшеничная А.Г., Бычков Е.Р., и др. Антагонист рецепторов кортиколиберина астрессин снимает тревожно-фобические состояния у крыс, выращенных в социальной изоляции // Обзоры по клинической фармакологии и лекарственной терапии. – 2016. – Т. 14. – № 4. – С. 24–31. [Lebedev AA, Pshenichnaya AG, Bychkov ER, et al. Astressin, an antagonist of CRF receptors, reduces anxiety and fobial states in rats reared in social isolation conditions. Reviews on Clinical Pharmacology and Drug Therapy. 2016;14(4):24-31. (In Russ.)] https://doi.org/10.17816/RCF14424-31.
- Лебедев В.А., Лебедев А.А., Бычков Е.Р., Шабанов П.Д. Возможность использования поведенческих ответов Danio rerio в оценке дозозависимых эффектов феназепама // Лабораторные животные для научных исследований. – 2018. – № 1. – С. 12–21. [Lebedev VA, Lebedev AA, Bychkov ER, Shabanov PD. Probability of using the behavioral responses of Danio rerio in assessment of dose-dependent effects of phenazepam. Laboratornye zhivotnye dlya nauchnykh issledovaniy. 2018;(1):12-21. (In Russ.)]. https://doi.org/10.29296/2618723X-2018-01-02.
- Шабанов П.Д., Лебедев А.А., Якушина Н.Д., и др. Моделирование обсессивно-компульсивного и аддиктивного игрового поведения у крыс введением фенамина в тесте закапывания шариков // Наркология. – 2017. – Т. 16. – № 1. – С. 32–38. [Shabanov PD, Lebedev AA, Yakushina ND, et al. Modeling the obsessive-compulsive and addictive gambling behavior in a rat marble test by means of amphetamine administration. Narkologiia. 2017;16(1):32-38. (In Russ.)]
- Шабанов П.Д., Лебедев В.А., Лебедев А.А., Бычков Е.Р. Влияние стресса новизны на поведенческие ответы Danio rerio и оценка дозозависимых эффектов анксиолитиков бензодиазепинового ряда на примере феназепама // Обзоры по клинической фармакологии и лекарственной терапии. – 2017. – Т. 15. – № 3. – С. 57–63. [Shabanov PD, Lebedev VA, Lebedev AA, Bychkov ER. Effect of novelty stress on behavioral responses of Danio rerio and assessment of dose-dependent effects of anxiolytics of benzodiazepine structure with phenazepam as an example. Reviews on Clinical Pharmacology and Drug Therapy. 2017;15(3):57-63. (In Russ.)]. https://doi.org/10.17816/RCF15357-63.
- Bencan Z, Sledge D, Levin ED. Buspirone, chlordiazepoxide and diazepam effects in a zebrafish model of anxiety. Pharmacol Biochem Behav. 2009;94(1):75-80. https://doi.org/10.1016/j.pbb.2009.07.009.
- Blaser R, Gerlai R. Behavioral phenotyping in zebrafish: comparison of three behavioral quantification methods. Behav Res Methods. 2006;38(3):456-469. https://doi.org/10.3758/bf03192800.
- Best JD, Alderton WK. Zebrafish: An in vivo model for the study of neurological diseases. Neuropsychiatr Dis Treat. 2008;4(3):567-576. https://doi.org/10.2147/ndt.s2056.
- Best JD, Berghmans S, Hunt JJ, et al. Non-associative learning in larval zebrafish. Neuropsychopharmacology. 2008;33(5):1206-1215. https://doi.org/10.1038/sj.npp. 1301489.
- Bretaud S, Li Q, Lockwood BL, et al. A choice behavior for morphine reveals experience-dependent drug preference and underlying neural substrates in developing larval zebrafish. Neuroscience. 2007;146(3):1109-1116. https://doi.org/10.1016/j.neuroscience.2006.12.073.
- Bronikowski AM, Carter PA, Swallow JG, et al. Open-field behavior of house mice selectively bred for high voluntary wheel-running. Behav Genet. 2001;31(3):309-316. https://doi.org/10.1023/a:1012283426530.
- Cachat J, Stewart A, Grossman L, et al. Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nat Protoc. 2010;5(11):1786-1799. https://doi.org/10.1038/nprot.2010.140.
- Choleris E, Thomas AW, Kavaliers M, Prato FS. A detailed ethological analysis of the mouse open field test: effects of diazepam, chlordiazepoxide and an extremely low frequency pulsed magnetic field. Neurosci Biobehav Rev. 2001;25(3):235-260. https://doi.org/10.1016/s0149-7634(01)00011-2.
- Creton R. Automated analysis of behavior in zebrafish larvae. Behav Brain Res. 2009;203(1):127-136. https://doi.org/10.1016/j.bbr.2009.04.030.
- Egan RJ, Bergner CL, Hart PC, et al. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res. 2009;205(1):38-44. https://doi.org/10.1016/j.bbr.2009.06.022.
- Gerlai R. Event recording and video-tracking: towards the development of high-throughput Danio rerio screens. In: Proceedings of the 5th Conference on Methods in Behavioral Research; Wageningen, 30 Aug–2 Sep 2005. Wageningen; 2005. P. 193-197.
- Gerlai R, Lee V, Blaser R. Effects of acute and chronic ethanol exposure on the behavior of adult zebrafish (Danio rerio). Pharmacol Biochem Behav. 2006;85(4):752-761. https://doi.org/10.1016/j.pbb.2006.11.010.
- Guo S. Using zebrafish to assess the impact of drugs on neural development and function. Expert Opin Drug Discov. 2009;4(7):715-726. https://doi.org/10. 1517/17460440902988464.
- Key B, Devine CA. Zebrafish as an experimental model: strategies for developmental and molecular neurobiology studies. Methods Cell Sci. 2003;25(1-2):1-6. https://doi.org/10.1023/B: MICS.0000006849.98007.03.
- Levin ED, Chen E. Nicotinic involvement in memory function in zebrafish. Neurotoxicol Teratol. 2004;26(6): 731-735. https://doi.org/10.1016/j.ntt.2004.06.010.
- Levin ED, Bencan Z, Cerutti DT. Anxiolytic effects of nicotine in zebrafish. Physiol Behav. 2007;90(1):54-58. https://doi.org/10.1016/j.physbeh.2006.08.026.
- Lopez-Patino MA, Yu L, Cabral H, Zhdanova IV. Anxiogenic effects of cocaine withdrawal in zebrafish. Physiol Behav. 2008;93(1-2):160-171. https://doi.org/10.1016/j.physbeh.2007.08.013.
- Maximino C, de Brito TM, Colmanetti R, et al. Parametric analyses of anxiety in zebrafish scototaxis. Behav Brain Res. 2010;210(1):1-7. https://doi.org/10.1016/j.bbr.2010.01.031.
- Maximino C, Marques de Brito T, Dias CA, et al. Scototaxis as anxiety-like behavior in fish. Nat Protoc. 2010;5(2): 209-216. https://doi.org/10.1038/nprot.2009.225.
- Miklosi A, Andrew RJ. The zebrafish as a model for behavioral studies. Zebrafish. 2006;3(2):227-234. https://doi.org/10.1089/zeb.2006.3.227.
- Ninkovic J, Bally-Cuif L. The zebrafish as a model system for assessing the reinforcing properties of drugs of abuse. Methods. 2006;39(3):262-274. https://doi.org/10.1016/j.ymeth.2005.12.007.
- Sackerman J, Donegan JJ, Cunningham CS, et al. Zebrafish Behavior in Novel Environments: Effects of Acute Exposure to Anxiolytic Compounds and Choice of Danio rerio Line. Int J Comp Psychol. 2010;23(1):43-61.2879659.
- Spence R, Gerlach G, Lawrence C, Smith C. The behaviour and ecology of the zebrafish, Danio rerio. Biol Rev Camb Philos Soc. 2008;83(1):13-34. https://doi.org/10.1111/j.1469-185X.2007.00030.x.
- Stewart A, Wu N, Cachat J, et al. Pharmacological modulation of anxiety-like phenotypes in adult zebrafish behavioral models. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(6):1421-1431. https://doi.org/10.1016/j.pnpbp.2010.11.035.
- Streng J. Open-field behavior in four inbred mouse strains. Can J Psychol. 1971;25(1):62-68. https://doi.org/10.1037/h0082368.
- Wong K, Elegante M, Bartels B, et al. Analyzing habituation responses to novelty in zebrafish (Danio rerio). Behav Brain Res. 2010;208(2):450-457. https://doi.org/10.1016/j.bbr.2009.12.023.
- Violle N, Messaoudi M, Lefranc-Millot C, et al. Ethological comparison of the effects of a bovine alpha s1-casein tryptic hydrolysate and diazepam on the behaviour of rats in two models of anxiety. Pharmacol Biochem Behav. 2006;84(3):517-523. https://doi.org/10.1016/j.pbb.2006.06.017.
