Kiss1 kisspeptin of bony fish and mammalian kisspeptin analogs enhance the communicative behavior of Danio rerio induced by social isolation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Rodents are often used as a social isolation model. This study investigated the effects of social isolation on Danio rerio. These animals form groups and social hierarchies and exhibit complex social interactions similar to rodents. The expression of some brain genes of fish reared in isolation was found to be different from individuals reared in a group.

AIM: This study aimed to investigate the effect of kisspeptins on the social behavior of Danio rerio in social isolation.

MATERIALS AND METHODS: Fish were placed in 200-mL measuring cups for 48 h. After the social isolation period, bony fish kisspeptins and mammalian kisspeptin analogs were administered, and their effects were tested. The animal was placed in 1-L individual tanks for 15 min and then in the tank with a glass partition, behind which are a group of congeners. Fish were allowed to approach or swim away from the partition. Two patterns were used to assess behavior: latency time and number of swims to the partition.

RESULTS: Compared with the control group with fish kept in social isolation, reliable differences were observed: The number of swims to the partition after isolation was 1.3 times higher than that in the control group (p < 0.05). After the administration of bony fish kisspeptins Kiss1 and Kiss2, no significant changes in the number of swims to the partition were observed. Moreover, after the administration of KS6 and KS10, the number of swims to the aquarium partition increased 1.6 times (p < 0.01) and 1.8 times (p < 0.001), respectively. After the administration of the comparison drug oxytocin, the number of swims to the aquarium partition increased 1.6 times (p < 0.01) compared with that in the untreated isolated group. The latency time of swimming to the partition increased 2.4 times in the untreated isolated group compared with the control group (p < 0.001). Latency time decreased 2.3 times in the group administered with oxytocin compared with the untreated isolated group (p < 0.001). In the group administered with Kiss1, the latency time decreased 2 times (p < 0.001) compared with that in the untreated isolated group. The latency time decreased 5 times (p < 0.001) after KS10 administration and 3.4 times (p < 0.001) after KS6 administration compared with that in the untreated isolated group.

CONCLUSIONS: Thus, social isolation in Danio rerio reduces communicative behavior. Analogs of mammalian kisspeptin, such as Kiss1, of bony fish and oxytocin normalize the communicative behavior of fish after a period of social isolation to the level of the control group.

About the authors

Vladanka A. Goltz

Institute of Experimental Medicine

Author for correspondence.
Email: digitalisobscura@mail.ru
Russian Federation, Saint Petersburg

Andrey А. Lebedev

Institute of Experimental Medicine

Email: aalebedev-iem@rambler.ru
ORCID iD: 0000-0003-0297-0425
SPIN-code: 4998-5204

Dr. Sci. (Biology), Professor

Russian Federation, Saint Petersburg

Sergei O. Eresko

Institute of Experimental Medicine; Kirov Military Medical Academy

Email: eresko.sergei@yandex.ru
ORCID iD: 0000-0002-0269-6078
SPIN-code: 4096-2798
Russian Federation, Saint Petersburg; Saint Petersburg

Marat I. Airapetov

Institute of Experimental Medicine; Kirov Military Medical Academy

Email: interleukin1b@gmail.com
ORCID iD: 0000-0002-8318-9069
SPIN-code: 5982-4075

MD, Cand. Sci. (Medicine), Associate Professor

Russian Federation, Saint Petersburg; Saint Petersburg

Sarng S. Pyurveev

Institute of Experimental Medicine

Email: dr.purveev@gmail.com
ORCID iD: 0000-0002-4467-2269
SPIN-code: 5915-9767
Russian Federation, Saint Petersburg

Evgenii R. Bychkov

Institute of Experimental Medicine

Email: bychkov@mail.ru
ORCID iD: 0000-0002-8911-6805
SPIN-code: 9408-0799

MD, Dr. Sci. (Medicine)

Russian Federation, Saint Petersburg

Alekber A. Bayramov

Institute of Experimental Medicine

Email: alekber@mail.ru

MD, Dr. Sci. (Medicine)

Russian Federation, Saint Petersburg

Viktor A. Lebedev

Institute of Experimental Medicine

Email: vitya-lebedev-57@mail.ru
ORCID iD: 0000-0002-1525-8106
SPIN-code: 1878-8392

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

Petr D. Shabanov

Institute of Experimental Medicine

Email: pdshabanov@mail.ru
ORCID iD: 0000-0003-1464-1127
SPIN-code: 8974-7477

Dr. Sci. (Medicine), Professor

Russian Federation, Saint Petersburg

References

  1. Roy H, Ariel C, Sydney C, et al. Collective behavior emerges from genetically controlled simple behavioral motifs in zebrafish. Sci Adv. 2021;7(41):abi7460. doi: 10.1126/sciadv.abi7460
  2. Geng Y, Peterson RT. The zebrafish subcortical social brain as a model for studying social behavior disorders. Dis Model Mech. 2019;12(8):dmm.039446. doi: 10.1242/dmm.039446
  3. Cheng Y-T, Woo J, Luna-Figueroa E, et al. Social deprivation induces astrocytic TRPA1-GABA suppression of hippocampal circuits. Neuron. 2023;111(8):1301–1315.E5. doi: 10.1016/j.neuron.2023.01.015
  4. Cene CW, Beckie TM, Sims M, et al. Effects of objective and perceived social isolation on cardiovascular and brain health: A scientific statement from the American heart association. J Am Heart Assoc. 2022;11(16):26493. doi: 10.1161/JAHA.122.026493
  5. Clay JM, Fontana BD, Proserpio C, et al. Drinking during social isolation: Investigating associations between stress, inhibitory control, boredom, drinking motives, and alcohol use. Addict Res Theory. 2022;31(1):16–28. doi: 10.1080/16066359.2022.2099543
  6. Faustino AI, Monteiro-Tacao A, Oliveira RF. Mechanisms of social buffering of fear in zebrafish. Sci Rep. 2017;7(1):44329. doi: 10.1038/srep44329
  7. Suriyampola PS, Shukla R, Shelton DS, et al. Zebrafish social behavior in the wild. Zebrafish. 2016;13(1):1–8. doi: 10.1089/zeb.2015.1159
  8. Zheng M, Kashimori Y, Hoshino O, et al. Behavior pattern (innate action) of individuals in fish schools generating efficient collective evasion from predation. J Theor Bio. 2005;235(2):153–167. doi: 10.1016/j.jtbi.2004.12.025
  9. Cappel JM, Forster D, Slangewal K, et al. Visual recognition of social signals by a tectothalamic neural circuit. Nature. 2022;608: 146–152. doi: 10.1038/s41586-022-04925-5
  10. Saverino C, Gerlai R. The social zebrafish: Behavioral responses to conspecific, heterospecific, and computer animated fish. Behav Brain Res. 2008;191(1):77–87. doi: 10.1016/j.bbr.2008.03.013
  11. Norton WHJ, Stumpenhorst K, Faus-Kessler T, et al. Modulation of Fgfr1a signaling in zebrafish reveals a genetic basis for the aggression-boldness syndrome. J Neurosci. 2011;31(39):13796–13807. doi: 10.1523/JNEUROSCI.2892-11.2011
  12. Paull GC, Filby AL, Giddins HG, et al. Dominance hierarchies in zebrafish (Danio rerio) and their relationship with reproductive success. Zebrafish. 2010;7(1):109–117. doi: 10.1089/zeb.2009.0618
  13. Zhang T, Alonzo I, Stubben C, et al. A zebrafish model of combined saposin deficiency identifies acid sphingomyelinase as a potential therapeutic target. Dis Model Mech. 2023;16(7):dmm049995. doi: 10.1242/dmm.049995
  14. Galstyan DS, Kolesnikova TO, Kositsyn YuM, et al. Studying social behavior in zebrafish (Danio rerioo) in the tests of social interaction, social preference, behavior in the shoaling and aggression tasks. Reviews on Clinical Pharmacology and Drug Therapy. 2022;20(2): 135–147. EDN: BYQBGL doi: 10.17816/RCF202135-147
  15. Ribeiro D, Nunes RA, Gligsberg M, et al. Oxytocin receptor signaling modulates novelty recognition but not social preference in zebrafish. J Neuroendocrinol. 2020;32(4):12834. doi: 10.1111/jne.12834
  16. Lukas M, Toth I, Veenema AH, Neumann ID. Oxytocin mediates rodent social memory within the lateral septum and the medial amygdala depending on the relevance of the social stimulus: male juvenile versus female adult conspecifics. Psychoneuroendocrinology. 2013;38(6):916–926. doi: 10.1016/j.psyneuen.2012.09.018
  17. Gemmer A, Mirkes K, Anneser L, et al. Oxytocin receptors influence the development and maintenance of social behavior in zebrafish (Danio rerio). Sci Rep. 2022;12(1):4322. doi: 10.1038/s41598-022-07990-y
  18. Akinrinade I, Kareklas K, Teles MC, et al. Evolutionarily conserved role of oxytocin in social fear contagion in zebrafish. Science. 2023;379(6638):1232–1237. doi: 10.1126/science.abq5158
  19. Lesscher HMB, Spoelder M, Rotte MD, et al. Early social isolation augments alcohol consumption in rats. Behav Pharmacol. 2015;26(7–2):673–680. doi: 10.1097/FBP.0000000000000165
  20. Shams S, Amlani S, Buske C, et al. Developmental social isolation affects adult behavior, social interaction, and dopamine metabolite levels in zebrafish. Dev Psychobiol. 2018;60(1):43–56. doi: 10.1002/dev.21581
  21. Du W, Chen X, Shi M, et al. Ethanol affects behavior and HPA axis activity during development in zebrafish larvae. Sci Rep. 2020;10(1):21402. doi: 10.1038/s41598-020-78573-y
  22. Anneser L, Alcantara IC, Gemmer A, et al. The neuropeptide Pth2 dynamically senses others via mechanosensation. Nature. 2020;588(7836):653–657. doi: 10.1038/s41586-020-2988-z
  23. Tunbak H, Vazquez-Prada M, Michael Ryan T, et al. Whole-brain mapping of socially isolated zebrafish reveals that lonely fish are not loners. eLife. 2020;5(9):e55863. doi: 10.7554/eLife.55863
  24. Alef R, Blaser ER. Social group during housing and testing modulates the effect of ethanol on zebrafish (Danio rerio) behavior. Behav Process. 2023;209(1):104877. doi: 10.1016/j.beproc.2023.104877
  25. de Matos Mansur B, dos Santos BR, de Mattos Dias CAG, et al. Effects of the number of subjects on the dark/light preference of Zebrafish (Danio rerio). Zebrafish. 2014;11(6):977. doi: 10.1089/zeb.2014.0977
  26. Suriyampola PS, Iruri-Tucker AA, Padilla-Veléz L, et al. Small increases in group size improve small shoals’ response to water flow in zebrafish. J Zool. 2022;16(4):271–281. doi: 10.1111/jzo.12952
  27. Neri D, Ruberto T, Mwaffo V, et al. Social environment modulates anxiogenic effects of caffeine in zebrafish. Behav Pharmacol. 2019;30(1):45–48. doi: 10.1097/FBP.0000000000000415
  28. Canzian J, Franscescon F, Müller TE, et al. Stress increases susceptibility to pentylenetetrazole-induced seizures in adult zebrafish. Epilepsy Behav. 2021;114(A):107557. doi: 10.1016/j.yebeh.2020.107557
  29. Robinson GE, Fernald RD, Clayton DF. Genes and social behavior. Science. 2008;322(5903):896–900. doi: 10.1126/science.1159277
  30. Lee CJ, Paull GC, Tyler CR, et al. Effects of environmental enrichment on survivorship, growth, sex ratio and behaviour in laboratory maintained zebrafish Danio rerio. J Fish Biol. 2019;94(1):86–95. doi: 10.1111/jfb.13865
  31. Goltz VA, Lebedev AA, Blazhenko AA, et al. Study of the effects of kisspeptin analogs on the behavior of Danio rerio. Reviews on Clinical Pharmacology and Drug Therapy. 2023;21(2):159–169. EDN: GUKYQD doi: 10.17816/RCF321976
  32. Goltz VA, Lebedev AA, Blazhenko AA, et al. Comparison of anxiolytic effects of mammalian and bony fish kisspeptins in Danio rerio. Psychopharmacology and Biological Narcology. 2023;14(2):85–96. EDN: DQCZZE doi: 10.17816/phbn501442
  33. Lebedev AA, Blazhenko AA, Goltz VA, et al. Effects of kisspeptin analogues on the behavior of Danio rerio. Reviews on Clinical Pharmacology and Drug Therapy. 2022;20(2):201–210. EDN: ZESWNB doi: 10.17816/RCF202201-210
  34. Fone KCF, Porkess MV. Behavioural and neurochemical effects of post-weaning social isolation in rodents-relevance to developmental neuropsychiatric disorders. Neurosci Biobehav Rev. 2008;32(6):1087–1102. doi: 10.1016/j.neubiorev.2008.03.003
  35. Levine JB, Leeder AD, Parekkadan B, et al. Isolation rearing impairs wound healing and is associated with increased locomotion and decreased immediate early gene expression in the medial prefrontal cortex of juvenile rats. Neuroscience. 2008;151(2):589–603. doi: 10.1016/j.neuroscience.2007.10.014
  36. Lomanowska AM, Boivin M, Hertzman C, Fleming AS. Parenting begets parenting: A neurobiological perspective on early adversity and the transmission of parenting styles across generations. Neuroscience. 2017;342:120–139. doi: 10.1016/j.neuroscience.2015.09.029
  37. Lapiz MDS, Mateo Y, Parker T, Marsden C. Effects of noradrenaline depletion in the brain on response on novelty in isolation-reared rats. Psychopharmacology (Berl). 2000;152(3):312–320. doi: 10.1007/s002130000534
  38. Lukkes JL, Mokin MV, Scholl JL, Forster GL. Adult rats exposed to early-life social isolation exhibit increased anxiety and conditioned fear behavior, and altered hormonal stress responses. Horm Behav. 2009;55(1):248–256. doi: 10.1016/j.yhbeh.2008.10.014
  39. Yasuda H, Harauma A, Kato M, et al. Artificially reared mice exhibit anxiety-like behavior in adulthood. Exp Anim. 2016;65(3): 267–274. doi: 10.1538/expanim.15-0115.
  40. Amiri S, Haj-Mirzaian A, Amini-Khoei H, et al. Protective effects of gabapentin against the seizure susceptibility and comorbid behavioral abnormalities in the early socially isolated mice. Eur J Pharmacol. 2017;797:106–114. doi: 10.1016/j.ejphar.2017.01.024
  41. Aponte A, Petrunich-Rutherford ML. Acute net stress of young adult zebrafish (Danio rerio) is not sufficient to increase anxiety-like behavior and whole-body cortisol. PeerJ. 2019;7:e7469. doi: 10.7717/peerj.7469
  42. Bocharova OA, Bocharov EV, Kucheryanu VG, Karpova RV. Dopaminergic system: stress, depression, cancer (part 1). Russian Journal of Biotherapy. 2019;18(3):6–14. EDN: IFPWWT doi: 10.17650/1726-9784-2019-18-3-6-14
  43. Safonov VK, Ababkov VA, Verevochkin SV, et al. Biological and psychological determinants in response to situations of social stress. Bulletin of the South Ural State University. Series “Psychology”. 2013;6(3):82–89. EDN: RCAMBR
  44. Boucher P, Plusquellec P. Acute stress assessment from excess cortisol secretion: fundamentals and perspectives. Front Endocrinol. 2019;10:749. doi: 10.3389/fendo.2019.00749
  45. Ramsay JM, Feist GW, Varga ZM, et al. Whole-body cortisol response of zebrafish to acute net handling stress. Aquaculture. 2009;297(1–4):157–162. doi: 10.1016/j.aquaculture.2009.08.035
  46. Bychkov ER, Karpova IV, Tsikunov SG, et al. The effect of acute mental stress on the exchange of monoamines in the mesocortical and nigrostriatal systems of the rat brain. Pediatrician (St. Petersburg). 2021;12(6):35–42. EDN: VFATQN doi: 10.17816/PED12635-42
  47. Blazhenko AA, Khokhlov PP, Bychkov ER, et al. Cortisol concentration in muscle tissue of the model organism Danio rerio after stress exposure and administration of ghrelin anatgonists. In: Proceedings of the V Russian conferences in medicinal chemistry with international participation: “Medchem-Russia 2021”. Volgograd. 2021. doi: 10.19163/MedChemRussia2021-2021-349 (In Russ.)
  48. Blazhenko AA, Khokhlov PP, Lebedev AA, et al. Ghrelin levels in different brain regions in Danio rerio exposured to stress. Psychopharmacology and Biological Narcology. 2022;13(3):37–42. EDN: BFOJYK doi: 10.17816/phbn267375
  49. Blazhenko AA, Khokhlov PP, Lebedev AA, et al. Investigation of brain ghrelin systems in Danio rerio. In: Gubareva LI, Shabanov PD, editors. Proceedings of the II International dedicated to the 100th anniversary of I.A. Drzhevetskaya. Stavropol, 2022. P. 82–85. doi: 10.38006/9612-62-6.2022.82.85 (In Russ.)
  50. Blazhenko AA, Reikhardt BA, Khokhlov PP, et al. The changes of protein kinases activities in the brain structures after ghrelin antagonists administration in previously stressed Danio rerio. Reviews on Clinical Pharmacology and Drug Therapy. 2022;20(2):211–217. EDN: MBVYZC doi: 10.17816/RCF202211-217

Copyright (c) 2024 ECO-vector LLC

License URL: https://eco-vector.com/for_authors.php#07

 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».