Antidepressant effect of new coumarin derivatives

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: The incidence of bipolar disorder is increasing worldwide. The search for new compounds with antidepressant activity and milder adverse drug reactions is an urgent task of modern psychopharmacology.

AIM: This study aimed to analyze the effect of new neuroactive coumarin derivatives on the level of depressive behavior and monoamine metabolism in the brain structures of rats.

MATERIALS AND METHODS: The antidepressant effects of LVM-091, LVM-099, LVM-S144, and IEM-2886 were evaluated in rats subjected to the Porsolt forced swimming test and the metabolism of monoamines in brain structures (LVM-099) using high-performance liquid chromatography.

RESULTS: LVM-091, LVM-099, LVM-S144, and IEM-2886, synthesized from coumarin, decreased the immobilization time of the experimental rats in the Porsolt forced swimming test, indicating the antidepressant effect of these substances. The administration of LVM-099 at a dose of 10 mg/kg increased the level of homovanillic acid and the homovanillic acid-to-dopamine ratio in the nucleus accumbens. LVM-099 also increased 5-hydroxyindoleacetic acid levels and the 5-hydroxyindoleacetic acid-to-serotonin ratio in the nucleus accumbens. In the amygdala, the levels of norepinephrine, dopamine, serotonin, and their metabolites did not change after LVM-099 administration.

CONCLUSIONS: New coumarin derivatives exert antidepressant effects and increase the metabolism of dopamine and serotonin in rat nucleus accumbens, which can be used in the development of new highly effective antidepressants.

About the authors

Bakhodir B. Daliev

Institute of Experimental Medicine

Author for correspondence.
Email: bahodirdaliev@gmail.com
ORCID iD: 0000-0001-5966-8783
Russian Federation, Saint Petersburg

Dmitrii I. Klimenko

Institute of Experimental Medicine

Email: dima.klimenko999@mail.ru
ORCID iD: 0009-0007-8168-7228
SPIN-code: 8481-4489
Russian Federation, Saint Petersburg

Inessa V. Karpova

Institute of Experimental Medicine

Email: inessa.karpova@gmail.com
ORCID iD: 0000-0001-8725-8095
SPIN-code: 9874-4082

Dr. Sci. (Biology), Assistant Professor

Russian Federation, Saint Petersburg

Leonid V. Myznikov

Institute of Experimental Medicine

Email: myznikov_lv@mail.ru
ORCID iD: 0000-0002-0863-3027

Dr. Sci. (Chemistry), Assistant Professor

Russian Federation, Saint Petersburg

Evgenii R. Bychkov

Institute of Experimental Medicine

Email: bychkov@mail.ru
ORCID iD: 0000-0002-8911-6805
SPIN-code: 9408-0799

Dr. Sci. (Medicine)

Russian Federation, Saint Petersburg

Andrey A. Lebedev

Institute of Experimental Medicine

Email: aalebedev-iem@rambler.ru
ORCID iD: 0000-0003-0297-0425
SPIN-code: 4998-5204

Dr. Sci. (Biology)

Russian Federation, Saint Petersburg

Petr D. Shabanov

Institute of Experimental Medicine

Email: pdshabanov@mail.ru
ORCID iD: 0000-0003-1464-1127
SPIN-code: 8974-7477

Dr. Sci. (Medicine), Professor

Russian Federation, Saint Petersburg

References

  1. Wong M-L, Licinio J. Research and treatment approaches to depression. Nat Rev Neurosci. 2001;2(5):343–351. doi: 10.1038/35072566
  2. Wang X, Zhou H, Wang X, et al. Design, synthesis, and in vivo and in silico evaluation of coumarin derivatives with potential antidepressant effects. Molecules. 2021;26(18):5556. doi: 10.3390/molecules26185556
  3. Fournier JC, DeRubeis RJ, Hollon SD, et al. Antidepressant drug effects and depression severity: a patient-level meta-analysis. JAMA. 2010;303(1):47–53. doi: 10.1001/jama.2009.1943
  4. Nestler EJ, Barrot M, DiLeone RJ, et al. Neurobiology of depression. Neuron. 2002;34(1):13–25. doi: 10.1016/S0896-6273(02)00653-0
  5. Sleath B, Shih Y-CT. Sociological influences on antidepressant prescribing. Soc Sci Med. 2003;56(6):1335–1344. doi: 10.1016/S0277-9536(02)00132-6
  6. D’Aquila PS, Collu M, Gessa GL, Serra G. The role of dopamine in the mechanism of action of antidepressant drugs. Eur J Pharmacol. 2000;405(1–3):365–373. doi: 10.1016/S0014-2999(00)00566-5.
  7. Bychkov ER, Lebedev AA, Efimov NS, et al. Features of the involvement of the dopamine and serotonin brain systems in positive and negative emotional states in rats. Reviews on Clinical Pharmacology and Drug Therapy. 2020;18(2):123–130. EDN: XHZFPD doi: 10.17816/RCF182123-130
  8. Capra JC, Cunha MP, Machado DG, et al. Antidepressant-like effect of scopoletin, a coumarin isolated from Polygala sabulosa (Polygalaceae) in mice: evidence for the involvement of monoaminergic systems. Eur J Pharmacol. 2010;643(2–3):232–238. doi: 10.1016/j.ejphar.2010.06.043
  9. Xu Q, Pan Y, Yi L-T, et al. Antidepressant-like effects of psoralen isolated from the seeds of Psoralea corylifolia in the mouse forced swimming test. Biological Pharm Bull. 2008;31(6):1109–1114. doi: 10.1248/bpb.31.1109
  10. Sashidhara KV, Kumar A, Chatterjee M, et al. Discovery and synthesis of novel 3-phenylcoumarin derivatives as antidepressant agents. Bioorg Med Chem Lett. 2011;21(7):1937–1941. doi: 10.1016/j.bmcl.2011.02.040
  11. Skalicka-Woźniak K, Orhan IE, Cordell GA, et al. Implication of coumarins towards central nervous system disorders. Pharmacol Res. 2016;103:188–203. doi: 10.1016/j.phrs.2015.11.023
  12. Zaugg J, Eickmeier E, Rueda DC, et al. HPLC-based activity profiling of Angelica pubescens roots for new positive GABAA receptor modulators in Xenopus oocytes. Fitoterapia. 2011;82(3):434–440. doi: 10.1016/j.fitote.2010.12.001
  13. Kashirin AO, Polukeev VA, Pshenichnaya AG, et al. Behavioral effects of new compounds based on coumarin in rats. Reviews on Clinical Pharmacology and Drug Therapy. 2020;18(1):37–42. EDN: QYXLQE doi: 10.7816/RCF18137-42
  14. Daliev BB, Bychkov ER, Myznikov LV, et al. Anticompulsive effects of novel derivatives of coumarin in rats. Reviews on Clinical Pharmacology and Drug Therapy. 2021;19(3):339–344. EDN: OJYYKN doi: 10.17816/RCF193339-344
  15. Kraeuter AK, Guest PC, Sarnyai Z. The forced swim test for depression-like behavior in rodents. In: Guest PC, editor. Pre-clinical models: Techniques and protocols. New York: Humana Press; 2019. Vol. 1916. P. 75–80. doi: 10.1007/978-1-4939-8994-2_5
  16. Bayassi-Jakowicka M, Lietzau G, Czuba E, et al. Neuroplasticity and multilevel system of connections determine the integrative role of nucleus accumbens in the brain reward system. Int J Mol Sci. 2021;22(18):9806. doi: 10.3390/ijms22189806
  17. Cathala A, Devroye C, Maitre M, et al. Serotonin2C receptors modulate dopamine transmission in the nucleus accumbens independently of dopamine release: behavioral, neurochemical and molecular studies with cocaine. Addict Biol. 2015;20(3):445–457. doi: 10.1111/adb.12137
  18. Meredith GE. The synaptic framework for chemical signaling in nucleus accumbens. Ann N Y Acad Sci. 1999;877(1):140–156. doi: 10.1111/j.1749-6632.1999.tb09266.x
  19. Goldstein LE, Rasmusson AM, Bunney BS, Roth RH. Role of the amygdala in the coordination of behavioral, neuroendocrine, and prefrontal cortical monoamine responses to psychological stress in the rat. J Neurosci. 1996;16(15):4787–4798. doi: 10.1523/JNEUROSCI.16-15-04787.1996
  20. Karolewicz B, Klimek V, Zhu H, et al. Effects of depression, cigarette smoking, and age on monoamine oxidase B in amygdaloid nuclei. Brain Res. 2005;1043(1–2):57–64. doi: 10.1016/j.brainres.2005.02.043
  21. Micale V, Arezzi A, Rampello L, Drago F. Melatonin affects the immobility time of rats in the forced swim test: the role of serotonin neurotransmission. Eur Neuropsychopharmacol. 2006;16(7):538–545. doi: 10.1016/j.euroneuro.2006.01.005
  22. Borsini F. Role of the serotonergic system in the forced swimming test. Neurosci Biobehav Rev. 1995;19(3):377–395. doi: 10.1016/0149-7634(94)00050-B

Copyright (c) 2024 ECO-vector LLC

License URL: https://eco-vector.com/for_authors.php#07

 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».