Pyolytics as a product of the physical–chemical repurposing of antiseptics and an alternative to larval therapy for chronic wounds

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The traditional treatment of chronic wounds involves daily cleansing of the wound surface from purulent necrotic masses using mechanical and medicinal methods, accompanied by regular replacement of wound dressing. In this case, medicinal wound cleansing lasts 10–15 mins from the time of replacement of the old wound dressing with the new one. According to established practice, medicinal sanitation of infected and purulent wounds during dressing involves irrigation of the wound surface with cleansing solutions, antiseptics, and/or antibiotics. In severe cases, the above therapy is supplemented with live larvae of the necrophage fly, which are injected into purulent necrotic masses and left in them under wound dressing until wounds are completely cleansed from pus. Nevertheless, the generally accepted course of treatment of chronic wounds remains ineffective. The use of pyolytics and their supplementation with wound dressings in the form of warm wet compresses, which create a local greenhouse effect in wounds, was reported to accelerate the healing of chronic wounds. Pyolytics are a group of antiseptics developed in Russia. They are warm alkaline solutions of hydrogen peroxide; when they interact with purulent necrotic masses, these solutions dissolve very quickly and foam them. Because of the interaction with pyolytics, thick purulent masses immediately turn into fluffy oxygenated foam. Pyolytics have been developed because of the physicochemical repurposing of aqueous solutions of sodium hydrogen carbonate and hydrogen peroxide. To accelerate the healing of chronic wounds, a recommendation was to irrigate the surface of chronic wounds with 3% hydrogen peroxide and 2–10% sodium bicarbonate solutions, heated to 37–45°C, which have alkaline activity at pH 8.4–8.5 and are enriched with dissolved carbon dioxide or oxygen (due to excess pressure of 0.2 atm). This study presented the importance of treating chronic wounds using politics and treatment outcomes using pyolytics along with warm moist dressing compresses, demonstrating a wound-healing effect. Consequently, physical and chemical reprofiling of antiseptics may make them effective pyolytics, and the combination of pyolytics with warm wound dressings such as warm moist compresses, which create a local greenhouse effect on wounds, accelerates the healing of chronic wounds.

About the authors

Aleksandr L. Urakov

Izhevsk State Medical Academy

Author for correspondence.
Email: urakoval@live.ru
ORCID iD: 0000-0002-9829-9463
SPIN-code: 1613-9660

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Izhevsk

Natalia A. Urakova

Izhevsk State Medical Academy

Email: urakovanatal@mail.ru
ORCID iD: 0000-0002-4233-9550
SPIN-code: 4858-1896

MD, Cand. Sci. (Medicine), Assistant Professor

Russian Federation, Izhevsk

Alexey P. Reshetnikov

Izhevsk State Medical Academy

Email: areshetnikov@list.ru
ORCID iD: 0000-0002-8710-9724
SPIN-code: 4115-4167

MD, Cand. Sci. (Medicine)

Russian Federation, Izhevsk

Petr D. Shabanov

Institute of Experimental Medicine

Email: pdshabanov@mail.ru
ORCID iD: 0000-0003-1464-1127
SPIN-code: 8974-7477

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Saint Petersburg

Yi Wang

Hangzhou Normal University

Email: yi.wang1122@wmu.edu.cn
ORCID iD: 0000-0001-9048-0092
Scopus Author ID: 55969091300

MD, PhD, Professor

Taiwan, Province of China, Hangzhou

Pradeep Vishwanath Bodduluri

Kravy Pharma Institute

Email: Pradeep.bodduluri@gmail.com
ORCID iD: 0000-0002-7584-182X
India, Hyderabad

Aleksandr V. Samorodov

Bashkir State Medical University

Email: avsamorodov@gmail.com
ORCID iD: 0000-0001-9302-499X
SPIN-code: 2396-1934

MD, Dr. Sci. (Medicine), Assistant Professor

Russian Federation, Ufa

Roman A. Rozov

Academician I.P. Pavlov First St. Petersburg State Medical University

Email: dr.rozov@gmail.com
ORCID iD: 0000-0001-5804-9497
SPIN-code: 1173-7870

MD, Dr. Sci. (Med.), Assistant Professor

Russian Federation, Saint Petersburg

Albina A. Shchemeleva

Izhevsk State Medical Academy

Email: redbild@mail.ru
ORCID iD: 0000-0001-7771-8772
SPIN-code: 2126-0259

MD, Cand. Sci. (Medicine)

Russian Federation, Izhevsk

Vasiliy E. Novikov

Smolensk State Medical University

Email: novikov.farm@yandex.ru
ORCID iD: 0000-0002-0953-7993
SPIN-code: 1685-1028

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Smolensk

Elena V. Pozhilova

Smolensk State Medical University

Email: elena-pozh2008@yandex.ru
ORCID iD: 0000-0002-7372-7329
SPIN-code: 6371-6930

MD, Cand. Sci. (Medicine), Assistant Professor

Russian Federation, Smolensk

References

  1. Lazarus GS, Cooper DM, Knighton DR, et al. Definitions and guidelines for assessment of wounds and evaluation of healing. Wound Repair Regen. 1994;2(3):165–170. doi: 10.1046/j.1524-475X.1994.20305.x
  2. Shahrousvand M, Mirmasoudi SS, Pourmohammadi-Bejarpasi Z, et al. Polyacrylic acid/ polyvinylpyrrolidone hydrogel wound dressing containing zinc oxide nanoparticles promote wound healing in a rat model of excision injury. Heliyon, 2023;9(8):e19230.
  3. Sharma AD, Jarman EH, Fox PM. Scoping review of hydrogel therapies in the treatment of diabetic chronic wounds. Plast Reconstr Surg Glob Open. 2023;11(5):e4984.
  4. Lee CH, Chen DY, Hsieh MJ, et al. Nanofibrous insulin/vildagliptin core-shell PLGA scaffold promotes diabetic wound healing. Front Bioeng Biotechnol. 2023;11:1075720. doi: 10.3389/fbioe.2023.1075720
  5. InformedHealth.org [Internet]. Cologne, Germany: Institute for Quality and Efficiency in Health Care (IQWiG); 2006. Available from: https://www.ncbi.nlm.nih.gov/books/NBK65083/
  6. Ganod WAM. Chronic Venous Ulcer. 2022. IntechOpen. doi: 10.5772/intechopen.97709
  7. Frykberg RG, Banks J. Challenges in the treatment of chronic wounds. Advances in Wound Care. 2015;4(9):560–582. doi: 10.1089/wound.2015.0635
  8. O’Connor T, Moore ZE, Patton D. Patient and lay carer education for preventing pressure ulceration in at-risk populations. Cochrane Database Syst Rev. 2021;2(2):CD012006. doi: 10.1002/14651858.CD012006.pub2
  9. Shanley E, Patton D, Avsar P, et al. The impact of the Shanley Pressure Ulcer Prevention Programme on older persons’ knowledge of, and attitudes and behaviours towards, pressure ulcer prevention. Int Wound J. 2022;19(4):754–764. doi: 10.1111/iwj.13671
  10. Armstrong DG, Tan TW, Boulton AJM, Bus SA. Diabetic Foot Ulcers: A Review. JAMA. 2023;330(1):62–75. doi: 10.1001/jama.2023.10578
  11. Minty E, Bray E, Bachus CB, et al. Preventative sensor-based remote monitoring of the diabetic foot in clinical practice. Sensors (Basel). 2023;23(15):6712. doi: 10.3390/s23156712
  12. Järbrink K, Ni G, Sönnergren H, et al. The humanistic and economic burden of chronic wounds: a protocol for a systematic review. Syst Rev. 2017;6(1):15.
  13. Ruiz PBO, Lima AFC. Average direct costs of outpatient, hospital, and home care provided to patients with chronic wounds. Rev Esc Enferm USP. 2022;56:e20220295. doi: 10.1590/1980-220X-REEUSP-2022-0295en
  14. Tatarusanu SM, Lupascu FG, Profire BS, et al. Modern Approaches in Wounds Management. Polymers (Basel). 2023;15(17):3648. doi: 10.3390/polym15173648
  15. Phillips CJ, Humphreys I, Fletcher J, et al. Estimating the costs associated with the management of patients with chronic wounds using linked routine data. Int Wound J. 2016;13(6):1193–1197. doi: 10.1111/iwj.12443
  16. Urakov AL, Urakova N, Fisher E, et al. Antiseptic pyolytics and warming wet compresses improve the prospect of healing chronic wounds. Explor Med. 2023;4:747–754. doi: 10.37349/emed.2023.00175
  17. Serra R, Grande R, Butrico L, et al. Chronic wound infections: the role of Pseudomonas aeruginosa and Staphylococcus aureus. Expert Rev Anti Infect Ther. 2015;13(5):605–613. doi: 10.1586/14787210.2015.1023291
  18. Cwajda-Białasik J, Mościcka P, Szewczyk M. Antiseptics and antimicrobials for the treatment and management of chronic wounds: a systematic review of clinical trials. Postepy Dermatol Alergol. 2022;39(1):141–151. doi: 10.5114/ada.2022.113807
  19. Rembe JD, Huelsboemer L, Plattfaut I, et al. Antimicrobial hypochlorous wound irrigation solutions demonstrate lower anti-biofilm efficacy against bacterial biofilm in a complex in-vitro human plasma biofilm model (hpBIOM) than common wound antimicrobials. Front Microbiol. 2020;11:564513. doi: 10.3389/fmicb.2020.564513
  20. O’Meara S, Al-Kurdi D, Ologun Y, et al. Antibiotics and antiseptics for venous leg ulcers. Cochrane Database Syst Rev. 2013;(12): CD003557. doi: 10.1002/14651858.CD003557.pub4
  21. Davidson E, Pereira J, Gan Giannelli G, et al. Multi-functional chitosan nanovesicles loaded with bioactive manganese for potential wound healing applications. Molecules. 2023;28(16):6098. doi: 10.3390/molecules28166098
  22. Turzańska K, Adesanya O, Rajagopal A, et al. Improving the management and treatment of diabetic foot infection: Challenges and research opportunities. Int J Mol Sci. 2023;24(4):3913. doi: 10.3390/ijms24043913
  23. Husain M, Agrawal YO. Antimicrobial remedies and emerging strategies for the treatment of diabetic foot ulcers. Curr Diabetes Rev. 2023;19(5):e280222201513. doi: 10.2174/1573399818666220228161608
  24. Mostafalu P, Tamayol A, Rahimi R, et al. Smart bandage for monitoring and treatment of chronic wounds. Small. 2018;14:1703509.
  25. Kim M. Antiseptics and cleansing the chronic wound: Best practice. Journal of Wound Management and Research. 2023;19(1):8–12. doi: 10.22467/jwmr.2023.02404
  26. Shi C, Wang C, Liu H, et al. Selection of appropriate wound dressing for various wounds. Front Bioeng Biotechnol. 2020;8:182. doi: 10.3389/fbioe.2020.00182
  27. Zhong D, Zhang H, Ma Z, et al. Recent advancements in wound management: Tailoring superwettable bio-interfaces. Front Bioeng Biotechnol. 2022;10:1106267. doi: 10.3389/fbioe.2022.1106267
  28. Westby MJ, Dumville JC, Soares MO, et al. Dressings and topical agents for treating pressure ulcers. Cochrane Database Syst Rev. 2017;6(6):CD011947. doi: 10.1002/14651858.CD011947.pub2
  29. Norman G, Westby MJ, Rithalia AD, et al. Dressings and topical agents for treating venous leg ulcers. Cochrane Database Syst Rev. 2018;6(6):CD012583. doi: 10.1002/14651858.CD012583.pub2
  30. Zhang C, Zhang S, Wu B, et al. Efficacy of different types of dressings on pressure injuries: Systematic review and network meta-analysis. Nurs Open. 2023;10(9):5857–5867. doi: 10.1002/nop2.1867
  31. Walker RM, Gillespie BM, Thalib L, et al. Foam dressings for treating pressure ulcers. Cochrane Database Syst Rev. 2017;10(10): CD011332. doi: 10.1002/14651858.CD011332.pub2
  32. Ahmad N. In vitro and in vivo characterization methods for evaluation of modern wound dressings. Pharmaceutics. 2022;15(1):42. doi: 10.3390/pharmaceutics15010042
  33. Powers JG, Morton LM, Phillips TJ. Dressings for chronic wounds. Dermatol Ther. 2013;26(3):197–206. doi: 10.1111/dth.12055
  34. Liang Y, Liang Y, Zhang H, Guo B. Antibacterial biomaterials for skin wound dressing. Asian J Pharm Sci. 2022;17(3):353–384. doi: 10.1016/j.ajps.2022.01.001
  35. Morris D, Flores M, Harris L, et al. Larval therapy and larval excretions/secretions: A potential treatment for biofilm in chronic wounds? A systematic review. Microorganisms. 2023;11(2):457. doi: 10.3390/microorganisms11020457
  36. Baer WS. The classic: The treatment of chronic osteomyelitis with the maggot (larva of the blow fly). 1931. Clin Orthop Relat Res. 2011;469(4):920–944. doi: 10.1007/s11999-010-1416-3
  37. Markiewicz-Gospodarek A, Kozioł M, Tobiasz M, et al. Burn wound healing: Clinical complications, medical care, treatment, and dressing types: The current state of knowledge for clinical practice. Int J Environ Res Public Health. 2022;19(3):1338. doi: 10.3390/ijerph19031338
  38. Turkmen A, Graham K, McGrouther DA. Therapeutic applications of the larvae for wound debridement. J Plast Reconstr Aesthet Surg. 2010;63(1):184–188. doi: 10.1016/j.bjps.2008.08.070
  39. Kenawy MA, Abdel-Hamid YM. Maggot therapy “Use of fly larvae for treatment of wounds” — A review. Egypt Acad J Biolog Sci. 2020;12(2):1–10. doi: 10.21608/eajbse.2020.104166
  40. Bazaliński D, Kózka M, Karnas M, Więch P. Effectiveness of chronic wound debridement with the use of larvae of lucilia sericata. J Clin Med. 2019;8(11):1845. doi: 10.3390/jcm8111845
  41. Yusuf MA, Ibrahim BM, Oyebanji AA, et al. Maggot debridement therapy and complementary wound care: a case series from Nigeria. J Wound Care. 2022;31(11):996–1005. doi: 10.12968/jowc.2022.31.11.996
  42. Ribeiro CTD, Dias FAL, Fregonezi GAF. Hydrogel dressings for venous leg ulcers. Cochrane Database of Systematic Reviews. 2022;8(8):CD010738. doi: 10.1002/14651858.CD010738.pub2
  43. King C. Changing attitudes toward maggot debridement therapy in wound treatment: a review and discussion. J Wound Care. 2020;29(Sup2c):S28–S34. doi: 10.12968/jowc.2020.29.Sup2c.S28
  44. Parizad N, Hajimohammadi K, Goli R, et al. Surgical debridement and maggot debridement therapy (MDT) bring the light of hope to patients with diabetic foot ulcers (DFUs): A case report. Int J Surg Case Rep. 2022;99:107723. doi: 10.1016/j.ijscr.2022.107723
  45. Urakov AL. Pus solvents as new drugs with unique physical and chemical property. Reviews on Clinical Pharmacology and Drug Therapy. 2019;17(4):89–95. doi: 10.17816/RCF17489-95
  46. Urakov AL, Urakova NA, Urakova TV. New group of drugs: solvent of pus. Mezhdunarodnyi zhurnal prikladnykh i fundamental’nykh issledovanii. 2016;6:881–883.
  47. Bodduluri VP, Gurevich KG, Urakov AL. Physico-chemical properties of antiseptics in surgery: What is not taken into account in treating long-term non-healing wounds. Creative Surgery and Oncology. 2021;11(3):256–259.
  48. Gemma PA, Alejandro BA, Enric TBJ. Larval Therapy for treatment of chronic wounds colonized by multi-resistant pathogens in a pediatric patient: A case study. Journal of Wound, Ostomy and Continence Nursing. 2022;49(4):373–378. doi: 10.1097/WON.0000000000000893
  49. Fisher EL, Urakov AL, Samorodov AV, et al. Alkaline hydrogen peroxide solutions: expectorant, pyolytic, mucolytic, haemolytic, oxygen-releasing, and decolorizing effects. Reviews on Clinical Pharmacology and Drug Therapy. 2023;21(2):135–150. doi: 10.17816/RCF492316
  50. Urakov A, Urakova N, Shabanov P, et al. Suffocation in asthma and COVID-19: Supplementation of inhaled corticosteroids with alkaline hydrogen peroxide as an alternative to ECMO. Preprints.org 2023. 2023070627.
  51. Urakov AL, Shabanov PD. Physical-chemical repurposing of drugs. History of its formation in Russia. Reviews on Clinical Pharmacology and Drug Therapy. 2023;21(3):241–242. doi: 10.17816/RCF567782
  52. Urakov AL. Method and technology of reprofiling drugs based on changes in the physico-chemical properties of dosage forms: experience of use in Russia. Psychopharmacology & Biological Narcology. 2023;14(3):203–208. doi: 10.17816/phbn567970
  53. Urakov A, Urakova N, Reshetnikov A, et al. Reprofiling Hydrogen peroxide from antiseptics to pyolytics: A narrative overview of the history of inventions in Russia. Journal of Pharmaceutical Research International. 2023;35(6):37–48. doi: 10.9734/jpri/2023/v35i67333
  54. Urakov A, Urakova N, Sorokina Yu, et al. Targeted modification of physical-chemical properties of drugs as a universal way to transform “old” drugs into “new” drugs. In: Drug Repurposing — Advances, Scopes and Opportunities in Drug Discovery. Chapter 3. Ed. Dr. Mithun Rudrapal. March 2023. doi: 10.5772/intechopen.110480
  55. Urakov AL. The change of physical-chemical factors of the local interaction with the human body as the basis for the creation of materials with new properties. Journal of Silicate Based and Composite Materials. 2015;67(1):2–6. doi: 10.14382/epitoanyag-jsbcm.2015.1
  56. Shaikh DM, Shaikh HZ. Ash as a unique natural medicine for wound healing. Isra Medical Journal. 2009;1(3):72–78.
  57. Nagpal BM, Katoch R, Rajagopalan S. Wound healing — A surgical fundamental revisited. Med J Armed Forces India. 2002;58(3): 190–191. doi: 10.1016/S0377-1237(02)80126-5
  58. Hyper-hydration: a new perspective on wound cleansing, debridement and healing. Br J Community Nurs. 2016;21(S6): S26–S28. doi: 10.12968/bjcn.2016.21.Sup6.S26
  59. Rippon MG, Ousey K, Cutting KF. Wound healing and hyper-hydration: a counterintuitive model. J Wound Care. 2016;25(2):68–75. doi: 10.12968/jowc.2016.25.2.68
  60. Saha S. Hybrid regenerative therapy for successful reconstruction of an infected traumatized diabetic foot wound. Plast Reconstr Surg Glob Open. 2023;11(8):e5213. doi: 10.1097/GOX.0000000000005213
  61. Urakov A, Urakova N, Reshetnikov A. Oxygen alkaline dental’s cleaners from tooth plaque, food debris, stains of blood and pus: A narrative review of the history of inventions. J Int Soc Prev Community Dent. 2019;9(5):427–433. doi: 10.4103/jispcd.JISPCD_296_19
  62. Urakov AL. Creation of “necessary” mixtures of baking soda, hydrogen peroxide and warm water as a strategy for modernization bleaching cleaners of ceramic. Journal of Silicate Based and Composite Materials. 2020;72(1):30–35. doi: 10.14382/epitoanyag-jsbcm.2020.6
  63. Urakov AL, Urakova NA, et al. COVID-19: Artificial sputum, respiratory obstruction method and screening of pyolitic and antihypoxic drugs. BioImpacts. 2022;12(4):393–394. doi: 10.34172/bi.2022.23877
  64. Urakov AL, Urakova NA. COVID-19: Optimization of respiratory biomechanics by aerosol pus solvent. Russian Journal of Biomechanics. 2021;25(1):86–90. doi: 10.15593/RJBiomech/2021.1.07
  65. Urakov АL, Urakova NA. COVID-19: intrapulmonary injection of hydrogen peroxide solution eliminates hypoxia and normalizes respiratory biomechanics. Russian Journal of Biomechanics. 2021;25(4):350–356. doi: 10.15593/RJBiomech/2021.4.06
  66. Urakov AL. COVID-19: Immediate lung reoxygenation with hydrogen peroxide: Reality or fantasy. Advances in Bioresearch. 2021;12(5B):359–363. doi: 10.15515/abr.0976-4585.12.5B.359363

Copyright (c) 2023 ECO-vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».