Mitochondrial dysfunctions and antihypoxants

Cover Page

Cite item

Full Text

Abstract

Mitochondrial dysfunctions (an impaired energy metabolism in the mitochondria) are essential in a pathogenesis of many diseases.

Aim. The analysis of various mitochondrial dysfunction (MD) type study, as well as evaluation of drugs with an antihypoxic effect in their treatment.

Methods. Collection, systematization and analysis of experimental and clinical data of current scientific research about the problem.

Results. The mitochondrial dysfunctions can be caused by genetic disorders of the mitochondrial or nuclear genome (the primary MD or the mitochondrial diseases), as well as structural, functional and biochemical defects of mitochondria caused by other diseases (the secondary MD). MD are characterized by impaired tissue respiration, ATP synthesis deficiency and decreased energy metabolism. The clinical implications of MD are polysystemic and polymorphic. One of the biochemical sign of MD is the lactic acidosis. There are certain difficulties with the early diagnosis of primary MD. It is suggested to use complete exome sequencing among patients with a clinical suspicion on mitochondrial disease. The energotropic pharmacotherapy including drugs with an antihypoxic effect is used for MD treatment. It is more rational to use the drug combination that influences different stages of energy production. The combinations of L-carnitine, coenzyme Q10, cytochrome C and succinate-containing drugs are frequently used for MD. However, the usage of energotropic and antihypoxic drugs is not able to cure the patients and stop the progression of all disease displays.

Conclusion. MD are a multidisciplinary problem, therefore, doctors of any speciality must be competent in the MD diagnosis and treatment. The use of energotropic agents in the MD treatment requires further research. Numerous issues remain open (daily drug doses choice, treatment duration, rational combinations). The phenotype variability and the uniqueness of diagnosed cases, clinical and genetic differences between patient groups with mitochondrial diseases fail to create homogeneous samplings for therapy effectiveness and safety analysis. The literature data are the results of different degrees of reliability. The international efforts are needed to unify studies of related mitochondrial disorders, which, in combination with a constant improvement of MD pathogenesis knowledge will allow to develop more effective treatment regimens.

About the authors

Vasiliy E. Novikov

Smolensk State Medical University

Author for correspondence.
Email: novikov.farm@yandex.ru

Doctor of Medical Sciences, Professor, Head of the Pharmacology Department

Russian Federation, Smolensk

Olga S. Levchenkova

Smolensk State Medical University

Email: levchenkova-o@yandex.ru

PhD (Pharmacology), Assistant Professor, Pharmacology Department

Russian Federation, Smolensk

Elena N. Ivantsova

Smolensk State Medical University

Email: elena.iwanczowa-lena@yandex.ru

5th year Student, Faculty of Pediatrics

Russian Federation, Smolensk

Victoria V. Vorobieva

S.M. Kirov Military Medical Academy

Email: v.v.vorobeva@mail.ru

Doctor of Medical Sciences, Assistant Professor, Pharmacology Department

Russian Federation, Saint Petersburg

References

  1. Abramenko YV. The efficacy of mexidol for transient ischemic attacks in the vertebrobasilar system in elderly patients with chronic cerebral ischemia. Zh Nevrol Psikhiatr im S.S. Korsakova. 2018;118(9-2):42-48. (In Russ.)] https://doi.org/10.17116/jnevro201811809242.
  2. Ahmed ST, Craven L, Russell OM, et al. Diagnosis and Treatment of Mitochondrial Myopathies. Neurotherapeutics. 2018;15(4):943-953. https://doi.org/10.1007/s13311-018-00674-4.
  3. Ahuja AS. Understanding mitochondrial myopathies: a review. PeerJ. 2018;6:e4790. https://doi.org/10.7717/peerj.4790.
  4. Avula S, Parikh S, Demarest S, et al. Treatment of mitochondrial disorders. Curr Treat Options Neurol. 2014;16(6):292. https://doi.org/10.1007/s11940-014-0292-7.
  5. Baedilova MT, Sumenko VV, Sukhorukov VS, et al. Efficiency of energy-rich therapy for cellular energy metabolic disturbances in children with mitral valve prolapse. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2017;62(1):74-80. https://doi.org/10.21508/1027-4065-2017-62-1-74-80.
  6. Baranov AA. Pediatrics: national guidelines. Moscow: GEOTAR-Media; 2009. (In Russ.)
  7. Barbieri E, Guescini M, Calcabrini C, et al. Creatine Prevents the Structural and Functional Damage to Mitochondria in Myogenic, Oxidatively Stressed C2C12 Cells and Restores Their Differentiation Capacity. Oxid Med Cell Longev. 2016;2016:5152029. https://doi.org/10.1155/2016/5152029.
  8. Belousova M, Tokareva OG, Gorodetskaya E, et al. Intravenous Treatment With Coenzyme Q10 Improves Neuological Outcome and Reduces Infarct Volume After Transient Focal Brain Ischemia in Rats. J Cardiovasc Pharmacol. 2016;67(2):103-109. https://doi.org/10.1097/fjc.0000000000000320.
  9. Bielenichev IF, Vіzіr VA, Mamchur VY, Kuriata OV. Place of tiotriazoline in the gallery of modern metabolitotropic medicines. Zaporozhye Medical Journal. 2019;0(1). https://doi.org/10.14739/2310-1210.2019.1.155856.
  10. Cavar M, Ljubkovic M, Bulat C, et al. Trimetazidine does not alter metabolic substrate oxidation in cardiac mitochondria of target patient population. Br J Pharmacol. 2016;173(9): 1529-1540. https://doi.org/10.1111/bph.13454.
  11. Chicherin IV, Levitskii SA, Krasheninnikov IA, et al. The prospects of gene therapy for mitochondrial diseases: can’t we do without CRISPR/Cas9? Bulletin of Russian State Medical University. 2017(3):43-47. https://doi.org/10.24075/brsmu.2017-03-05.
  12. Degtyareva AV, Stepanova EV, Itkis YS, et al. Clinical case of Mitochondrial DNA Depletion. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2017;62(5):55-62. https://doi.org/10.21508/1027-4065-2017-62-5-55-62.
  13. Dézsi CA. Trimetazidine in Practice. Am J Ther. 2016;23(3): e871-e879. https://doi.org/10.1097/mjt.0000000000000180.
  14. Dimmock DP, Lawlor MW. Presentation and Diagnostic Evaluation of Mitochondrial Disease. Pediatr Clin North Am. 2017;64(1):161-171. https://doi.org/10.1016/j.pcl.2016. 08.011.
  15. Ehrlikh AD, Gratsianskii NA. Evidence Base of Ethylmethylhydroxypyridine Succinate Use in Patients with Stroke and Its Consequences. Rational Pharmacotherapy in Cardiology. 2014;10(4):448-456. https://doi.org/10.20996/1819-6446-2014-10-4-448-456.
  16. El-Hattab AW, Zarante AM, Almannai M, Scaglia F. Therapies for mitochondrial diseases and current clinical trials. Mol Genet Metab. 2017;122(3):1-9. https://doi.org/10.1016/j.ymgme.2017.09.009.
  17. Enns GM. Advances in Mitochondrial Medicine. J Inborn Errors Metab Screen. 2018;6:232640981775296. https://doi.org/10.1177/2326409817752961.
  18. Evtushenko SK. Metabolic (mitochondrial) stroke in children. International neurological journal. 2008;18(2):87-95. (In Russ.)
  19. Finsterer J, Bindu PS. Therapeutic strategies for mitochondrial disorders. Pediatr Neurol. 2015;52(3):302-313. https://doi.org/10.1016/j.pediatrneurol.2014.06.023.
  20. Garcia-Corzo L, Luna-Sanchez M, Doerrier C, et al. Ubiquinol-10 ameliorates mitochondrial encephalopathy associated with CoQ deficiency. Biochim Biophys Acta. 2014;1842(7):893-901. https://doi.org/10.1016/j.bbadis.2014.02.008.
  21. Gimoyan LG, Silvanyan GG. The use of mildronate in the treatment of cognitive impairment in vascular dementia. Russian Medical Journal. 2017;21(5):1518-1524. (In Russ.)
  22. Hirano M, Emmanuele V, Quinzii CM. Emerging therapies for mitochondrial diseases. Essays Biochem. 2018;62(3): 467-481. https://doi.org/10.1042/EBC20170114.
  23. Ivkin DYu, Okovity SV. Pathogenic therapy of organ and tissue hypoxia at cellular level. Practitioner. 2017;2(7): 11-16. (In Russ.)
  24. Joost K, Rodenburg RJ, Piirsoo A, et al. A Diagnostic Algorithm for Mitochondrial Disorders in Estonian Children. Mol Syndromol. 2012;3(3):113-119. https://doi.org/10.1159/000341375.
  25. Kanabus M, Heales SJ, Rahman S. Development of pharmacological strategies for mitochondrial disorders. Br J Pharmacol. 2014;171(8):1798-1817. https://doi.org/10.1111/bph.12456.
  26. Kerr DS. Review of clinical trials for mitochondrial disorders: 1997-2012. Neurotherapeutics. 2013;10(2):307-319. https://doi.org/10.1007/s13311-013-0176-7.
  27. Leontyeva IV, Nikolaeva EA. Mitochondrial cardiomyopathies. Russian Bulletin of Perinatology and Pediatrics. 2016;61(3):22-30. https://doi.org/10.21508/1027-4065-2016-61-3-22-30.
  28. Levchenkova OS, Novikov VE. Antihypoxants: possible mechanisms of action and their clinical uses. Vestnik of the Smolensk state medical Academy. 2011;10(4):43-57. (In Russ.)
  29. Levchenkova OS, Novikov VE, Pozhilova YV. Pharmacodynamics of Antihypoxants and Their Clinical Use. Reviews on Clinical Pharmacology and Drug Therapy. 2012;10(3):3-12. https://doi.org/10.17816/rcf1033-12.
  30. Levchenkova OS, Novikov VE, Pozhilova EV. Mitochondrial pore as a target of pharmacological action. Bulletin of the Smolensk state medical Academy. 2014;13(4):24-33. (In Russ.)
  31. Lukyanova LD, Kirova YI, Germanova EL. The Role of Succinate in Regulation of Immediate HIF-1alpha Expression in Hypoxia. Bull Exp Biol Med. 2018;164(3):298-303. https://doi.org/10.1007/s10517-018-3976-2.
  32. Martikainen MH, Chinnery PF. Mitochondrial disease: mimics and chameleons. Pract Neurol. 2015;15(6):424-435. https://doi.org/10.1136/practneurol-2015-001191.
  33. McCormick EM, Zolkipli-Cunningham Z, Falk MJ. Mitochondrial disease genetics update: recent insights into the molecular diagnosis and expanding phenotype of primary mitochondrial disease. Curr Opin Pediatr. 2018;30(6):714-724. https://doi.org/10.1097/MOP.0000000000000686.
  34. Medvedev OS, Kalenikova EI, Gorodetskaya EA, et al. Coenzyme Q10 in cardiology practice-theoretical foundations and results of clinical studies. Russian medical journal. 2009;17(18):1177-1181. (In Russ.)
  35. Muranova AV, Strokov IA. Mitochondrial Cytopathies: Melas and Midd Syndromes. One Genetic Defect – Different Clinical Appearances. Neurol J. 2017;22(1):19-24. https://doi.org/10.18821/1560-9545-2017-22-1-19-24.
  36. Murayama K, Shimura M, Liu Z, et al. Recent topics: the diagnosis, molecular genesis, and treatment of mitochondrial diseases. J Hum Genet. 2019;64(2):113-125. https://doi.org/10.1038/s10038-018-0528-6.
  37. Nikolaeva EA, Semyachkina AN. Modern Possibilities of Hereditary Diseases Treatment in Children. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2018;63(4):6-14. https://doi.org/10.21508/1027-4065-2018-63-4-6-14.
  38. Novikov VE. Possibilities of pharmacological neuroprotection in the brain trauma. Psychopharmacology and biological narcology. 2007;7(2):1500-1509. (In Russ).
  39. Novikov VE, Klimkina EI. Effect of hypoxen on morphofunctional state of the liver in exogenous intoxication. Еxperimental and clinical pharmacology. 2009;72(5):43-45. (In Russ).
  40. Novikov VE, Levchenkova OS. Promising directions of search for antihypoxants and targets of their action. Еxperimental and clinical pharmacology. 2013;76(5):37-47. (In Russ.)
  41. Novikov VE, Levchenkova OS, Pozhilova YV. Role of reactive oxygen species in cell physiology and pathology and their pharmacological regulation. Reviews on Clinical Pharmacology and Drug Therapy. 2014;12(4):13-21. https://doi.org/10.17816/rcf12413-21.
  42. Novikov VE, Levchenkova OS. Mitochondrial targets for pharmacological regulation of cell adaptation to hypoxia. Reviews on Clinical Pharmacology and Drug Therapy. 2014;12(2):28-35. https://doi.org/10.17816/rcf12228-35.
  43. Novikov VE, Levchenkova OS, Pozhilova EV. Mitochondrial nitric oxide synthase and its role in the mechanisms of cell adaptation to hypoxia. Reviews on Clinical Pharmacology and Drug Therapy. 2016;14(2):38-46. https://doi.org/10.17816/rcf14238-46.
  44. Odinak MM, Yanishevskii SN, Tsygan NV, et al. Use of Succinates for Correction of Metabolic Impairments in the Ischemic Penumbra Zone in Stroke Patients. Neuroscience and Behavioral Physiology. 2015;45(5):600-604. https://doi.org/10.1007/s11055-015-0118-4.
  45. Okovity SV, Sukhanov DS, Zaplutanov VA, Smagina AN. Antihypoxants in current clinical practice. Сlinical medicine. 2012;16(9):63-68. (In Russ.)
  46. Osmanov IM, Sukhorukov VS, Kalambet EI. Coenzyme Q10 in pediatrics. Current pediatrics. 2011;10(2):146-149. (In Russ.)
  47. Popov SV, Sivak KV, Guseinov RG, et al. Renoprotective activity of fumarate-containing infusion solution during ischemia – reperfusion of the kidney (experimental study). Experimental and clinical urology. 2014;7(3):14-18. (In Russ.)
  48. Pozhilova EV, Novikov VE, Novikova AV. Pharmacodynamics and clinical applications of preparations based on hydroxypyridine. Bulletin of the Smolensk state medical academy. 2013;12(3):56-66. (In Russ.)
  49. Pozhilova YV, Novikov VE, Levchenkova OS. The regulatory role of mitochondrial pora and the possibility of its pharmacological modulation. Reviews on Clinical Pharmacology and Drug Therapy. 2014;12(3):13-19. https://doi.org/10.17816/rcf12313-19.
  50. Pozhilova EV, Novikov VE, Levchenkova OS. Reactive oxygen species in cell physiology and pathology. Bulletin of the Smolensk state medical academy. 2015;14(2):13-22. (In Russ).
  51. Pogilova EV, Novikov VE, Levchenkova OS. The mitochondrial ATP-dependent potassium channel and its pharmacological modulators. Reviews on Clinical Pharmacology and Drug Therapy. 2016;14(1):29-36. https://doi.org/10.17816/rcf14129-36. (In Russ).
  52. Pupure J, Isajevs S, Skapare E, et al. Neuroprotective properties of mildronate, a mitochondria-targeted small molecule. Neurosci Lett. 2010;470(2):100-105. https://doi.org/10.1016/j.neulet.2009.12.055.
  53. Puusepp S, Reinson K, Pajusalu S, et al. Effectiveness of whole exome sequencing in unsolved patients with a clinical suspicion of a mitochondrial disorder in Estonia. Mol Genet Metab Rep. 2018;15:80-89. https://doi.org/10.1016/j.ymgmr.2018.03.004.
  54. Rachin AP, Averchenkova AA. Idebenone (noben) – from theory to practice. Zh Nevrol Psikhiatr Im S.S. Korsakov. 2011;111(5):81-84. (In Russ.)
  55. Radelfahr F, Klopstock T. [Diagnostic and Therapeutic Approaches for Mitochondrial Diseases]. Fortschr Neurol Psychiatr. 2018;86(9):584-591. https://doi.org/10. 1055/a-0621-9255.
  56. Rai PK, Russell OM, Lightowlers RN, Turnbull DM. Potential compounds for the treatment of mitochondrial disease. Br Med Bull. 2015;116:5-18. https://doi.org/10.1093/bmb/ldv046.
  57. Romashchenko OV. Influence of trimetazidine on mitochondrial activity of patients with the stable angina pectoris. Scientific bulletins of Belgorod State University. Series: Medicine. Pharmacia. 2014;25(4):111-115. (In Russ.)
  58. Russo E, Nguyen H, Lippert T, et al. Mitochondrial targeting as a novel therapy for stroke. Brain Circ. 2018;4(3):84-94. https://doi.org/10.4103/bc.bc_14_18.
  59. Samoilenko IG, Khapchenkova DS, Tkachenko EV, Sokolova YuV. Clinical case of Leigh syndrome in an infant. International neurological journal. 2017;4(2):80-84. (In Russ.)
  60. Scarpelli M, Todeschini A, Volonghi I, et al. Mitochondrial diseases: advances and issues. Appl Clin Genet. 2017;10:21-26. https://doi.org/10.2147/TACG.S94267.
  61. Shabanov PD, Zarubina IV. Hypoxia and antihypoxants, focus on brain injury. Reviews on Clinical Pharmacology and Drug Therapy. 2019;17(1):7-16. https://doi.org/10.17816/rcf1717-16. (In Russ.)
  62. Smirnov AV, Nesterova OB, Golubev RV. Succinic acid and its application in medicine. Part I. Succinic acid: metabolite and regulator of metabolism of the human body. Nephrology (Saint Petersburg). 2014;18(2):33-41. (In Russ.)
  63. Statsenko ME, Turkina SV, Tyshchenko IA, et al. Potentials for the drug correction of secondary mitochondrial dysfunction in patients with coronary artery disease and comorbid pathology. Pharmateca. 2017;339(6):75-80. (In Russ.)
  64. Steggall A, Mordi IR, Lang CC. Targeting Metabolic Modulation and Mitochondrial Dysfunction in the Treatment of Heart Failure. Diseases. 2017;5(2). https://doi.org/10.3390/diseases5020014.
  65. Sukhorukov VS. To the development of rational bases of energy therapy. Rational Pharmacotherapy. 2007;21(2):40-47. (In Russ.)
  66. Tarnopolsky MA. Creatine as a therapeutic strategy for myopathies. Amino Acids. 2011;40(5):1397-1407. https://doi.org/10.1007/s00726-011-0876-4.
  67. Tsaregorodtsev AD, Sukhorukov VS. Mitochondrial medicine: problems and tasks. Ros Vest Perinatol i Pediatr. 2012;57(4-2):4-13. (In Russ.)
  68. Usenko LV, Tsariov OV. Modern Opportunities of Energy Protection in Critical States. Emergency Medicine. 2016;0(4.75):72. https://doi.org/10.22141/2224-0586.4. 75.2016.75820.
  69. Valero T. Editorial (Thematic Issue: Mitochondrial Biogenesis: Pharmacological Approaches). Curr Pharm Des. 2014;20(35):5507-5509. https://doi.org/10.2174/138161282035140911142118.
  70. Varga NA, Pentelenyi K, Balicza P, et al. Mitochondrial dysfunction and autism: comprehensive genetic analyses of children with autism and mtDNA deletion. Behav Brain Funct. 2018;14(1):4. https://doi.org/10.1186/s12993-018-0135-x.
  71. Vasyuk YuA, Kulikov KG, Kudryakov ON, et al. Secondary mitochondrial dysfunction in acute coronary syndrome. Russian medical journal. 2007;8(5):49-51. (In Russ.)
  72. Vorobieva VV, Shabanov PD, Proshin SN. Correction of mitochondrial dysfunction of rabbit cardiomyocytes using substrate antihypoxants. Pediatrician. 2015;6(3):74-80. (In Russ.)
  73. Voronina TA. Mexidol: the spectrum of pharmacological effects. Zh Nevrol Psikhiatr im S.S. Korsakovav. 2012;12(5):86-90. (In Russ.)
  74. Voronkova AS, Litvinova NA, Nikolaeva EA, Sukhorukov VS. Rare variants of mitochondrial DNA in a child with encephalomyopathy. Russian Bulletin of Perinatology and Pediatrics. 2016;61(5):42-46. https://doi.org/10.21508/1027-4065-2016-61-5-42-46.
  75. Yamin MA, Chernikova IV, Araslanova LV, Shevkun PA. Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes syndrome (MELAS): diagnostic criteria, features of epileptic seizures, and treatment approaches by the example of a clinical case. Neurology, Neuropsychiatry, Psychosomatics. 2017;9(4):65-69. https://doi.org/10.14412/2074-2711-2017-4-65-69.
  76. Ylikallio E, Suomalainen A. Mechanisms of mitochondrial diseases. Ann Med. 2012;44(1):41-59. https://doi.org/10. 3109/07853890.2011.598547.
  77. Zhulev NM, Zuev AA, Saykova LA, Zuev AA. The use of Mexidol in the treatment of patients with hereditary neuromuscular diseases. Bull Exp Biol Med. 2006;70(1):22-27. (In Russ.)

Copyright (c) 2020 Novikov V.E., Levchenkova O.S., Ivantsova E.N., Vorobieva V.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».