Influence of l-type slow calcium channels blockers on cardiac, respiratory and motor activity at the intact and poisoned by physostigmine (eserine) of rats during the early ontogeny

Cover Page

Cite item

Full Text

Abstract

The effects of calcium-channel blockers (CCBs) (verapamil, nifedipine) on heart rate, respiration rate and motor activity were studied in 3-30-day-old rats. The role of calcium channels in development of disturbances of a heart and respiratory rhythms after introduction to newborn rats of acetylcholinesterase (AChE) inhibitor of physostigmine was revealed. Parameters of functional activity of heart, respiratory and somatomotor systems in case of blockade of calcium channels were studied also under conditions of the activation of cholinoceptive structures caused by an injection to infant rats of AChE inhibitor after premedication by CCBs. It is shown that use of calcium channels blockers leads to development of bradycardia, and verapamil causes more expressed disturbance of a heart rhythm in rats of younger age, while blockade of dihydropyridinic receptors by nifedipine has no ontogenetic specifics. Similar ontogenetic dynamics concerns also reaction of respiratory system. Verapamil have a detrimental effect on respiration, up to a stop, in 3-7-day-old and to a lesser extent in 16-30-day-old infant rats. Nifedipine slightly reduces a respiration rate at younger infant rats, but raises it at the mature rats. The nifedipine injection more in comparison with verapamil changes the level and a pattern of motor activity. Preliminary blockade of calcium channels does not render significant change of reaction at the subsequent introduction of physostigmin.

About the authors

Sergey V. Kuznetsov

Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences

Author for correspondence.
Email: ksv@iephb.ru

Dr. Biol. Sci. (Physiology), Chief Researcher, Head of Laboratory of Ontogenetic Development of Animals Nervous Activity

Russian Federation, Saint Petersburg

Nataliya N. Kuznetsova

Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences; Institute of Experimental Medicine

Email: nat.kuz@mail.ru

Dr. Biol. Sci. (Physiology), Laboratory of Ontogenetic Development of Animals Nervous Activity; Senior Researcher, S.V. Anichkov Department of Neuropharmacology

Russian Federation, Saint Petersburg

Polina A. Gaydukova

Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences

Email: polina.gaydukova.95@mail.ru

Bachelor, Senior Research Assistant, Laboratory of Ontogenetic Development of Animals Nervous Activity

Russian Federation, Saint Petersburg

References

  1. Кузнецов С.В., Кузнецова Н.Н. Изменение показателей гемодинамики в раннем постнатальном онтогенезе крыс после инъекции ингибитора холинэстеразы эзерина и при премедикации М- и Н-холинолитиками // Российский физиологический журнал им. И.М. Сеченова. – 2018. – Т. 104. – № 9. – С. 1075–1085. [Kuznetsov SV, Kuznetsova NN. The change of hemodynamic indexes in early postnatal ontogenesis of rats after injection of the inhibitor of ezerin cholinesterase and in premedication of M- and N-cholinolithics. Russian journal of physiology. 2018;104(9):1075-1085. (In Russ.)]. https://doi.org/10. 7868/S086981391809006Х.
  2. Самигуллин Д.В., Хазиев Э.Ф., Ковязина И.В., и др. Регуляция мускариновыми рецепторами кальциевого транзиента и синаптической передачи в нервно-мышечном соединении лягушки // Гены и клетки. – 2014. – Т. 9. – № 3–2. – С. 242–247. [Samigullin DV, Khaziev EF, Kovyazina IV, et al. Muscarinic regulation of calcium transient and synaptic transmission in frog neuromuscular junction. Genes and cells. 2014;9(3-2):242-247. (In Russ.)]
  3. Сизонов В.А., Дмитриева Л.Е. Изменение деятельности сомато-висцеральных систем у новорожденных крыс в условиях блокады Н-холинорецепторов и активации холинореактивных структур // Бюллетень экспериментальной биологии и медицины. – 2019. – T. 167. – № 2. – С. 168–174. [Sizonov VA, Dmitrieva LE. Changes in the activity of somato-visceral systems of newborn rats under conditions of the blockade of N-cholinoreceptors and the activation of cholinoreactive structures. Bulletin of Experimental Biology and Medicine. 2019;167(2):168-174. (In Russ.)]
  4. Хазаиев Э.Ф. Изменение кальциевого транзиента в двигательном нервном окончании под действием холинергических агентов: Автореф. дис. … канд. биол. наук. – Казань, 2015. – 22 с. [Khazaiev EF. Izmenenie kal’tsievogo tranzienta v dvigatel’nom nervnom okonchanii pod deystviem kholinergicheskikh agentov. [dissertation] Kazan’; 2015. 22 р. (In Russ.)]. Доступно по: https://search.rsl.ru/ru/record/01005568461. Ссылка активна на 14. 04. 2019.
  5. Шилов А.М., Дулаева М.С., Осия А.О., Лишута А.С. Лечение пациентов с артериальной гипертонией и метаболическим синдромом. Место комбинированных препаратов // Рациональная фармакотерапия в кардиологии. – 2014. – T. 10. – № 1. – C. 92–98. [Shilov AM, Dulaeva MS, Osiya AO, Lishuta AS. Treatment of patients with arterial hypertension and metabolic syndrome. The role of the combination drugs. Rational pharmacotherapy in cardiology. 2014;10(1):92-98. (In Russ.)]
  6. Bikhazi GB, Leung I, Foldes FF, et al. Ca-channel blockersincrease potency of neuromuscular blocking agents in vivo. Anesthesiology. 1983;(59):A269.
  7. Bondi AY. Effects of verapamil on excitation-contraction coupling in frog sartorius muscle. J Pharmacol Exp Ther. 1978;205(1):49-57.
  8. Del Pozo E, Baeyens JM. Effects of calcium channel blockers on neuromuscular blockade induced by aminoglycoside antibiotics. Eur J Pharmacol. 1986;128(1-2):49-54. https://doi.org/10. 1016/0014-2999(86)90556-x.
  9. Advancement of Science (AAAS). Commonly used heart drug associated with increased risk of sudden cardiac arrest. Available from: https://www.eurekalert.org/pub_releases/2019-03/esoc-cuh031219. php.
  10. Fermini B, Ramirez DS, Sun S, et al. L-type calcium channel antagonism – Translation from in vitro to in vivo. J Pharmacol Toxicol Methods. 2017;84:86-92. https://doi.org/10. 1016/j.vascn.2016. 11. 002.
  11. Friedman T, Feld Y, Adler Z, et al. Acute respiratory distress syndrome associated with intravenous lipid emulsion therapy for verapamil toxicity, successfully treated with veno-venous ECMO. J Develop Drugs. 2017;6(3):182. https://doi.org/10. 4172/2329-6631. 1000182.
  12. Ghayur MN, Gilani AH, Janssen LJ. Ginger attenuates acetylcholine-induced contraction and Ca2+ signalling in murine airway smooth muscle cells. Can J Physiol Pharmacol. 2008;86(5):264-271. https://doi.org/10. 1139/Y08-030.
  13. Howard JF, Sanders DB. Neurotoxicology of neuromuscular transmission. Chapter 12. In: Handbook of clinical neurology. Vol. 91. Neuromuscular junction disorders. Amsterdam [Netherlands]: Elsevier; 2008. P. 369-400. https://doi.org/10. 1016/s0072-9752(07)01512-6.
  14. Janis RA, Silver PJ, Triggle DJ. Drug action and cellular calcium regulation. Adv Drug Res. 1987;16:309-591.
  15. Johnson PL, Bhattacharya SK. Regulation of membrane-mediated chronic muscle degeneration in dystrophic hamsters by calcium-channel blockers: diltiazem, nifedipine and verapamil. J Neurol Sci. 1993;115(1):76-90. https://doi.org/10. 1016/0022-510x(93)90070-f.
  16. Izdes S, Altintas ND, Soykut C. Acute respiratory distress syndrome after verapamil intoxication: case report and literature review. Acta Clin Belgica. 2014;69(2):116-119. https://doi.org/10. 1179/2295333714Y.0000000007.
  17. Kolcz J, Pietrzyk J, Januszewska K, et al. Extracorporeal life support in severe propranolol and verapamil intoxication. J Intensive Care Med. 2007;22(6):381-385. https://doi.org/10. 1177/0885066607307528.
  18. Krendel DA, Hopkins LC. Adverse effect of verapamil in a patient with the Lambert-Eaton syndrome. Muscle Nerve. 1986;9(6):519-522. https://doi.org/10. 1002/mus.880090607.
  19. Kuznetsov SV, Goncharov NV, Glashkina LM. Change of parameters of functioning of the cardiovascular and respiratory systems in rats of different ages under effects of low doses of the cholinesterase inhibitor phosphacol. J Evol Biochem Physiol. 2005;41(2):201-210. https://doi.org/10. 1007/s10893-005-0055-x.
  20. Lu ZJ, Pereverzev A, Liu HL, et al. Arrhythmia in isolated prenatal hearts after ablation of the Cav2. 3 (alpha1E) subunit of voltage-gated Ca2+-channels. Cell Physiol Biochem. 2004;14(1-2):11-22. https://doi.org/10. 1159/000076922.
  21. Moseley AE, Lieske SP, Wetzel RK, et al. The Na, K-ATPase α2 isoform is expressed in neurons, and its absence disrupts neuronal activity in newborn mice. J Biol Chem. 2003;278(7):5317-5324. https://doi.org/10. 1074/jbc.M211315200.
  22. Oz M, Frank GB. The effects of verapamil on tetanic contractions of frog’s skeletal muscle. Comp Biochem Physiol Pharmacol Toxicol Endocrinol. 1994;107(3):321-329. https://doi.org/10. 1016/1367-8280(94)90057-4.
  23. Protas L, Difrancesco D, Robinson RB. L-type but not T-type calcium current changes during postnatal development in rabbit sinoatrial node. Am J Physiol Heart Circ Physiol. 2001;281(3): H1252-H1259. https://doi.org/10. 1152/ajpheart.2001. 281. 3. h1252.
  24. Radhakrishnan S, Talwar KK, Kaushal R, Bhatia ML. Respiratory arrest with IV verapamil. Am Heart J. 1986;111(3):622. https://doi.org/10. 1016/0002-8703(86)90084-0.
  25. Rang HP, Dale MM, Ritter JM, et al. Pharmacology. Churchill Livingston, 8th edition. Edinburgh; New York: Elsevier/Churchill Livingstone; 2015.
  26. Ribera AB, Nastuk WL. The actions of verapamil at the neuromuscular junction. Comp Biochem Physiol C. 1989;93(1):137-141. https://doi.org/10. 1016/0742-8413(89)90023-6.
  27. Shen JX, Yakel JL. Nicotinic acetylcholine receptor-mediated calcium signaling in the nervous system. Acta Pharmacol Sin. 2009;30(6):673-80. https://doi.org/10. 1038/aps.2009. 64.
  28. Sizonov VА, Dmitrieva LE. Heart rhythm disturbances caused by injection of cholinesterase inhibitor physostigmine to rats during the early ontogeny. Bulletin of Experimental Biology and Medicine. 2018;165(1):44-47.
  29. Swanson TH, Green CL. Nifedipine: more than a calcium channel blocker. Gen Pharmacol. 1986;17(3):255-260. https://doi.org/10. 1016/0306-3623(86)90038-8.
  30. Zalman F, Perloff JK, Durant NN, Campion DS. Acute respiratory failure following intravenous verapamil in Duchenne’s muscular dystrophy. Am Heart J. 1983;105(3):510-511. https://doi.org/10. 1016/0002-8703(83)90371-x.

Copyright (c) 2019 Kuznetsov S.V., Kuznetsova N.N., Gaydukova P.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».