Eryptosis (quasi-apoptosis) the human red blood cells. Its role in medicinal therapy

Cover Page

Cite item

Full Text

Abstract

In the course of circulation erythrocytes can test damages, which compromises their integrity and thus triggers suicidal erythrocyte death or eryptosis. This mechanism is characterised by cell shrinkage, cell membrane blebbing, and cell membrane phospholipid scrambling after phosphatidylserine exposure on the cell surface that is identified by macrophages, which engulf and degrade the eryptotic cells. The term eryptosis also includes typical mechanisms, which contribute to the triggering of this process, such as oxidative stress, Ca2+ entry with an increase in cytosolic Ca2+ activity and the activation of p38 kinase, which is a kinase expressed in human erythrocytes and activated after hyperosmotic shock. Enhanced eryptosis has been observed in several clinical conditions such as diabetes, renal insufficiency, haemolytic uremic syndrome, sepsis, mycoplasma infection, malaria, iron deficiency, sickle cell anaemia, beta-thalassemia, glucose-6-phosphate dehydrogenase (G6PD)-deficiency, hereditary spherocytosis, paroxysmal nocturnal haemoglobinuria, Wilson’s disease, myelodysplastic syndrome, and phosphate depletion. Therefore, eryptosis may be considered as a useful mechanism of removal of defective erythrocytes to prevent haemolysis. Moreover, the clearance of infected erythrocytes in diseases such as malaria may counteract parasitemia. Indeed it is known that sickle-cell trait, beta-thalassemia trait, G6PD-deficiency and iron deficiency confer some protection against a severe course of malaria. Importantly, strategies to control Plasmodium infection by inducing eryptosis are not expected to generate resistance of the pathogen, as the proteins involved in suicidal death of the host cell are not encoded by the pathogen and thus cannot be modified by mutations of its genes. However, excessive eryptosis could compromise microcirculation and lead to anemia. Besides, adhesion of eryptosis erythrocytes to a vascular wall also can lead to microcirculation infringement.Thus, modern representations about eryptosis expand our knowledge about the programmed death of blood cells and is more directed to create new therapeutic schemes of treatment of patients.

About the authors

Vladimir I. Vaschenko

S.M. Kirov Military Medical Academy

Author for correspondence.
Email: vaschenko@yandex.ru

Dr. Biol. Sci., Chief, Lab. Department Centre of Blood and Tissues

Russian Federation, Saint Petersburg

Vladimir N. Vil’yaninov

S.M. Kirov Military Medical Academy

Email: vilyaninov@mail.ru

PhD, Head, Centre of Blood and Tissues

Russian Federation, Saint Petersburg

References

  1. Агалакова Н.И. Нарушение ионного баланса как фактор физиологического старения эритроцитов // Вопросы современной науки / Под ред. Н.Р. Красовской. – М.: Интернаука, 2016. – Т. 15. – С. 133–149. [Agalakova NI. Narushenie ionnogo balansa kak faktor fiziologicheskogo stareniya eritrotsitov. In: Voprosy sovremennoj nauki. Ed. by N.P. Krasovskaja. Moskow: Internauka; 2016. Vol. 15. Рр. 133–149. (In Russ.)]
  2. Белевич Е.И., Костин Д.Г., Слобожанина Е.И. Эриптоз — запрограммированная гибель эритроцитов // Успехи современной биологии. – 2014. – Т. 134. – № 2. – С. 149–157. [Bialevich KI, Kostsin DG, Slobozhanina EI. Eryptosis is programmed death of erythrocytes. Advances in modern biology. 2014;134(2):149-157. (In Russ).]
  3. Вересов В.Г. Структyрная биология апоптоза. – Минск: Белорусская наука, 2008. – 431 c. [Veresov VG. Struktyrnaya biologiya apoptoza. Minsk: Belorusskaja nauka; 2008. 431 p. (In Russ).]
  4. Ващенко В.И., Ващенко Т.Н. Биология и физиология протеина С. Современные представления о механизмах лечебного действия активированного протеина С // Обзоры по клинической фармакологии и лекарственной терапии. – 2009. – Т. 7. – № 3. – С. 24–47. [Vashchenko VI, Vashchenko TN. Biology and physiology of protein C. Modern presentations about mechanisms of medical action of the activated protein C. Reviews on Clinical Pharmacology and Drug Therapy. 2009;7(3):24-47. (In Russ).]
  5. Ващенко В.И., Хансон К.П., Шабанов П.Д. Цитохром С и лекарственная терапия: прошлое, настоящее, будущее // Обзоры по клинической фармакологии и лекарственной терапии. – 2005. – Т. 4. – № 1. – С. 27–37. [Vashchenko VI, Hanson KP, Shabanov PD. Tsitokhrom S i lekarstvennaya terapiya: proshloe, nastoyashchee, budushchee. Reviews on Clinical Pharmacology and Drug Therapy. 2005;4(1):27-37. (In Russ).]
  6. Владимиров Ю.А. Биомембраны. Строение, свойства, функции // Биологические мембраны: журнал мембранной и клеточной биологии. – 2002. – Т. 19. – № 5. – С. 355. [Vladimirov YuA. Biomembrane. Structure, properties, and functions. Biologicheskie membrany. 2002;19(5):355. (In Russ.)]
  7. Журавлева Т.Д., Долгов В.В., Суплотов С.Н., Киянюк Н.С. Особенности липидного состава мембран эритроцитов у здоровых людей разного возраста // Клиническая лабораторная диагностика. – 2003. – № 5. – С. 50–52. [Zhuravleva TD, Dolgov VV, Suplotov SN, Kiyanyuk NS. Specific features of the lipid composition of the erythrocyte membranes in healthy people of different ages. Klin Lab Diagn. 2003;(5):50-52. (In Russ.)]
  8. Карпунин Д.В., Акимов С.А., Фролов В.А. Формирование пор в плоских липидных мембранах, содержащих лизолипиды и холестерин // Биологические мембраны: журнал мембранной и клеточной биологии. – 2005. – Т. 22. – № 5. – С. 429–432. [Karpunin DV, Akimov SA, Frolov VA. Pore formation in lipid membranes containing lysoliipids and cholesterol. Biologicheskie membrany. 2005;22(5):429-432. (In Russ.)]
  9. Миндукшев И.В., Рукояткина Н.И., Добрылко И.А., и др. Особенности апоптоза безъядерных клеток: тромбоцитов и эритроцитов человека // Российский физиологический журнал им. И.М. Сеченова. – 2013. – Т. 99. – № 1. – С. 92–110. [Mindukchev IV, Rucojatkina NI, Dobrilko IA, et al. Characterisation of enucleated cells apoptosis: human platelets and erythrocytes. Russian journal of physiology. 2013;99(1):92-110. (In Russ.)]
  10. Пивоваров Ю.И., Кузнецова Э.Э., Корякина Л.Б., и др. Реакция мембраны эритроцитов у больных стенокардией напряжения и гипертонической болезнью при кратковременной ишемии // Тромбоз, гемостаз и реология. – 2013. – № 2. – С. 39–45. [Pivovarov YI, Kuznetsova EE, Koryakina LB, et al. Erythrocyte membranes response in patients with exertional angina pectoris and idiopathic essential hypertension in presence of transitory ischemia. Tromboz, gemostaz, reologiia. 2013;(2):39-45. (In Russ.)]
  11. Рабинович А.Л., Корнилов В.В., Балабаев Н.К., и др. Свойства бислоев ненасыщенных фосфолипидов: влияние холестерина // Биологические мембраны: журнал мембранной и клеточной биологии. – 2007. – Т. 24. – № 6. – С. 490–505. [Rabinovich AL, Kornilov VV, Balabaev NK, et al. Properties of unsaturated phospholipid bilayers: Effect of cholesterol. Biochemistry (Moscow) Supplement. Series A: Membrane and Cell Biology. 2007;1(4):343-357. (In Russ.)]
  12. Стародубцева М.Н. Индуцированный пероксинитритом апоптоз эритроцитов // Проблемы здоровья и экологии. – 2009. – № 1. – С. 117–122. [Starodubtseva MN. Peroxynitrite-induced red blood cell apoptosis. Problemy zdorov’ya i ekologii. 2009;(1):117-122. (In Russ.)]
  13. Степанов Е.А., Краснопольский Ю.М., Швец В.И.; АН СССР, Ин-т биохимии им. А.Н. Баха, Науч. совет по пробл. биохимии животных и человека. Физиологически активные липиды. – М.: Наука, 1991. – 134 c. [Stepanov EA, Krasnopolskiy YM, Shvets VI; AN SSSR, In-t biokhimii im. A.N. Bakha, Nauch. sovet po probl. biokhimii zhivotnykh i cheloveka. Fiziologicheski aktivnye lipidy. Moscow: Nauka; 1991. 134 p. (In Russ.)]
  14. Сюсин И.В., Девяткин А.А., Ревин В.В. Влияние липидов и их метаболитов на регуляцию выброса ядра из эритроцитов голубя // Биологические мембраны: журнал мембранной и клеточной биологии. – 2013. – Т. 30. – № 1. – С. 52. [Syusin IV, Devyatkin AA, Revin VV. The impact of lipids and their metabolites on the regulation of the emission of the pigeon erythrocytes nucleus. Biologicheskie membrany. 2013;30(1):52. (In Russ.)]. https://doi.org/10. 7868/S0233475512050039.
  15. Циркин В.И., Ноздрачев А.Д., Володченко А.И. Механизм повышения скорости агглютинации эритроцитов человека под влиянием адреналина и его связь с эриптозом // Доклады Академии наук. – 2013. – Т. 451. – № 4. – С. 464–467. [Cirkin VI, Nosdrathov AD, Volodchenko AI. Mechanism of increasing the rate of agglutination of human erythrocytes under the influence of adrenaline and its relation to eryptosis. Doklady Biological Sciences. 2013;451(1):199-202. (In Russ.)]. https://doi.org/10. 7868/S0869565213220283.
  16. Чеснокова Н.П., Понукалина Е.В., Бизенкова М.Н. Лекция 3. Метаболические особенности эритроцитов // Успехи современного естествознания. – 2015. – № 1–2. – С. 331–332. [Chesnokova NP, Ponucalina EV, Bizenkova MN. Lektsiya 3. Metabolicheskie osobennosti eritrotsitov. Advances in current natural sciences. 2015;(1-2):331-332. (In Russ).]
  17. Шевченко О.Г. Роль холестерина в структурной организации мембран эритроцитов // Вестник Института биологии Коми НЦ УрО РАН. – 2010. – № 6. – С. 10–14. [Shevchenko OG. The role of cholesterol in the structural organization of erythrocyte membranes. Vestnik Instituta biologii Komi NTs UrO RAN. 2010;(6):10-14. (In Russ.)]
  18. Шевченко О.Г. Фосфолипидная компонента мембран эритроцитов в норме и патологии // Вестник Института биологии Коми НЦ УрО РАН. – 2007. – № 2. – С. 2–8. [Shevchenko OG. Phospholipid component of red blood cells membranes in norm and pathology. Vestnik Instituta biologii Komi NTs UrO RAN. 2007;(2):2-8. (In Russ.)]
  19. Abed M, Towhid ST, Pakladok T, et al. Effect of bacterial peptidoglycan on erythrocyte death and adhesion to endothelial cells. Int J Med Microbiol. 2013;303(4):182-189. https://doi.org/10. 1016/j.ijmm.2013. 01. 004.
  20. Attanasio P, Bissinger H, Haverkamp W, et al. Enhanced suicidal erythrocyte death in acute cardiac failure. Eur J Clin Investig. 2015;45(12):1316-1324. https://doi.org/10. 1111/eci.12555.
  21. Ahlqvist KJ, Leoncini S, Pecorelli A, et al. MtDNA mutagenesis impairs elimination of mitochondria during erythroid maturation leading to enhanced erythrocyte destruction. Nat Commun. 2015;6(1):6494. https://doi.org/10. 1038/ncomms7494.
  22. Ahmed MS, Langer H, Abed M, et al. The uremic toxin acrolein promotes suicidal erythrocyte death. Kidney Blood Press Res. 2013;37(2-3):158-167. https://doi.org/10. 1159/000350141.
  23. Ahyayauch H, Garcia-Arribas AB, Sot J, et al. Pb(II) induces scramblase activation and ceramide-domain generation in red blood cells. Sci Rep. 2018;8(1):7456. https://doi.org/10. 1038/s41598-018-25905-8.
  24. Abed M, Artunc F, Alzoubi K, et al. Suicidal erythrocyte death in end-stage renal disease. J Mol Med. 2014;92(8):871-9. https://doi.org/10. 1007/s00109-014-1151-4.
  25. Aird WC. The hematologic system as a marker of organ dysfunction in sepsis. Mayo Clin Proc. 2003;78(7):869-881. https://doi.org/10. 4065/78. 7. 869.
  26. Al Mamun Bhuyan A, Cao H., Lang F. Triggering of erypthosis the suicidal erythrocyte death by mammalian target of rapamycin (mTOR) inhibitor tensirolimus. Cell Physiol Biochem. 2017;42(4):1575-1591. https://doi.org/10. 1159/000479398.
  27. Al Mamun Bhuyan A, Signoretto E, Bissinger R, Lang F. Enhanced eryptosis following exposure to dolutegravir. Cell Physiol Biochem. 2016;39(2):639-650. https://doi.org/10. 1159/000445655.
  28. Allan D, Billah MM, Finean JB, Michell RH. Release of diacylglycerol-enriched vesicles from erythrocytes with increased intracellular (Ca2+). Nature. 1976;261(5555):58-60. https://doi.org/10. 1038/261058a0.
  29. Aleman MM, Walton BI, Byrnes JR, Wolberg AS. Fibrinogen and red blood cells in venous thrombosis. Thromb Res. 2014;133(Suppl. l): S33-S40. https://doi.org/10. 1016/j.thromres.2014. 03. 017.
  30. Anderson DR, Davis JL, Carraway KL.Calcium-promoted changes of the human erythrocyte membrane. Involmement of spectrin, transglutaminase, and a membrane-bound protease. J Biol Chem. 1977;252(19):6617-6623.
  31. Antonelou MH, Kriebardis AG, Papassideri IS. Aging and death signalling in mature: red cells: from basic science to transfusion practice. Blood Transfus. 2010;8(Suppl. 3): 39-47. https://doi.org/10. 2450/2010. 007S.
  32. Aguilar-Dorado IC, Hernández G, Quintanar-Escorza MA, et al. Eryptosis in lead-exposed workers. Toxicol Appl Pharmacol. 2014;281(2):195-202. https://doi.org/10. 1016/j.taap.2014. 10. 003.
  33. Arashiki N, Takakuwa Y. Maintenance and regulation of asymmetric phospholipid distribution in human erythrocyte membranes: implications for erythrocyte functions. Curr Opin in Hematol. 2017;24(3):167-172. https://doi.org/10. 1097/MOH.0000000000000326.
  34. Arashiki N, Takakuwa Y, Mohandas N, et al. ATP11C is a major flippase in human erythrocytes and its defect causes congenital hemolytic anemia. Haematologica. 2016;101(5):559-565. https://doi.org/10. 3324/haematol.2016. 142273.
  35. Arnold M, Bissinger R, Lang F. Mitoxantrone-induced suiddal erythrocyte death. Cell Physiol Biochem. 2014;34(5): 1756-1767. https://doi.org/10. 1159/000366376.
  36. Artz AS, Thirman MJ. Unexplained anemia predominates despite all intensive evaluation in a racially diverse cohort of older adults from a refferal anemia clinic. J Gerontol A Biol Sci Med Sci. 2011;66А(8):925-932. https://doi.org/10. 1093/gerona/glr090.
  37. Arandjelovic S, Ravichandran KS. Phagocytosis of apoptotic cells in homeostasis. Nat Immunol. 2015;16(9): 907-917. https://doi.org/10. 1038/ni.3253.
  38. Ashraf MZ, Gupta N. Scavenger reeeprors: implications in atherothrothromboic disorders. Int J Biochem Cell Biol. 2011;43(5):697-700. https://doi.org/10. 1016/j.biocel.2011. 01. 019.
  39. Ashraf MZ, Sahu A. Scavenger reeeprors: a key player in cardiovascular diseases. BioMol Concepts. 2012;3(4): 371-380. https://doi.org/10. 1515/bmc-2012-0003.
  40. Atihartakarn V, Angchaisuksiri P, Aryurachai K, et al. Relationship between hypercoagulable state and erythrocyte phosphatidylserinc exposure in splenectomized haemoglohin E/beta-thalassaemic patients. Br J Haematol. 2002;118(3):893-898. https://doi.org/10. 1046/j.1365-2141. 2002. 03711. x.
  41. Audiger C, Rahman MJ, Yun TJ, et al. The importanee of dendritic cells in maintaining immune tolerance. J Immunol. 2017;198(6):2223-2231. https://doi.org/10. 4049/jimmunol.1601629.
  42. Banel P, Andreani P, Graler MH. Erythrocytes store and release sphingosine 1-phosphate in blood. FASEB J. 2007;21(4):1202-9. https://doi.org/10. 1096/fj.06-7433com.
  43. Barday AN, van den Berg TK. The interaction between signal regulatory protein alpha (SIRPalpha) and CD47: structure, function and therapeutic target. Annu Rev Immunol. 2014;32:25-50. https://doi.org/10. 1146/annurev-immunol-032713-120142.
  44. Barcellini W. New insights in the pathogenesis of autoimmune hemolytic anemia. Transfus Med Hemother. 2015;42(5):287-293. https://doi.org/10. 1159/000439002.
  45. Banerjee D, Saha S, Basu S, Chakrabarti A. Porous red cell ultrastructure and loss of membrane asymmetry in a novel case of hemolytic anemia. Eur J Haematol. 2008;81(5):399-402. https://doi.org/10. 1111/j.1600-0609. 2008. 01153. x.
  46. Barr ID, Chauhan AK, Sd1aeffer GV, et al. Red blood cells mediate the onset of rhrombosis in the ferric chloride murine model. Blood. 2013;121(18):3733-3741. https://doi.org/10. 1182/blood-2012-11-468983.
  47. Basu S, Banerjee D, Chandra S. Chakrabarti A. Eryptosis in hereditary nocturnal spherocytosis and talassemia: role of glycoconjugates. Glycoconj J. 2010;27(7-9):717-722. https://doi.org/10. 1007/s10719-009-9257-6.
  48. Basu S, Banerjee D, Ghosh M, Chakrabarti A. Erythrocyte membrane defects and asymmetry in paroxysmal nocturna1 hemoglobinuria and myelodysplastk syndrome. Hematology. 2010;15(4):236-239. https://doi.org/10. 1179/102453309X12583347114095.
  49. Bartolmӓs T, Mayer B, Balola AH, Salama A. Eryptosis in autoimmune haemolytic anaemia. Eur J Haematol. 2018;100(1):36-44. https://doi.org/10. 1111/ejh.12976.
  50. Bhuyan AM, Cao H, Lang F. Triggering of eryptosis, the suicidal erythrocyte death by mammalian target of rapamycin (mTOR) inhibitor temsirolimus. Cell Physiol Biochem. 2017;42(4):1575-1591. https://doi.org/10. 1159/000479398.
  51. Benedik PS, Hamlin SK. The physiologic role of erythrocytes in oxygen delivery and implications for blood storage. Crit Care Nurs Clin North Am. 2014;26(3):325-335. https://doi.org/10. 1016/j.ccell.2014. 04. 002.
  52. Berg CR, Engels IH, Rothbert A, et al. Human mature red biood cells express caspase-3 and caspase-8 but are devoid of mitochondrial regularors of apoptosis. Cell Death Differ. 2001;8(12):1197-1206. https://doi.org/10. 1038/sj.cdd.4400905.
  53. Bester J, Pretorius E. Effects of IL-1beta, IL-6 and IL-8 on erythrocytes, platelets, and clot viscoelasticity. Sci Rep. 2016;6:32188. https://doi.org/10. 1038/srep32188.
  54. Birka C, Lang PA, Kempe DS, et al. Enhanced susceptibility to erythrocyte «apoptosis» following phosphate depletion. Pflugers Arch. 2004;448(5):471-477. https://doi.org/10. 1007/s00424-004-1289-y.
  55. Bissinger R, Artunc F, Qadri SM, Lang F. Reduced erythrocyte survival in uremic patients under hemodialysis or peritoneal dialysis. Kidney Blood Press Res. 2016;41(6):966-977. https://doi.org/10. 1159/000450563.
  56. Bissinger R, Bhuyan AA, Qadri SM, Lang F. Oxidative stress, eryptosis and anemia: a pivotal mechanistic nexus in systemic diseases. FEBS J. 2019;286(5):826-854. https://doi.org/10. 1111/febs.14606.
  57. Bissinger H, Bouguerra G, Stockinger K, et al. Triggering of suiddal erythrocyte death by topotecan. Cell Physiol Biochem. 2015;37(4):1607-1618. https://doi.org/10. 1159/000438527.
  58. Bissinger R, Kempe-Teufel DS, Honisch S, et al. Stimulated suicidall erythrocyte death in arteritis. Cell Physiol Biochem. 2016;39(3):1068-1077. https://doi.org/10. 1159/000447814.
  59. Bissinger R, Lang E, Ghashghaelnia M, et al. Blunted apoptosis of erythrocytes in mice deficient in the heterotrimeric G-protein subunit Gαi2. Sci Rep. 2016;6:30925. https://doi.org/10. 1038/srep30925.
  60. Bissinger R, Schumacher C, Qadri SM, et al. Enhanced eryptosis contributes to anemia in lung cancer patients. Oncotarget. 2016;7(12):14002-14014. https://doi.org/ 10. 18632/oncotarget.7286.
  61. Blokhin IO, Lentz SR. Mechanisms of thrombosis in obesity. Curr Opin Hematol. 2013;20(5):437-444. https://doi.org/10. 1097/MOH.0b013e3283634443.
  62. Bobbala D, Alesutan I, Faller M, et al. Effect of anandamide in plasmodium berghei-infected mice. Cell Physiol Biochem. 2010;26(3):355-362. https://doi.org/10. 1159/000320559.
  63. Bookchin RM, Etzion Z, Sorette M, et al. Identification and characterization of a newly recognized population of high-Na+, low-K+, low-density sickle and normal red cells. Proc Natl Acad Sci USA. 2000;97(14):8045-8050. https://doi.org/10. 1073/pnas.130198797.
  64. Browning JA, Robinson HC, Ellory JC, Gibson JS. Deoxygenation-induced non-electrolyte pathway in red cells from sickle cell patients. Cell Physiol. Biochem. 2007;19(1-4): 165-174. https://doi.org/10. 1159/000099204.
  65. Bosman GJ. Survival of red blood cells after transfusion: proeesses and consequences. Front Physiol. 2013;4:376. https://doi.org/10. 3389/fphys.2013. 00376.
  66. Bosman GJ, Cluitmans JC, Groenen YA, et al. Susceptibility to hyperosmotic stress-induced phosphatidylserine exposure increases during red blood cell storage. Transfusion. 2011;51(5):1072-1088. https://doi.org/10. 1111/j.1537-2995. 2010. 02929. x.
  67. Borst O, Ahed M, Alesutan I, et al. Dynamic adhesion of eryptotic erythrocytes to endothelial cells via CXCL16/SR-PSOX. Am J Physiol Cell Physiol. 2012;302(4):C644-C65l. https://doi.org/10. 1152/ajpcell.00340. 2011.
  68. Boulet C, Doerig CD, Carvalho TG, et al. Manipulating erypthosis of human red blood cells: a novel antimalarial strategy? Front Cell Infect Microbial. 2018;20(2):361-366. https://doi.org/10. 3389/fcimb.2018. 00419.
  69. Bonomini M, del Vecchio L, Sirolli V, Locatelli F. New treatment approaches for the anemia of CKD. Am J Kidney Dis. 2016;67(1):133-142. https://doi.org/10. 1053/j.ajkd.2015. 06. 030.
  70. Bratosin D, Estaquier J, Ameisen JC, Montreuil J. Molecular and cellular mechanisms of erythrocyte programmed cell deach: impact on blood transfusion. Vox Sang. 2002;83(Suppl. 1):307-310. https://doi.org/10. 1111/ j.1423-0410. 2002. tb05324. x.
  71. Brugnara C, de Franceschi L, Alper SL. Inhibition of Ca2+ dependent K+ transport and cell dehydration in sickle erythrocytes by dotrimazole and other imidazole derivatives. J Clin Invest. 1993;92(1):520-6. https://doi.org/10. 1172/JCI116597.
  72. Bouguerra G, Bissinger R, Abbes S, Lang F. Zopolrestat induced suicidal death of human erythrocytes. Cell Physiol Biochem. 2015;37(4):1537-1546. https://doi.org/10. 1159/000438521.
  73. Briglia M, Fazio A, Faggio C, et al. Triggering of suicidal erythrocyte death by ruxolitinib. Cell Physiol Biochem. 2015;37(2):768-778. https://doi.org/10. 1159/000430394.
  74. Burger P, Hilarius-Stokman P, de Korte D, et al. CD47 functions as a molecular switch for erythrocyte phagocytosis. Blood. 2012;119(23):5512-552l. https://doi.org/10. 1182/blood-2011-10-386805.
  75. Calabro S, Alzouhi K, Faggio C, et al. Triggering of suicidal erythrocyte death following boswellic acid exposure. Cell Physiol Biochem. 2015;37(1):131-142. https://doi.org/10. 1159/000430339.
  76. Canham PB, Burton AC. Distribution of size and shape in populations of normal human red cells. Circ Res. 1968;22(3): 405-422. https://doi.org/10. 1161/01. res.22. 3. 405.
  77. Cappellini MD, Musallam KM, Poggiali E, Taher AT. Hypercoagulahility in nontransfusion-dependent thalassemia. Blood Rev. 2012;26(Suppl. 1): S20-23. https://doi.org/10. 1016/S0268-960X(12)70007-3.
  78. Chang AL, Hoehn RS, Jemigan P, et al. Previous cryopreservation alters the natural history of the red blood cell storage lesion. Shock. 2016;46(3 Suppl 1):89-95. https://doi.org/10. 1097/SNK.0000000000000668.
  79. Chen LT, Weiss L. The role of the sinus wall in the passage of erythrocytes through the spleen. Blood. 1973;41(4): 529-537.
  80. Cohen CM, Gascard P. Regulation and post-translational modification of erythrocyte membrane and membrane-skeletal proteins. Semin Hematol. 1992;29(4):244-292.
  81. Dahal IN, Hall LS, Barker RN, Ward FJ. Indoleamine 2,3-dioxygenase contributes to transferable tolerance in rat red blood cell inducible model of experimental autoimmune haemolytic anaemia. Clin Exp Immunol. 2013;173(1):58-66. https://doi.org/10. 1111/cei.12091.
  82. Danielli JF, Davson H. A contribution to the theory of permeability of thin films. J Cell Comparativ Physiol. 1935;5(4): 495-508. https://doi.org/10. 1002/jcp.1030050409.
  83. Dharmarajan TS. Anemia in the long·tenn care setting: routine screening and differential diagnosis. Consult Pharm. 2008;23(Suppl A):5-10.
  84. Dias GF, Bonan NB, Steiner TM, et al. Indoxyl sulfate, a urenic toxin, stimulates reactive oxygen species production and erythrocyte cell death supposedly by an organic anion transporter 2 (OAT2) and NADPH oxidase activity-dependent pathways. Toxins. 2018;10:280. https://doi.org/10. 3390/tocsins1007o280.
  85. Dinkla S, van Eijk LT, Fuchs B, et al. Inflammation-associated changes in lipid composition and the organization of the erythrocyte membrane. BBA Clin. 2016;5:186-192. https://doi.org/10. 1016/j.bbacli.2016. 03. 007.
  86. Dinkla S, Wessels K, Verdurmen WP, et al. Functional consequences of sphlngomyelinase.induced changes in erythrocyte membrane structure. Cell Death Dis. 2012;18(3):e410. https://doi.org/10. 1038/cddis.2012. 143.
  87. Dyrda A, Cytlak U, Ciuraszkiewicz A, et al. Local membrane deformations activate Ca2+-dependent K+ and anionic currents in intact human red blood cells. PLoS ONE. 2010;5(2):e9447. https://doi.org/10. 1371/journal.pone.0009447.
  88. Duranton C, Huber SM, Lang F. Oxidation induces a Cl(-)-dependent cation conductance in hurnan red hlood cells. J Physiol. 2002;539(Pt 3):847-855.
  89. Fakhouri F, Zuber J, Fremeaux-Bacchi V, Loirat C. Haemolytic uraemic syndrome. Lancet. 2017;390(10095):681-696. https://doi.org/10. 1016/S0140-6736(17)30062-4.
  90. Fallatah O, Georges E. Apigenin-induced ABCC1-mediated efflux of glutathione from mature erythrocytes inhibits the proliferation of Plasmodium falciparum. Int J Antimicrob Agents. 2017;50(5):673-677. https://doi.org/10. 1016/j.ijantimicag.2017. 08. 014.
  91. Farag MR, Alagawany M. Erythrocytes as a biological model for screening of xenobiotics toxicity. Chem Biol Interact. 2018;279:73-83. https://doi.org/10. 1016/j.cbi.2017. 11. 007.
  92. Fazio A, Briglia M, Faggio C, et al. Oxaliplatin induced suicidal death of human erythrocytes. Cell Physiol Biochem. 2015;37(6):2393-2404. https://doi.org/10. 1159/000438592.
  93. Felder KM, Hoelzle K, Ritzmann M, et al. Hemotrophic mycoplasmas induce programmed cell death in red blood cells. Cell Physiol Biochem. 2011;27(5):557-564. https://doi.org/10. 1159/000329957.
  94. Fezai M, Slaymi C, Ben-Attia M, et al. Purified lesser weever fish venom (Trachinus-vipera) induces eryptosis, apoptosis and cell cycle arrest. Sci Rep. 2016;6:39288. https://doi.org/10. 1038/srep39288.
  95. Filippov A, Oradd G, Lindblom G. The effect of cholesterol on the lateral diffusion of phospholipids in oriented bilayers. Biophys J. 2003;84(5):3079-3086. https://doi.org/10. 1016/S0006-3495(03)70033-2.
  96. Fischer K, Voelkl S, Berger I, et al. Antigen recognition induces phosphatidylserine exposure on the cell surface of hurnan CD8+ T cells. Blood. 2006;108:4094-4101. https://doi.org/10. 1182/blood-2006-03-011742.
  97. Flannagan RS, Jaumouille V, Grinstein S. The cell biology of phagocytosis. Annu Rev Pathol. 20l2;7:6l-98. https://doi.org/10. 1146/annurev-pathol-011811-132445.
  98. Föller M, Biswas R, Mahmud H, et al. Etfect of peptidoglycan on erytbrocyte survival. Int J Med Microbiol. 2009;299(1):75-85. https://doi.org/10. 1016/j.ijmm.2008. 05. 012.
  99. Föller M, Bobbala D, Koka S, et al. Suicide for survival death of infected erythrocytes as a host mechanism to survive malaria. Cell Physiol Biochem. 2009;24(3-4):133-140. https://doi.org/10. 1159/000233238.
  100. Föller M, Braun M, Qadri SM, et al. Temperature sensitivity of suicidal erythrocyte death. Eur J Clin Investig. 2010;40(6):534-540. https://doi.org/10. 1111/j.1365-2362. 2010. 02296. x.
  101. Föller M, Feil S, Ghoreschi K, et al. Anemia and splenomegaly in сGKI-deficient mice. Proc Natl Acad Sci USA. 2008;105(18):6771-6776. https://doi.org/10. 1073/pnas.0708940105.
  102. Föller M, Harris IS, Elia A, et al. Functional significance of glutamate-cysteine ligase modifier for erythrocyte survivall in vitro and in vivo. Cell Death Differ. 2013;20(10):1350-1358. https://doi.org/10. 1038/cdd.2013. 70.
  103. Föller M, Kasinathan RS, Koka S, et al. TRPC6 contributes to the Ca(2+) leak of human erythrocytes. Cell Physiol Biochem. 2008;21(1-3):183-192. https://doi.org/10. 1159/000113760.
  104. Föller M, Mahmud H, Gu S, et al. Participation of leukorriene C(4) in the regulation of suicidal erythrocyte death. J Physiol Pharmacol. 2009;60(3):135-143.
  105. Föller M, Mahmud H, Gu S, et al. Modulation of suicidal erythrocyte cation channels by an AMPA antagonist. J Cell Mol Med. 2009;13(9B):3680-3686. https://doi.org/10. 1111/j.1582-4934. 2009. 00745. x.
  106. Föller M, Mahmud H, Qadri SM, et al. Endothelin B reeeptor stimulation inhibits suicidal erythrocyte death. FASEB J. 2010;24(9):3351-3359. https://doi.org/10. 1096/fj.10-159483.
  107. Föller M, Shumilina E, Lam R, et al. Induction of suiсidal erythrocyte death by listeriolysin from Listeria monocytogenes. Cell Physiol Biochem. 2007;20(6):1051-1060. https://doi.org/10. 1159/000110715.
  108. Föller M, Sopjani M, Koka S, et al. Regulation of erythrocyte survival by AMP-activated protein kinase. FASEB J. 2009;23(4):1072-1080. https://doi.org/10. 1096/fj.08-121772.
  109. Föller M, Sopjani M, Mahmud H, Lang F. Vanadate-induced suicidal erythrocyte death. Kidney Blood Press Res. 2008;31(2):87-93. https://doi.org/10. 1159/000119704.
  110. Fossati-Jimaek L, Azeredo da Silveira S, Moll T, et al. Selective infrease of autoimmune epitope expression in erythrocytes in mice: implications in anti-erythrocyre autoimmune responses. J Autoimmun. 2002;18(1):17-25. https://doi.org/10. 1182/blood-2011-10-386805.
  111. Fraenkel PG. Anemia of inflmnmation: a review. Med Clin North Am. 2017;101(2):285-296. https://doi.org/10. 1016/j.mcna.2016. 09. 005.
  112. Franco RS, Puchulu-Campanella ME, Barber LA, et al. Changes in the properties of normal human red blood cells during in vivo aging. Am J Hematol. 2013;88(1):44-5l. https://doi.org/10. 1002/ajh.23344.
  113. Fujita H, Sakuma R, Tomiyama J, et al. Increased phosphatidylserinc exposure on the erythrocyte membrane in patients with polycythaemia vera. Br J Haematol. 2011;152(2):238-24l. https://doi.org/10. 1111/j.1365-2141. 2010. 08379. x.
  114. Gammella E, Buratti P, Cairo G, Recalcati S. Macrophages: central regulators of iron balance. Metallomics. 2014;6(8):1336-1345. https://doi.org/10. 1039/c4mt00104d.
  115. Gatidis S, Föller M, Lang F. Hemin-induced suicidal erythrocyte death. Ann Hematol. 2009;88(8):721-726. https://doi.org/10. 1007/s00277-009-0697-7.
  116. Gatidis S, Zelenak C, Faiol A, et al. p38 MAPK activaton and function following osmotic shock, of erythrocytes. Cell Physiol Biochem. 2011;28(6):1279-1286. https://doi.org/10. 1159/000335859.
  117. Gao C, Ji S, Dong W, et al. Indolic uremic solmes enhance prrocoagulant activity of red blood cells through phophatidylserine exposure and micropartide release. Toxins. 2015;7(11):4390-4403. https://doi.org/10. 3390/toxins7114390.
  118. Gardai SJ, McPhillips KA, Fraseh SC, et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-aetivation of LRP on the phagocyte. Cell. 2005;123(2):321-334. https://doi.org/10. 1016/j.cell.2005. 08. 032.
  119. Garcia SC, Schon K, Charao M, et al. Quantification of reduced glutathione by HPLC-UV in erythrocytes of hemodialysis patients. Biomed Chromatogr. 2008;22(5):460-468. https://doi.org/10. 1002/bmc.954.
  120. Gaspar BL, Sharma P, Das R. Anemia in malignancies: pathogenetic and diagnostic considerations. Hematology. 2015;20(1):18-25. https://doi.org/10. 1179/1607845414Y.0000000161.
  121. George FD. Microparticles in vascular diseases.Thromb Res. 2008;112(Suppl. 1): S55-59. https://doi.org/10. 1016/S0049-3848(08)70020-3.
  122. Gilreath JA, Stenehjem DD, Rodgers GM. Diagnosis and treatment of cancer-related anemia. Am J Hematol. 2014;89(2):203-212. https://doi.org/10. 1002/ajh.23628.
  123. Gladwin MT. Role of the red blood cell in nitric oxide homeostasis and hypoxic vasodilation. Adv Exp Med Biol. 2006;588:189-205. https://doi.org/10. 1007/978-0-387-34817-9_17.
  124. Ghashghaeinia M, Cluitmans JS, Akel A, et al. The impact of erythrocyte age on eryptosis. Br J Haematol. 2012;157(5):606-614. https://doi.org/10. 1111/j.1365-2141. 2012. 09100. x.
  125. Ghashghaeinia M, Giustarini D, Koralkova P, et al. Pharmacological targeting of glucose-6-phosphate dehydrogenase in human erythrocytes by Bay 11-7082, parthenolide and dimethyl fumarate. Sci Rep. 2016;6:28754. https://doi.org/10. 1038/srep28754.
  126. Giannouli S, Voulgarelis M, Ziakas PD, Tzioufas AG. Anaemia in systemic lupus erythematosus: from pathophysiology to clinical assessment. Ann Rheum Dis. 2006:65(2):144-148. https://doi.org/10. 1136/ard.2005. 041673.
  127. Gonzalez-Gay MA, Garcia-Porrua C, Miranda-Eilloy JA. Giant cell arteritis: diagnosis and therapeutic management. Curr Rheumatol Rep. 2006;8(4):299-302. https://doi.org/10. 1007/s11926-006-0013-7.
  128. Gow AJ, Luchsinger BP, Pawloski JR, et al. The oxyhemoglohin reaction of nitric oxide. Proc Natl Acad Sci. 1999;96(16): 9027-32. https://doi.org/10. 1073/pnas.96. 16. 9027.
  129. Gudjoncik A, Guenancia C, Zeller M, et al. Iron, oxidative stress, and redox signaling in the cardiovascular system. Mol Nutr Food Res. 2014;58(8):1721-1738. https://doi.org/10. 1002/mnfr.201400036.
  130. Gusev GP, Govekar R, Qadewal N, Agalakova NI. Understanding quasi-apoptosis of the most numerous enucleated components of blood needs detailed molecular autopsy. Ageing Res Reviews. 2017;35:46-62. https://doi.org/10. 1016/jar.2017. 01. 002.
  131. Haslam A, Hausman DB, Johnson MA, et al. Prevalence and predictors of anemia in a population·based study of octogenarians and centenarians in Georgia. J Gerontol A Biol Sci Med Sci. 2012;67(1):100-106. https://doi.org/10. 1093/gerona/glr151.
  132. Harden JL, Egilmez NK. Indoleamine 2,3-dioxygenase and dendritic cell tolerogenicity. Immunol Investig. 2012;41 (6-7):738-764. https://doi.org/10. 3109/08820139. 2012. 676122.
  133. Hermand P, Gane P, Huet M, et al. Red cell ICAM-4 is a novel ligand for platelet-activared alpha IIbeta 3 integrin. J Biol Chem. 2003;278970:4892-4898. https://doi.org/10. 1074/jbc.M211282200.
  134. Hhavsar SK, Gu S, Bobhala D, Lang F. Janus kinase 3 is expressed in erythrocytes, phosphorylated upon energy depletion and involved in the regulation of suicidal erythrocyte death. Cell Physiol Biochem. 2011;27(5):547-556. https://doi.org/10. 1159/000329956.
  135. Hodgson A, Wier EM, Fu K, et al. Ultrasound imaging of splenomegaly as a proxy to monitor colon tumor development in Apc(min716/+) mice. Cancer Med. 2016;5(9):2469-76. https://doi.org/10. 1002/cam4. 842.
  136. Hofnagel O, Engel T, Severs NJ, et al. SR-PSOX at sites predisposed to atherosclerotic lesion formation mediates monocyte·endothelia1 cell adhesion. Atherosclerosis. 2011;217(2):371-378. https://doi.org/10. 1016/j.atherosclerosis.2011. 04. 021.
  137. Holthoff JH, Wang Z, Seely KA, et al. Resveratrol improves renal microcirculation protects the tubular epithelium, and prolongs survival in a mouse model of sepsis-induced acute kidney injury. Kidney Int. 2012;81(4):370-378. https://doi.org/10. 1038/ki.2011. 347.
  138. Hortle E, Nijagal B, Bauer DC, et al. Adenosine monophosphate deaminase 3 activation shortens erythrocyte half-live and provides malaria resistanee in mice. Blood. 2016;128(9):1290-1301. https://doi.org/10. 1182/blood- 2015-09-666834.
  139. Huang YX, Tuo WW, Wang D, et al. Restoring the youth of aged red blood cells and extending their lifespan in circulation by remodelling membrane sialic acid. J Cell Mol Med. 2016;20(2):294-301. https://doi.org/10. 1111/jcmm.12721.
  140. Huber SM, Uhlemann AC, Gamper NL, et al. Plasmodium falciparum activates endogenous Cl(-) channels of human erythrocytes by membrane oxidation. EMBO J. 2002;2l(1-2): 22-30. https://doi.org/10. 1093/emboj/21. 1. 22.
  141. Hoehn HS, Jernigan PI, Chang AL, et al. Acid sphingomyelinase inhibition prevents hemolysis during erythrocyte storage. Cell Physiol Biochem. 2016;39(1):331-340. https://doi.org/10. 1159/000445627.
  142. Idoyaga J, Suda N, Suda K, et al. Antibody to Langerin/CD207 localizes large numbers of CD8alpha+ dendritic cells to the marginal zone of mouse spleen. Proc Natl Acad Sci USA. 2009;106(5):1524-1529. https://doi.org/10. 1073/pnas.0812247106.
  143. Jacobi J, Lang E, Bissinger R, et al. Stimulation of erythrocyte cell membrane scrambling by mitotane. Cell Physiol Biochem. 2014;33(5):1516-1526. https://doi.org/10. 1159/000358715.
  144. Janz TG, Johnson RL, Rubenstein SD. Anemia in the emergency department: evaluation and treatment. Emerg Med Pract. 2013;15(11):1-15.
  145. Jiang P, Bian M, Ma W, et al. Eryptosis as an underlying mechanism in systemic lupus erythematosus-related anemia. Cell Physiol Biochem. 2016;40(6):1391-1400. https://doi.org/10. 1159/000453191.
  146. Jilani K, Abed M, Zelenak C, et al. Triggering of erythrocyte cell membrane scrambling by ursobe acid. J Nat Prod. 2011;74(10):2181-2186. https://doi.org/10. 1021/np2005133.
  147. Jilani K, Qadri SM, Zelenal C, Lang F. Stimulmion of suicidal erythrocyte death by oridonin. Arch Biochem Biophys. 2011;511(1-2):14-20. https://doi.org/10. 1016/j.abb.2011. 05. 001.
  148. Jilani K, Qadri SM, Lang E, et al. Stimulation of erythwcyte phospholipid scrambling by enniatin A. Mol Nutr Food Res. 2011;55(Suppl. 2):S294-302. https://doi.org/10. 1002/mnfr.201100156.
  149. Jiang P, Blan M, Ma W, et al. Eryptosis as an underlying mechanism in systemic lupus erythematosus-related anemia. Cell Physiol Biochem. 2016:40(6):1391-1400. https://doi.org/10. 1159/000453191.
  150. Jimenez-Diaz MB, Eberr D, Salinas Y, et al. (+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of Plasmodium. Proc Nat Acad Sci USA. 2014;111(50):E5455-5462. https://doi.org/10. 1073/pnas.1414221111.
  151. Johnson RM, Tang K. Induction of a Ca2+-activated K+ channel in human erythrocytes by mechanical stress. Biochim Biophys Acta. 1992;1107(2):314-318. https://doi.org/10. 1016/0005-2736(92)90418-l.
  152. Johnson R.M. Membrane stress increases cation permeability in red cells. Biophys J. 1994;67(5):1876-1881.
  153. Kagan VE, Fabisiak JP, Shvedova AA. Oxidative signaling pathway for externalization of plasma membrane phosphatidylserine during apoptosis. FEBS Letters. 2000;477(1-2): 1-7. https://doi.org/10. 1016/s0014-5793(00)01707-5.
  154. Kato GJ, Steinberg MH, Gladwin MT. Intravascular hemolysis and the pathophysiology of sickle cell disease. J Clin Invest. 2017;127(3):750-760. https://doi.org/10. 1172/JCI89741.
  155. Kean LS, Brown LE, Nichols JW, et al. Comparison of mechanisms of anemia in mice with sickle cell disease and beta-thalassemia: peripheral destruction, ineffective erythropoiesis, and phospholipid scramblase-mediated phosphatidylserine exposure. Exp Hematol. 2002;30(5):394-402. https://doi.org/10. 1016/s0301-472x(02)00780-4.
  156. Kempe DS, Ake1 A, Lang PA, et al. Suicidal erythrocyte death in sepsis. J Mol Med. 2007;85(3):273-281. https://doi.org/10. 1007/s00109-006-0123-8.
  157. Kempe DS, Ackermann TF, Fischer SS, et al. Accelerated suicidal erythrocyte death in Klotho-deficient mice. Pflugers Arch. 2009;458:503-512. https://doi.org/10. 1007/s00424-009-0636-4.
  158. Kempe DS, Lang PA, Duranton C, et al. Enhanced programmed cell death of iron-deficient erythrocytes. FASEB J. 2006;20(2):368-370. https://doi.org/10. 1096/fj.05-4872fje.
  159. Kempe-Teufel DS, Bissinger R, Qadri SM, et al. Cellular markers of eryptosis are altered in type 2 diabetes. Clin Chem Lab Med. 2018;56(7):e177-e180. https://doi.org/10. 1515/cclm-2017-1058.
  160. Khandelwal S, Saxena RK. A role of phosphatidylserine externalization in clearance of erythrocytes exposed to stress but not in eliminating aging populations of erythrocyte in mice. Exp Gerontol. 2008:43(8):764-770. https://doi.org/10. 1016/j.exger.2008. 05. 002.
  161. Kiefer CR, Snyder LM. Oxidation and erythrocyre senescence. Curr Opin Hematol. 2000;7(2):113-116. https://doi.org/10. 1097/00062752-200003000-00007.
  162. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87(2):159-170. https://doi.org/10. 1016/s0092-8674(00)81333-1.
  163. Klarl BA, Lang PA, Kempe DS, et al. Protein kinase C mediates erythrocyte “programmed cell death” folloving glucoso depletion. Am J Physiol Cell Physiol. 2006;290(1): C244-253. https://doi.org/10. 1152/ajpcell.00283. 2005.
  164. Klei TR, Meinderts SM, van den Berg TK, van Bruggen R. From the cradle to the grave: the role of maerophages in erythropoiesis and eryrhrophagocytosis. Front Immunol. 2017;8:73. https://doi.org/10. 3389/fimmu.2017. 00073.
  165. Knutson M, Wessling-Resnick M. Iron metabolism in the reticuloendothelial system. Crit Rev Biochem Mol Biol. 2003;38(1):61-88. https://doi.org/10. 1080/713609210.
  166. Kohyama M, Ise W, Edelson BT, et al. Role for Spi-C in the development of red pulp macrophfages and splenic iron homeostasis. Nature. 2009;457(7227):318-321. https://doi.org/10. 1038/nature07472.
  167. Koury MJ. Abnormal erythropoiesis and the parhophysiology of chronic anemia. Blood Rev. 2014;28(2):49-66. https://doi.org/10. 1016/j.blre.2014. 01. 002.
  168. Kriebardis AG, Antonelou MH, Stamoulis.KE, et al. Progressive oxidation of cytoskeletal proteins and accumulation of denatured hemoglobin in stored red cells. J Cell Mol Med. 2007;11(1):148-155. https://doi.org/10. 1111/j.1582-4934. 2007. 00008. x.
  169. Kucherenko Y, Zelenak C, Eberhard M, et al. Effect of casein kinase1 alpha activator pyrvinium pamoate on erythrocyte ion channels. Cell Physiol Biochem. 2012;30(2):407-417. https://doi.org/10. 1159/000339034.
  170. Kucherenko YV, Bhavsar SK, Grischenko VI, et al. Increased cation conductance in human erythrocytes artificially aged by glycation. J Membr Biol. 2010;235(3):177-189. https://doi.org/10. 1007/s00232-010-9265-2.
  171. Landolfi H, Di Gennaro L. Thrombosis in myeloproliferative and myelodysplastic syndromes. Hematology. 2012;17(Suppl. 1):S174-S176. https://doi.org/10. 1179/102453312X13336169156898.
  172. Lang E, Bissinger R, Fajol A, et al. Accelerated apoptotic death and in vivo turnover of erythrocytes in mice tacking functional mitogen- and stress-activated kinase MSK1/2. Sci Rep. 2015;5:17316. https://doi.org/10. 1038/srep17316.
  173. Lang E, Bissinger R, Gulbins E, Lang F. Ceramide in the regulation of eryptosis the suicidal erythrocyte death. Apoptosis. 2015:20(5):758-767. https://doi.org/10. 1007/s10495-015-1094-4.
  174. Lang E, Bissinger R, Qadri SM, Lang F. Suicidal death of erythrocytes in cancer and its chemotherapy: A potential target in the treatment of tumor-associated anemia. Int J Cancer. 2017;141(8):1522-1528. https://doi.org/10. 1002/ijc.30800.
  175. Lang E, Jilani K, Bissinger R, et al. Vitamin-D rich diet in mice modulares erythrocyte survival. Kidney Blood Press Res. 2015;40(4):403-412. https://doi.org/10. 1159/000368517.
  176. Lang E, Gatidis S, Freise NF, et al. Conjugated bilirubin triggers anemia by inducing erythrocyte deach. Hepatology. 2015;61(1):275-284. https://doi.org/10. 1002/hep.27338.
  177. Lang E, Lang PA, Qadri SM, et al. Enhanced eryptosis of erythrocytes from gene-targeted mice lacking annexin A7. Pflugers Arch. 2010;460(3):667-676. https://doi.org/10. 1007/s00424-010-0829-x.
  178. Lang E, Pozdeev VI, Gatidis S, et al. Bile acid-induced erythrocyte death. Cell Physiol Biochem. 2016;38(4):1500-1509. https://doi.org/10. 1159/000443091.
  179. Lang E, Pozdeev VI, Xu HC, et al. Storage of erythrocytes induces suicidal erythrocyte death. Cell Physiol Biochem. 2016;39(2):668-676. https://doi.org/10. 1159/000445657.
  180. Lang E, Qadri SM, Lang F. Killing me softly – suicidal erythrocyte death. In J Biochem Cell Biol. 2012;44(8):1236-43. https://doi.org/10. 1016/j.biocel.2012. 04. 019.
  181. Lang E, Qadri SM, Wani K, et al. Carbon monoxide·sensitive aptoptotic death of erythrocytes. Basic Clin Pharmacol Toxicol. 2012;111(5):348-355. https://doi.org/10. 1111/j.1742-7843. 2012. 00915. x.
  182. Lang E, Qadri SM, Zelenak C, el al. Inhibition of suicidal erythrocyte death by blebbistatin. Am J Phys Cell Physiol. 2011;301(2):C490-498. https://doi.org/10. 1152/ajpcell.00043. 2011.
  183. Lang E, Zelenak C, Eberhard MJ, et al. Impact of cyclin-dependent kinase CDK4 inhibition on eryptosis. Cell Physiol Biochem. 2015;37(3):1178-1186. https://doi.org/10. 1159/000430241.
  184. Lang F, Qadri SM. Mechanisms and significance of eryptosis, the suiddal death of erythrocytes. Blood Purif. 2012;33(1-3): 125-130. https://doi.org/10. 1159/000334163.
  185. Lang F, Lang KS, Lang PA, et al. Osmotic shock-induced suicidal death of erythrocytes. Acta Physiol (Oxf). 2006;187(1-2):191-198. https://doi.org/10. 1111/j.1748-1716. 2006. 01564. x.
  186. Lang F, Abed M, Lang E, Föller M. Oxidative stress and suicidal erythrocyte death. Antioxid Redox Signal. 2014;21(1): 131-153. https://doi.org/10. 1089/ars.2013. 5747.
  187. Lang KS, Duranton C, Poehlmann H, et al. Cation channels trigger apoptotic death of erytbrocytes. Cell Death Differ. 2003;10(2):249-256. https://doi.org/10. 1038/sj.cdd.4401144.
  188. Lang KS, Lang PA, Bauer C, et al. Mechanisms of suicidal erythrocyte death. Cell Physiol Biochem. 2005;15(5): 195-202. https://doi.org/10. 1159/000086406.
  189. Lang KS, Myssina S, Brand V, et al. Involvement of ceramide in hyperosmotic shock-induced death of erythrocytes. Cell Deatb Differ. 2004;11(2):231-243. https://doi.org/10. 1038/sj.cdd.4401311.
  190. Lang KS, Roll B, Myssina S, et al. Enhanced erythrocyte apoptosis in sickle cell anemia, thalassemia and glucose-6-phosphate dehydrogenase deficiency. Cell Physiol Biochem. 2002;12(5-6):365-72. https://doi.org/10. 1159/000067907.
  191. Lang PA, Beringer O, Nikolay JP, et al. Suicidal death of erythrocytes in recurrent hemolytic uremic syndrome. J Mol Med. 2006;84(5):378-388. https://doi.org/10. 1007/s00109-006-0058-0.
  192. Lang PA, Kempe DS, Tanneur V, et al. Stimulation of erythrocyte ceramide formation by platelet-activating factor. J Cell Sci. 2005;118(Pt 6):1233-1243. https://doi.org/10. 1242/jcs.01730.
  193. Lang PA, Shenk M, Nicolay JP, et al. Liver cell death and anemia in Wilson disease involve acid sphingomyelinase and ceramide. Nat Med. 2007;13(2):164-170. https://doi.org/10. 1038/nm1539.
  194. Larsson A, Hult A, Nilsson A, et al. Red blood cells with elevated cytoplasmic Ca2+ are primarily taken up by splenik marginal zone macrophages and CD207+ dendritic cells. Transfusion. 2016;56(7):1834-1844. https://doi.org/10. 1111/trf.13612.
  195. Levine L. Cyclooxygenase expression is not required for release of arachidonic acid from cells by some nonsteroidal anti-inflammatory drugs and cancer preventive agents. BMC Pharmacol. 2006;29:7. https://doi.org/1186/1471-2210-6-7.
  196. Lew VL, Daw N, Etzion Z, et al. Effects of age-dependent membrane transport changes on the homeostasis of senescent human red blood cells. Blood. 2007;110(4):1334-42. https://doi.org/10. 1182/blood-2006-11-057232.
  197. Lew VL, Tiffert T. The terminal density reversal phenomenon of aging human red blood cells. Front Physiol. 2013;4:171. https://doi.org/10. 3389/fphys.2013. 00171.
  198. Lindblom G, Oradd G, Filippov A. Lipid lateral diffusion in bilayers with phosphathidylcholine, sphingomeelin and cholesterol. An NMR study of dynamics and lateral phaseseparation. Chem Phys Lipids. 2006;141(1-2):179-184. https://doi.org/10. 1016/j.chemphyslip.2006. 02. 011.
  199. Liu M, Zhou L, Zhang B, et al. Elevation of n-3/n-6 PUFAs ratio suppresses mTORCl and prevents colorenal carcinogenesis associated with APC mutation. Oncotarger. 2016;7(1):76944-76954. https://doi.org/10. 18632/oncotarget.12759.
  200. Locatelli F, del Vecchio L. An expert opinion on the current treatment of anemia in patients with kidney disease. Expert Opin Pharmacother. 2012;13(4):495-503. https://doi.org/10. 1517/14656566. 2012. 658369.
  201. Lopes de Almeida JP, Oliveira S, Saldanha C. Erythrocyte as a biological sensor. Clin Hemorheol Microcirc. 2012;51(1):1-20. https://doi.org/10. 3233/CH-2011-1512.
  202. Lupesku A, Jilani K, Zelenak C, et al. Hexavalent chromium-induced erythrocyte membrane phospholipid asymmetry. Biometals. 2012;25(2):309-318. https://doi.org/10. 1007/s10534-011-9507-5.
  203. Lupescu A, Shaik N, Jilani K, et al. Enhanced erythrocyte membrane exposure of phosphatidylserine following sorafenib treatment: an in vivo and in vitro study. Cell Physiol Biochem. 2012;30(4):876-888. https://doi.org/10. 1159/000341465.
  204. Lupescu A, Bissinger R, Goebel T, et al. Enhanced suicidal erythrocyte death contributing to anemia in the elderly. Cell Physiol Biochem. 2015:36(2):773-783. https://doi.org/10. 1159/000430137.
  205. Lutz HU, Bogdanova A. Mechanisms tagging senescent red blood cells for clearance in healthy humans. Front Physiol. 2013;4:387. https://doi.org/10. 3389/fphys.2013. 00387.
  206. Lutz MB, Schuler G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol. 2002:23(9):445-449. https://doi.org/10. 1016/s1471-4906(02)02281-0.
  207. Maellaro E, Leoncini S, Moretti D, et al. Erythrocyte caspase-3 activation and oxidative imbalance in erythrocytes and in plasma of rype 2 diabetic patients. Acta Diabetol. 2013;50(4):489-495. https://doi.org/10. 1007/s00592-011-0274-0.
  208. Mahmud H, Ruifrok WP, Westenbrink BD, et al. Suicidal erythrocyte death, eryptosis, as a novel mechanism in heart failure-associated anaemia. Cardiovasc Res. 2013;98(1):37-46. https://doi.org/10. 1093/cvr/cvt010.
  209. Marks PW. Hematologic manifestations of liver disease. Semin Hematol. 2013;50(3):216-221. https://doi.org/10. 1053/j.seminhematol.2013. 06. 003.
  210. McQuilten ZK, French CJ, Nichol A, et al. Effect of age of red cells for transfusion on pacient outcomes: systematic review and meta-analysis. Transfus Med Rev. 2018;32(2):77-88. https://doi.org/10. 1016/j.tmrv.2018. 02. 002.
  211. Mebius RE, Kraal G. Structure and functin of the spleen. Nat Rev Immunol. 2005;5(8):606-616. https://doi.org/10. 1038/nri1669.
  212. Meinderts SM, Oldenborg PA, Beuger BM, et al. Human and murine splenic neutrophils are potent phagocytes of IgG-opsonized red blood cells. Blood Advances. 2017;1(14):875-886. https://doi.org/10. 1182/bloodadvances.2017004671.
  213. Meulenbroek EM, Wouters D, Zeerleder SS. Lyse or not to lyse: clinical significance of red blood cell autoantibodies. Blood Rev. 2015;29(6):369-376. https://doi.org/10. 1016/j.blre.2015. 05. 001.
  214. Minetti G, Piccinini G, Balduini C, et al. Tyrosine phosphorylalion of band 3 protein in Ca2+/A23187-treated hnman erythrocytes. Biochem J. 1996;320(Pt 2):445-450. https://doi.org/10. 1042/bj3200445.
  215. Miyake Y, Asano K, Kaise H, et al. Critical role of macrophages in the marginal zone in the suppression of immune responses to apoptotic cell-associmed antigens. J Clin Invest. 2007;117(8):2268-2278. https://doi.org/10. 1172/JCI31990.
  216. Mizuno T, Zhang G, Takeuchi H, et al. Interferon-gamma directly induces neurotoxicity through a neuron specific calcium-permeable compiex of IFN-gamma receptor and AMPA GluRl receptor. FASEB J. 2003;22(6):1797-1806. https://doi.org/10. 1096/fj.07-099499.
  217. Myssina S, Huber SM, Birka C, et al. Inhibition of erythrocyte cation channels by erythropoietin. J Am Soc Nephrol. 2003;14(11):2750-2757. https://doi.org/10. 1159/000099204.
  218. Mohammedi K, Bellili-Munoz N, Marklund SL, et al. Plasma extracellular superoxide dismutase concentration, allelic variations in the SOD3 gene and risk of myocardial infarction and all-cause mortality in people with type 1 and type 2 diabetes. Cardiovasc Diabetol. 2015;14:845. https://doi.org/10. 1186/s12933-014-0163-2.
  219. Mqadmi A, Zheng X, Yazdanbakhsh K. CD4+ CD25+ regulatory T cells control induction of autoimmune hemolytic anemia. Blood. 2005;105(9):3746-3748. https://doi.org/10. 1182/blood-2004-12-4692.
  220. Nagababu E, Gulyani S, Earley CJ, et al. Iron-deficiency anaemia enhances red blood cell oxidative stress. Free Radic Res. 2008:42(9);824-829. https://doi.org/10. 1080/10715760802459879.
  221. Nagarajan N, Oka S, Sadoshima J. Modulation of signaling mechanisms in the heart by thioredoxin 1. Free Radic Biol Med. 2017;109:125-131. https://doi.org/10. 1016/j.freeradbiomed.2016. 12. 020.
  222. Nash GB, Meiselman HJ. Red cell and ghost viscoelasticity. Effects of hemoglobin concentration and in vivo aging. Biophys J. 1983;43(1):63-73. https://doi.org/10. 1016/s0006-3495(83)84324-0.
  223. Netgiz-Unal R, Rademakers T, Cosemans JM, Heemskerk JW. CD36 as a multiple ligand signaling receptor in athterothrombosis. Cardiovasc Hematol Agents Med Chem. 2011;9(1): 42-55. https://doi.org/10. 2174/187152511794182855.
  224. Nicolay JP, Liebig G, Niemoeller OM, et al. Inhibition of suicidal erythrocyte death by nitric oxide. Pflugers Arch. 2008;456(2):293-305. https://doi.org/10. 1007/s00424-007-0393-1.
  225. Nguyen DB, Ly TB, Wesseling MC, et al. Characterization of microvesicles released from human red blood cells. Cell Physiol Biochem. 2016;38(3):1085-1099. https://doi.org/10. 1159/000443059.
  226. Nicolay JP, Schneider J, Niemoeller OM, et al. Stimulation of suicidal erythrocyte death by methylglyoxal. Cell Physiol Biochem. 2006;18(4-5):223-232. https://doi.org/10. 1159/000097669.
  227. Nilsson A, Vesterlund L, Oldenborg PA. Macrophage expression of LRPl a receptor for apoptotic cells and unopsonized erythrocytes can be regulated by glucocorticoid. Biochem Biophys Res Commun. 2012;417(4):1304-1309. https://doi.org/10. 1016/j.bbrc.2011. 12. 137.
  228. Nilsson A, Oldenborg PA. CD47 promotes both phosphatidylserine-independent and phosphatidylserine-dependent phagocytosis of apoptotic murine thymocytes by non-activated macrophages. Biochem Biophys Res Commun. 2009;387(1):58-63. https://doi.org/10. 1016/j.bbrc.2009. 06. 121.
  229. Nunomura W, Denker SP, Barber DL, et al. Characterization of cytoskeletal protein 4. 1R interaction with NHE1 (Na(+)/H(+) exchanger isoform 1). Biochem J. 2012;446(3):427-435. https://doi.org/10. 1042/BJ20120535.
  230. Officioso A, Alzoubi K, Manna C, Lang F. Clofazimine induced suicidal death of human erythrocytes. Cell Physio Biochem. 20l5;37(1):331-341. https://doi.org/10. 1159/ 000430357.
  231. Ohvo-Rekila H, Ramstedt P, Leppimaki B. Cholesterol interaction with phospholipids in membranes. Prog Lipid Res. 2002;41(1):66-97. https://doi.org/10. 1016/s0163-7827(01)00020-0.
  232. Oldenborg PA, Zheleznyak A, Fang YF, et al. Role of CD47 as a marker of self on red blood cells. Science. 2000;288(5473):2051-2054. https://doi.org/10. 1126/science.288. 5473. 2051.
  233. Oldenborg PA. CD47: a cell surface glycoprotein which regulates multiple functions of hematopoietic cells in health and disease. ISRN Hematol. 2013;2013:614619. https://doi.org/10. 1155/2013/614619.
  234. Oldenborg PA, Gresham HD, Lindberg FP. CD47·signal regulatory protein alpha (SIRP alpha) regulates Fc-gamma and complement receptor-mediated phagocytosis. J Exp Med. 2001;193(7):855-862. https://doi.org/10. 1084/jem.193. 7. 855.
  235. Olsson M, Oldenborg PA. CD47 on experimentally senescent murine RBCs inhibits phagocytosis following Fc-gamma recеptor-mediated but not scavenger receptor-mediated recognition by macrophages. Blood. 2008;112(10):4259-4267. https://doi.org/10. 1182/blood-2008-03-143008.
  236. Pagano M, Faggio C. The use of crythrocyte fragility to assess xenobiotic cytoxicity. Cell Biochem Funct. 2015;33(6):351-355. https://doi.org/10. 1002/cbf.3135.
  237. Pandey KB, Rizvi SI. Markers of oxidative stress in erythrocytes and plasma during aging in humans. Oxidative Med Cell Longev. 2010;3(1):2-12. https://doi.org/10. 4161/oxim.3. 1. 10476.
  238. Penuela OA, Palomino F, Gómez LA. Erythropoietin reduces storage lesions and decreases apoptosis indices in blood bank red blood cells. Brazilian J Hematol Hemother. 2016;38(1):15-20. https://doi.org/10. 1016/j.bjhh.2015. 10. 003.
  239. Peter T, Bissinger R, Lang F. Stimulation of eryptosis by caspofungin. Cell Physiol Biochem. 2016;39(3):939-949. https://doi.org/10. 1159/000447802.
  240. Pretorius E. Erythrocyte deformability and eryptosis during inflammation, and impaired blood rheology. Clin Hemorheol Microcirc. 2018;69(4):545-550. https://doi.org/10. 3233/CH-189205.
  241. Pretorius E, du Plooy JN, Bester J. A comprehensive review on eryptosis. Cell Phvsiol Biochem. 2016;39(5):1977-2000. https://doi.org/10. 1159/000447895.
  242. Pretorius E, Bester J, Vermeulen N, et al. Poorly controlled type 3 diabetes is accompanied by significant morphological and ultrastructural changes in both erythrocytes and in thrombin-generated fibrin: implications for diagnostics. Cardiovasc Diabetol. 2015;14:30. https://doi.org/10. 1186/s12933-015-0192-5.
  243. Pretorius E, du Plooy IN, Bester J. A comprehensive review on eryptosis. Cell Phvsiol Biochem. 2016;39(5):1977-2000. https://doi.org/10. 1159/000447895.
  244. Pretorius E, Swanepoel AC, Buys AV, et al. Eryptosis as a marker of Parkinson’s disease. Aging (Albany NY). 2014;6(10):788-819. https://doi.org/10. 18632/aging.100695.
  245. Pretorius E, Olumuyiwa-Akeredolu OO, Mbotwe S, Bester J. Erythrocytes and their role as health indicator: using structure in a patient·orientated precision medicine approach. Blood Rev. 2016;30(4):263-274. https://doi.org/10. 1016/j.blre.2016. 01. 001.
  246. Qadri SM, Bauer I, Zelenak C, et al. Sphingosine but not sphingosine-l-phosphat stimulates suicidal erythrocyte death. Cell Physiol Biochem. 2011;28(2):339-346. https://doi.org/10. 1159/000331750.
  247. Qadri SM, Bissinger R, Solh Z, Oldenborg PA. Eryptosis in health and disease: a paradigm shift towards understanding the (patho)physiological implications of programmed cell death of erythrocytes. Blood Rev. 2017;31(6):349-361. https://doi.org/org/10. 1016/j.ble.2017. 06. 001.
  248. Qadri SM, Chen D, Schubert P, et al. Early gamma-irradiation and subsequent storage of red cells in SAG-M additive solution potentiate energy imbalance, microvesiculation and susceptibility to stress-induced apoptotic cell death. Vox Sang. 20l7;112(5):480-483. https://doi.org/10. 1111/vox.12518.
  249. Qadri SM, Chen D, Schubert P, et al. Pathogen inactivation by ribotlavin and ultraviolet light illumination accelerates the red blood cell storage lesion and promotes eryptosis. Transfusion. 2017;57(3):661-673. https://doi.org/10. 1111/trf.13959.
  250. Qadri SM, Donkor DA, Bhakta V, et al. Phosphatidylserine extenlalizarion and procoagulant activation of erythrocytes induced by Pseudomonas aeroginosa virulence factor pyocyanin. J Cell Mol Med. 2016;20(4):710-720. https://doi.org/10. 1111/jcmm.12778.
  251. Qadri SM, Kuchercnko Y, Lang F. Beauvericin induced erythrocyte cell membrane scrambling. Toxicology. 2011;283(1):24-31. https://doi.org/10. 1016/j.tox.2011. 01. 023.
  252. Qadri SM, Mahmud H, Lang E, et al. Enhanced suicidal erythrocyte death in mice carrying a loss of function mutation of the adenomatous polyposis coli gene. J Cell Mol Med. 2012;16(5):1085-109l. https://doi.org/10. 1111/j.1582-4934. 2011. 01387. x.
  253. Qiu CH, Miyake Y, Kaise H, et al. Novel subset of CD8(alpha)+ dendritic cells localized in the marginal zone is responsihle for tolerance to cell-associated antigens. J Immunol. 2009;182(7):4127-4136. https://doi.org/10. 4049/jimmunol.0803364.
  254. Raiten DJ, Ashour FA. Iron: current landscape and efforts to address a complex issue in a complex world. J Pediatr. 2015;167(4 Pt): S3-S7. https://doi.org/10. 1016/j.jpeds.2015. 07. 013.
  255. Repsold L, Joubert AM. Erypthosis: an erythrocytes suicidal type of cell death. Biomed Res Int. 2018;2018:9405617. https://doi.org/10. 1155/2018/9405617.
  256. Reyskens KM, Arthur JS. Emerging roles of the mitogen and stress activated kinases MSK1 and MSK2. Front Cell Dev Biol. 2016;4:56. https://doi.org/10. 3389/fcell.2016. 00056.
  257. Richards AL, Kapp LM, Wang X, et al. Regulatory T cell are dispensable for tolerance to RBC antigens. Front Immnnol. 2016;7:348. https://doi.org/10. 3389/fimmu.2016. 00348.
  258. Risso A, Ciana A, Achilli C, et al. Neocytolysis: one or many? A reappraisal and future perspectives. Front Physiol. 2014;5(54):1-10. https://doi.org/10. 3389/fphys.2014. 00054.
  259. Risso A, Turello M, Biffoni F, Antonutto G. Red blood cell senescence and neocytolysis in humans after high altitude acclimatisation. Blood Cells Mol Dis. 2007;38(2):83-92. https://doi.org/10. 1016/j.bcmd.2006. 10. 161.
  260. Rodriguez-Cuenca S, Pellegrinelli V, Campbell M, et al. Sphingolipids and glycer-ophospholipids – the “ying and yang” of lipotoxicity in metabolic diseases. Prog Lipid Res. 2017;66:14-29. https://doi.org/10. 1016/j.plipres.2017. 01. 002.
  261. Romero PJ, Romero EA. Effect of cell ageing on Ca2+ influx into human red cells. Cell Calcium. 1999;26(3-4):131-137. https://doi.org/10. 1054/ceca.1999. 0063.
  262. Rossait J, Zarbock A. Pathogenesis of multiple organ failure in sepsis. Crit Rev Immunol. 2015;35(4):277-291. https://doi.org/10. 1615/critrevimmunol.2015015461.
  263. Rossig L, Fichtlseherer B, Breitschopf K, et al. Nitric oxide inhibits caspase-3 by S-nitrosation in vivo. J Biol Chem. 1999;274(11):6823-6826. https://doi.org/10. 1074/jbc.274. 11. 6823.
  264. Sarang Z, Madi A, Koy C, et al. Tissue transglutaminase (TG2) facilitates phosphatidylserine exposure and calpain activity in calcium-induced death of erythrocytes. Cell Death Differ. 2007;14(19):1842-1844. https://doi.org/10. 1038/sj.cdd.4402193.
  265. Shin JH, Lim KM, Noh JY, et al. Lead-induced procoagulant activation of erythrocytes through phosphatidylserine exposure may lead to thrombotic diseases. Chem Res Toxicol. 2007;20(1):38-43. https://doi.org/10. 1021/tx060114+.
  266. Shirnaoka T, Nakayama T, Fukumoto N, et al. Cell surface-anchored SH-pSOX/CXC chemokine ligand 16 mediates firm adhesion of CXC themokine receptor 6-expressing cells. J Leukoc Biol. 2004;75(2):267-274. https://doi.org/10. 1189/jlb.1003465.
  267. Shan F, Yang R, Ji T, Jiao F. Vitamin C inhibits aggravated eryptosis by hydrogen peroxide in glucose-6-phosphated dehydrogenase deficiency. Cell Physiol Biochem. 2016;39(4):1453-1462. https://doi.org/10. 1159/000447848.
  268. Signoretto E, Castagna M, Lang F. Stimulation of eryptosis, the suicidal erythroeyte death by piceatannol. Cell Physiol Biochem. 2016;38(6):2300-2310. https://doi.org/10. 1159/000445584.
  269. Signoretto E, Ziede J, Bissinger R, et al. Triggering of suicidal erythrocyte death bypazopanib. Cell Physiol Biol Chem. 2016;38(3):926-938. https://doi.org/10. 1159/000443045.
  270. Siraskar B, Ballal A, Bobbala D, et al. Effect of amphotericin B on parasitemia and survival of plasmodium berghei-infected mice. Cell Physioi Biochem. 2010;26(3):347-354. https://doi.org/10. 1159/000320558.
  271. Sola E, Vaya A, Corella D, et al. Erythrocyte hyperaggregation in obesity: determining factors and weight loss influence. Obesity (Silver Spring). 2007;15(8):2128-2134. https://doi.org/10. 1038/oby.2007. 253.
  272. Sola E, Vava A, Martinez M, et al. Erythrocyte membrane phosphatidylserin exposute in obesity. Obesity (Silver Spring). 2009;17(2):318-323. https://doi.org/10. 1038/oby.2008. 499.
  273. Soma P, Pretorius E. Interplay between ultrastnlctural findings and atherothrombotic complications in type 2 diabetes mellitus. Cardiovasc Diabetol. 2015;14:96. https://doi.org/10. 1186/s12933-015-0261-9.
  274. Steevels TA, Meyaard L. Immune inhibitory receptors: essential regulators of phagocyte function. Eur J lmmunol. 2011;41(3):575-587. https://doi.org/10. 1002/eji.201041179.
  275. Stein RS. The role of erythropoietin in the anemia of myelodysplastic syndrome. Clin Lymphoma. 2003;4(Suppl. 1): S36-S40. https://doi.org/10. 3816/clm.2003. s.007.
  276. Steinman RM. Decisions about dendritk cells: past, present and future. Annu Rev Immunol. 2012;30:1-22. https://doi.org/10. 1146/annurev-immunol-100311-102839.
  277. Stijlemans B, Cnops J, Naniima P, et al. Development of a pH rodo-based assay for the assessment of.in vitro and in vivo erythrophagocytosis during experimental trypanosomois. PLoS Neg Trop Dis. 2015;9(3): e0003561. https://doi.org/10. 1371/journal.pntd.0003561.
  278. Tada K, Tanaka M, Hanayama R, et al. Tethering of apoptotic cells to phagocytes through binding of CD47 to Src homology 2 domain-bearing protein tyrosine phosphatase substrate-1. J Immunol. 2003;171(11):5718-5726. https://doi.org/10. 4049/jimmunol.171. 11. 5718.
  279. Tan X, Shi J, Fu Y, et al. Role of erythrocytes and platelets in the hypercoagulable status in polycythemia vera through phosphatidylserine exposure and microparticle generation. Thromb Haemost. 2013;109(6):1025-1032. https://doi.org/10. 1160/TH12-11-0811.
  280. Theurl I, Hilgendorf I, Nairz M, et al. Ondemand erythrocyte disposal and iron recycling requires; transient mauophages in the liver. Nat Med. 2016;22(8):945-951. https://doi.org/10. 1038/nm.4146.
  281. Tiffert T, Daw N, Etzion Z, et al. Age decline in the activity of the Ca2+-sensitive K+ channels of human red blood cells. J Gen Physiol. 2007;129(5):429-436. https://doi.org/10. 1085/jgp.200709766.
  282. Unruh D, Srinivasan R, Benson T, et al. Red blood cell dysfunction induced by high-fat diet: potential implications for obesity-related atherosclerosis. Circulation. 2015;132:1898-1908. https://doi.org/10. 1161/CIRCULATIONAHA.115. 017313.
  283. Uscinska E, Idzkowska E, Sobkowicz B, et al. Anemia in intensive cardiac care unit patients – an underestimated problem. Adv Med Sci. 2015;60(2):307-314. https://doi.org/10. 1016/j.advms.2015. 06. 002.
  284. Vaysse J, Vassy R, Edilche V, et al. Some haracteristics of human red blood cells separated according to their size: a comparison with density-fractionated red blood cells. Am J Hematol. 1988;28(4):232-238. https://doi.org/10. 1002/ajh.2830280405.
  285. Vaysse J, Gatlegno L, Bradier D, Aminoff D. Adhesion and erythrophagocytosis of human senescent erythrocytes by autologous monocytes and their inhibition by beta-galactosyl derivatives. Proc Natl Acad Sci USA. 1986;83(5):1339-1343. https://doi.org/10. 1073/pnas.83. 5. 1339
  286. Velasquez FC, Mate S, Bakas L, Herlax V. Induction oi eryptosis by low concentrations of E. coli alpha-hemolysin. Biochim Biopbys Acta. 2015;1848(11 Pt A):2779-88. https://doi.org/10. 1016/j.bbamem.2015. 08. 012.
  287. Vettschureck N, Offermanns S. Mammalian G proteins and their cell type specific functions. Physiol Rev. 2005;85(4):1159-1204. https://doi.org/10. 1152/physrev.00003. 2005.
  288. Verhoeven AJ, Hilarius PM, Dekkers DW, et al. Prolonged storage of red blood cells atfects aminophospholipid translocase activity. Vox Sang. 2006;91(3):244-251. https://doi.org/10. 1111/j.1423-0410. 2006. 00822. x.
  289. Vittori D, Vota D, Nesse A. Erythrocyte: programmed cell death. Anemia. Ed. D.S. Silverberg. [Published online, 2012 February 29]. Available from: http://www.intechopen.com/books/anemia/erythrocyte-programmed-cell-death.
  290. Voelkl I, Aizouhi K, Mamar AK, et al. Stimulation of suicidal erythroeyte death by inrreased extracellular phosphate concentration. Kidney Blood Press Res. 2013;38(1):42-51. https://doi.org/10. 1159/000355752.
  291. von Haehling S, Jankowska EA, Ponikowski P, Anter SD. Anemia in heart failure: an overview of current concepts. Futur Cardiol. 2011;7(1):119-129. https://doi.org/10. 2217/fca.10. 110.
  292. Waisman A, Lukas D, Clausen BE, Yogev N. Dendritic cells as gatekeepers of tolerance. Semin Immunopathol. 2017;39(2):153-163. https://doi.org/10. 1007/s00281-016-0583-z.
  293. Walker B, Towhid ST, Schmid E, et al. Dynamic adhesion of eryptotic elythrocytes to immobilized platelets via platelet phosphatidylserine receptors. Am J Physol Cell Physol. 2014;306(3): C291-C297. https://doi.org/10. 1152/ajpcell.00318. 2013.
  294. Wandersee NJ, Olson SC, Holzhauer SL, et al. Increased erythrocyte adhesion in mice and humans with hereditary spherocytosis and hereditary elliptocytosts. Blood. 2004;103(2):710-716. https://doi.org/10. 1182/blood-2003-02-0492.
  295. Wang K, Mahmud H, Föller M, et al. Lipopeptides in the triggering of erythrocyte cell membrane scrambling. Cell Physiol Biochem. 2008;22(5-6):381-386. https://doi.org/10. 1159/000187116.
  296. Wang KK. Calpain and caspase: can you tell the difference? Trends Neurosci. 2000;23(2):20-26. https://doi.org/10. 1016/S0166-2236(99)01536-2.
  297. Wautier MP, El Nemer V, Gane P, et al. Increased adhesion to endothelial cells of erythrocytes from patients with polycythemia vera is mediated by laminin alpha5 chain and Lu/BCAM. Blood. 2007;110(3):894-901. https://doi.org/10. 1182/blood-2006-10-048298.
  298. Wei M, Lu L, Sui W, et al. Inhibition of GLUTs by WZB117 mediates apoptosis in blood-stage Plasmodium parasites by breaking redox balance. Biochem Biophys Res Commun. 2018;503(2):1154-1159. https://doi.org/10. 1016/j.bbrc.2018. 06. 134.
  299. Wesseling MC, Wagner-Britz L, Nguyen DB, et al. Novel insights in the regulation of phospbatidylserine exposure in human red blood cells. Cell Physiol Biocbem. 2016;39(5): 1941-54. https://doi.org/10. 1159/000447891.
  300. Wesseling MC, Wagner-Britz L, Boukhdoud F, et al. Measurements of intracellular Ca2+ content and phosphatidilserine exposure in human red blood cells: methodological issues. Cell Physiol Biochem. 2016;38(6):2414-2425. https://doi.org/10. 1159/000445593.
  301. Wesseling MC, Wagner-Britz L, Huppert H, et al. Phosphatidylserine exposure in human red hlood cells depending on cell age. Cell Physiol Biochem. 2016;38(4):1376-90. https://doi.org/10. 1159/000443081.
  302. Wiewiora M, Piecuch J, Sedek L, et al. The effects of obesity on CD47 expression in erythrocytes. Cytometry B Clin Cytom. 2017;92(6):485-491. https://doi.org/10. 1002/cyto.b.21232.
  303. Wu X, Yao Z, Zhao L, et al. Phosphatidylserine on blood cells and endothelial cells contributes to the hypercoagulable state in cirrosis. Liver Int. 2016;36(12):1800-1810. https://doi.org/10. 1111/liv.13167.
  304. Yang K, Du C, Wang X, et al. Indoxyl sulfate induces platelet hyperactivity and contributes to chronic kidney disease-associated thrombosis in mice. Blood. 2017;129(19):2667-2679. https://doi.org/10. 1182/blood-2016-10-744060.
  305. Yang L, Yatomi Y, Miura Y, et al. Metabolism and functional effects of sphingolipids in blood cells. Br J Haematol. 1999;107(2):282-293. https://doi.org/10. 1046/j.1365-2141. 1999. 01697. x.
  306. Yoshida T, Prudent M, D’Alessandro A. Red blood cells storage lesion: causes and potencial clinical consequences. Blood Tranfus. 2019;17(1):27-52. https://doi.org/10. 2450/2019. 0217-18.
  307. Zelenak C, Eberhard M, Jilani K, et al. Protein kinase CK l-alpha regulates erythrocyte survival. Cell Physiol Biochem. 2012;29(1-2):171-180. https://doi.org/10. 1159/000337598.
  308. Zelenak C, Föller M, Velic A, et al. Proteome analysis of erythrocytes lacking AMP-activated protein kinase reveals a role of PAK 2 kinase in eryptosis. J Proteome Res. 2011;10(4):1690-7. https://doi.org/10. 1021/pr101004j.
  309. Zierle J, Bissinger R, Bouguerra G, et al. Triggering of suicidal erythrocyte death by regorafenib. Cell Physiol Biochem. 2016;38(1):160-172. https://doi.org/10. 1159/000438618.
  310. Zivot A, Lipton JM, Narla A, Blanc L. Erythropoiesis: insights into phatophysiology and treatments in 2017. Mol Med. 2018;24(1):11-15. https://doi.org/10. 1186/s10020-018-0011-z.
  311. Zwaal RF, Schroit AJ.Pathophysiologic implications of membrane phospholipid asimmetry in blood cells. Blood. 1997;89(4):1121-1132.

Copyright (c) 2019 Vaschenko V.I., Vil’yaninov V.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».