Circular RNAs in eukaryotic cells: origin, characteristics, mechanisms of molecular functioning in human malignant diseases

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Circular RNAs (circRNAs) are an evolutionarily conserved novel class of non-coding endogenous RNAs (ncRNAs) found in the eukaryotic transcriptome, originally believed to be aberrant RNA splicing by-products with limited functionality.

However, recent advances in highthroughput genomic technology have allowed circRNAs to be characterized in detail and revealed their important functions in controlling various biological and molecular processes, the most essential being gene regulation. Due to structural stability, high expression, availability of microRNA (miRNA) binding sites and tissue-specific expression, circRNAs have become hot topic of research in RNA 2 biology. Unlike linear RNAs, circRNAs are produced differentially by backsplicing exons or “lariat” introns from a pre-messenger RNA (mRNA) forming covalently closed loop-like molecules missing 3' poly-(A) tail or 5' cap structures, thus rendering them resistant to exonuclease-mediated degradation.

Previous studies have revealed multiple roles of circRNAs as “sponges” for miRNA and RNA-binding proteins (RBP), as well as regulators of transcription, translation, and splicing events. Recent advances in the field suggest that the circRNAs are involved in many human disorders, including cancer and neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease, due to their aberrant expression in different pathological conditions. The circRNAs are stable in cells, owing to their circular structure. Participation of circRNAs in programmed cellular destruction by autophagy is discussed in details. The autophagy is a catabolic process which promotes decomposition and recycling of harmful or redundant biological macromolecules and initiates destruction of ageing cells. Processes how circRNAs influence a course of a disease, including an autophagy are in detail discussed, specifying that it joins at the beginning and upon development of various illnesses, and it can influence drug resistance (for example, antitumor efficiency of Cisplatin).

The functional versatility exhibited by circRNAs enables them to serve as potential diagnostic or predictive biomarkers for various diseases. This review discusses the properties, characterization, profiling, and the diverse molecular actions of circRNAs and their usage as potential therapeutic targets in different human malignancies.

About the authors

Vladimir I. Vashchenko

Kirov Military Medical Academy

Author for correspondence.
Email: vladimir-vaschenko@yandex.ru

Dr. Sci. (Biol)., Head of the Department of Biochemistry, Centre of Blood and Tissues

Russian Federation, Saint Petersburg

Alexey B. Chuklovin

Gorbacheva Memorial Research Institute of Pediatric Oncology, Hematology and Transplantology, Academician I.P. Pavlov First St. Petersburg State Medical University

Email: alexei.chukh@mail.ru
SPIN-code: 3050-7030

MD, Dr. Sci. (Med.), Professor, Head of the Laboratory of Transplantology

Russian Federation, Saint Petersburg

Petr D. Shabanov

Kirov Military Medical Academy

Email: pdshabanov@mail.ru
ORCID iD: 0000-0003-1464-1127
SPIN-code: 8974-7477

Dr. Sci. (Med.), Professor, Professor of the Department of Pharmacology

Russian Federation, Saint Petersburg

References

  1. Атаи А., Соловьева В.В., Ризванов А.А., Араб С.Ш. Микроокружение опухоли: ключевой фактор развития рака, инвазии и лекарственной устойчивости // Ученые записки Казанского университета. Серия: естественные науки. 2020. T. 162. Кн. 4. C. 507–528. [Atai A, Solovjova VV, Risvanov AA,Arab SSh. Tumour microenvironment: the key factor of development of a cancer, an invasion and medicinal fastness. Uchenoi sapiski Kasan universitet. Seria. Natural science. 2020;162(4):507–528.(In Russ.)] doi: 10.26907/2542-064X.2020.4.507-528
  2. Ващенко В.И., Ромашова Ю.Е., Шабанов П.Д. Патофизиология микроРНК-146a при раке легких. Перспективы повышения эффективности таргетной терапии // Обзоры по клинической фармакологии и лекарственной терапии. 2021. Т. 19. № 4. С. 359–381. [Vaschenko VI, Romashova YuE, Shabanov PD. Pathophysiology of miR-146a in lung cancer. Reviews on Clinical Pharmacology and Drug Therapy. 2021;19(4):359–381.(In Russ.)] doi: 10.17816/RCF194359-381
  3. Деев Р.В., Билялов А.И., Жампеисов Т.М. Современные представления о клеточной гибели // Гены и клетки. 2018. Т. 13, № 1. С. 6–19. [Deev RV, Bilyalov AI, Zhampeisov TM. Modern ideas about cell death. Genes & Cells. 2018;13(1):6–19. (In Russ.)] doi: 10.23868/201805001
  4. Кит О.И., Водолажский Д.И., Росторгуев Э.И. и др. Мультиформная глиобластома: патогенез и молекулярные маркеры // Вопросы онкологии. 2017. Т. 63. № 5. C. 694–701.[Kit OI, Vodolazhsky DI, Rastorguev EЕ, et al. Glioblastoma multiforme: pathogenesis and molecular markers. Voprosi okologii. 2017;63(5):694–701. (In Russ.)]
  5. Плотников В.К., Салфетников А.А. Концепция «Мир РНК»: теория и практика // Научный журнал КубГАУ. 2017. Т. 128, № 4.С. 1–31. [Plotnikov VK, Salfetnikov AA. The concept “World RNAs”: the theory and practice. Science J. KubGAU. 2017;128(4):1–31. (In Russ.)]
  6. Сутула ГИ., Воробьев МЛ., Суворова ИИ. Роль р53-зависимой аутофагии в регуляции поведения плюрипотентных клеток // Цитология. 2020. Т. 62, № 3. С. 151–159. [Sutula GI, Vorobev ML, Suvorova II. The role of p53-dependet autophagy in the regulation of pluripotent cell behavior. Tsitologya. 2020;62(3):151–159. (In Russ.)] doi: 10.31857/S0041377120030074
  7. Abdelmohsen K, Panda AC, Munk R, et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by circPABPN1. RNA Biol. 2017;14(3):361–369.doi: 10.1080/15476286.2017.1279788.
  8. Abe N, Hiroshima M, Maruyama H, et al. Rolling circle Rolling circle amplification in a prokaryotic translation system using small circular RNA. Angew Chem Int Ed Engl. 2013;52(27):7004–8. doi: 10.1002/anie.201302044
  9. Abe N, Matsumoto K, Nishihara M, et al. Rolling circle translation of circular RNA in living human cells. Sci Rep. 2015;5:16435. doi: 10.1038/srep16435
  10. Ahmed I, Karedath T, Al-Dasim FM, et al. Identification of human genetic variants controlling circular RNA expression. RNA. 2019;25(12):1765–1778. doi: 10.1261/rna.071654.119
  11. Ahmed I, Karedath T, Andrews SS, et al. Altered expression pattern of circular RNAs in primary and metastatic sites of epithelial ovarian carcinoma. Oncotarget. 2016;7(24):36366–36381. doi: 10.18632/oncotarget.8917
  12. Akers NK, Schadt EE, Losic B. STAR Chimeric Post for rapid detection of circular RNA and fusion transcripts. Bioinformatics. 2018;34(14):2364–2370. doi: 10.1093/bioinformatics/bty091
  13. Аkhter R. Circular RNA and Alzheimer’s Disease. Adv Exp Med Biol. 2018;1087:239–243. doi: 10.1007/978-981-13-1426-1_19
  14. Altomare DA, Testa JR. Perturbations of the AKT signaling pathway in human cancer. Oncogene. 2005;24(50):7455–7464. doi: 10.1038/sj.onc.1209085
  15. Andrés-León E, Núñez-Torres R, Rojas AM. miARma-Seq: a comprehensive tool for miRNA, mRNA and circRNA analysis. Sci. Rep. 2016;6(1):1–8. doi: 10.1038/srep25749
  16. Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. circRNA biogenesis competes with pre-mRNA splicing. Моl Cell. 2014;56(1):55–66. doi: 10.1016/j.molcel.2014.08.019
  17. Atkins RJ, Stylli SS, Kurganovs N, et al. Cell quiescence correlates with enhanced glioblastoma cell invasion and cytotoxic resistance. Exp Cell Res. 2019;374(2):353–364. doi: 10.1016/j.yexcr.2018.12.010
  18. Ayaz L, Çayan F, Balci Ş, et al. Circulating microRNA expression profiles in ovarian cancer. J Obstet Gynaecol. 2014;34(7):620–4.doi: 10.3109/01443615.2014.919998
  19. Babin L, Andraos E, Fuchs S, et al. From circRNAs to fusion circRNAs in hematological malignancies. JCI Insight. 2021;6(21): e151513. doi: 10.1172/jci.insight.151513
  20. Bai Y, Li Y, Bai J, Zhang Y.J. Hsa_circ_0004674 promotes osteosarcoma doxorubicin resistance by regulating the miR-342-3p/FBN1 axis. Orthop Surg Res. 2021;16(1):510. doi: 10.1186/s13018-021-02631-y
  21. Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–760.doi: 10.1038/nature05236
  22. Barrett S.P, Salzman J. Circular RNAs: Analysis, expression and potential functions. Development. 2016;143(11):1838–47. doi: 10.1242/dev.128074
  23. Barron CC, Bilan PJ, Tsakiridis T, Tsiani E. Facilitative glucose transporters: implications for cancer detection, prognosis and treatment. Metabolism. 2016;65(2):124–139. doi: 10.1016/j.metabol.2015.10.007
  24. Bartsch D, Zirkel A, Kurian L. Characterization of circular RNAs(circRNA) associated with the translation. Меtods Моl. Biol. 2018;1724(Chapter 13): 159–166. doi: 10.1007/978-1-4939-7562-4_13
  25. Baumann M, Krause M, Hill R. Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer. 2008;8(7):545–54. doi: 10.1038/nrc2419
  26. Bentley DL. Coupling mRNA processing with transcription in time and space. Nat Rev Genet. 2014;15(3):163–75. doi: 10.1038/nrg3662
  27. Bian A, Wang Y, Liu J, et al. Circular RNA ComplementFactor H (CFH) promotes glioma progression by sponging miR-149 and regulating AKT1. Med Sci Monit. 2018;24:5704–5712.doi: 10.12659/MSM.910180
  28. Belisario DC, Akman M, Godel M, et al. ABCA1/ABCB1 ratio determines chemo- and immune-sensitivity in human osteosarcoma. Cell. 2020;9(3):647. doi: 10.3390/cells9030647
  29. Bonuccelli G, Tsirigos A, Whitaker-Menezes D, et al. Ketones and lactate “fuel” tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle. 2010;9(17):3506–3514. doi: 10.4161/cc.9.17.12731
  30. Boyiadzis M, Whiteside TL. Exosomes in acute myeloid leukemia inhibit hematopoiesis. Curr Opin Hematol. 2018;25:279–284. doi: 10.1097/MOH.0000000000000439
  31. Bower H, Björkholm M, Dickman PW, et al. Life Expectancy of Patients With Chronic Myeloid Leukemia Approaches the Life Expectancy of the General Population. J Clin Oncol. 2016;34(24):2851–2857. doi: 10.1200/JCO.2015.66.2866
  32. Braunschweig U, Barbosa-Morais NL, Pan Q, et al. Widespread intron retention in mammals functionally tunes transcriptomes.Genome Res. 2014;24(11):1774–1786. doi: 10.1101/gr.177790.114
  33. Cadena С, Hur S. Antiviral Immunity and Circular RNA: No End in Sight. Cell Моl. 2017;67(2):163–164.doi: 10.1016/j.molcel.2017.07.005
  34. Cao H.X, Miao C.F, Sang L.N, et al. Circ_0009910 promotes imatinib resistance through ULK1-induced autophagy by sponging miR-34a-5p in chronic myeloid leukemia. Life Sci. 2020;243:117255.doi: 10.1016/j.lfs.2020.117255
  35. Capel B, Swain A, Nicolis S, et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell. 1993;73(5):1019–1030. doi: 10.1016/0092-8674(93)90279-y
  36. Cardamone G, Paraboschi EM, Rimoldi V, et al. The Characterization of GSDMB Splicing and Backsplicing Profiles Identifies Novel Isoforms and a Circular RNA That Are Dysregulated in Multiple Sclerosis. Int J Mol Sci. 2017;18(3):576. doi: 10.3390/ijms18030576
  37. Carling D. AMPK signalling in health and disease. Curr Opin Cell Biol. 2017;45:31–37. doi: 10.1016/j.ceb.2017.01.005
  38. Carvalho KC, Cunha IW, Rocha RM, et al. GLUT1 expression in malignant tumors and its use as an immunodiagnostic marker.Clinics. 2011;66(6):965–972. doi: 10.1590/S1807-59322011000600008
  39. Ceccaldi R, Rondinelli B, D’Andrea A. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 2016;26(1):52–64. doi: 10.1016/j.tcb.2015.07.009
  40. Che H, Ding H, Jia X. circ_0080145 enhances imatinib resistance of chronic myeloid leukemia by regulating miR-326/PPFIA1 axis [published online ahead of print]. Cancer Biother Radiopharm. 2020; Jun 27. doi: 10.1089/cbr.2020.3600
  41. Chen CY, Chuang TJ. NCLcomparator: systematically post-screening non-co-linear transcripts (circular, trans-spliced, or fusion RNAs) identified from various detectors. BMC Bioinformatics. 2019;20(1):3. doi: 10.1186/s12859-018-2589-0
  42. Chen D-F, Zhang L-J, Tan K, et al. Application of droplet digital PCR in quantitative detection of the cell-free circulating circRNAs. Biotech & Biotech Equip. 2018;32(1):116–123. doi: 10.1080/13102818.2017.1398596
  43. Chen H, Liu T, Liu J, et al. Circ-ANAPC7 is upregulated in acute myeloid leukemia and appears to target the MiR-181 family. Cell Physiol Biochem. 2018;47(5):1998–2007. doi: 10.1159/000491468
  44. Chen H, Liu S, Li M, et al. circ_0003418 inhibits tumorigenesis and cisplatin chemoresistance through Wnt/β-catenin pathway in hepatocellular carcinoma. Onco Targets Ther. 2019;12:9539–9549
  45. Chen H, Pei L, Xie P, Guo G. Circ-PRKDC contributes to 5-fluorouracil resistance of colorectal cancer cells by regulating miR-375/FOXM1 axis and Wnt/β-catenin pathway. Onco Targets Ther. 2020;13:5939–5953. doi: 10.2147/OTT.S253468. eCollection 2020
  46. Chen J, Li Y, Zheng Q, et al. Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer. Cancer Lett. 2017;388:208–219.doi: 10.1016/j.canlet.2016.12.006
  47. Chen L, Shan G. CircRNA in cancer: Fundamental mechanism and clinical potential. Cancer Lett. 2021;505:49–57.doi: 10.1016/j.canlet.2021.02.004
  48. Chen M, Ai G, Zhou J, et al. circMTO1 promotes tumorigenesis and chemoresistance of cervical cancer via regulating miR-6893. Biomed Pharmacother. 2019;117:109064. doi: 10.1016/j.biopha.2019.109064
  49. Chen N, Zhao G, Yan Х, et al. A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol. 2018;19(1):218.doi: 10.1186/s13059-018-1594-y
  50. Chen Q, Zhang J, He Y, Wang Y. hsa_circ_0061140 Knockdown reverses FOXM1-mediated cell growth and metastasis in ovarian cancer through miR-370 sponge activity. Mol. Ther. Nucleic Acids. 2018;13:55–63. doi: 10.1016/j.omtn.2018.08.010
  51. Chen X, Yang T, Wang W, et al. Circular RNAs in immune responses and immune diseases. Theranostics. 2019;9(2):588–607. doi: 10.7150/thno.29678
  52. Chen X, Chen S, Yu D. Protein kinase function of pyruvate kinase M2 and cancer. Cancer Cell Int. 2020;20(1):523.doi: 10.1186/s12935-020-01612-1
  53. Chen X, Han P, Zhou T, et al. circRNADb: a comprehensive database for human circular RNAs with protein-coding annotations.Sci Rep. 2016;6:34985. doi: 10.1038/srep34985
  54. Chen X, Yu J, Tian H, et al. Circle RNA hsa_circRNA_100290 serves as a ceRNA for miR-378a to regulate oral squamous cell carcinoma cells growth via Glucose transporter-1 (GLUT1) and glycolysis.J Cell Physiol. 2019;234(11):19130–19140. doi: 10.1002/jcp.28692
  55. Chen YG, Chen R, Ahmad S, et al. N6-Methyladenosine modification controls circular RNA immunity. Mol Cell. 2019;76(1):96–109.e109. doi: 10.1016/j.molcel.2019.07.016
  56. Chen YG, Kim MV. Chen X, et al. Sensing self and foreign circular RNAs by intron identity. Mol Cell. 2017;67(2):228–238.e225
  57. Chen W, Li Y, Zhong J, Wen G. circ-PRKCI targets miR-1294 and miR-186–5p by downregulating FOXK1 expression to suppress glycolysis in hepatocellular carcinoma. Mol Med Rep. 2021;23(6):464. doi: 10.3892/mmr.2021.12103
  58. Chi BJ, Zhao DM, Liu L, et al. Downregulation of hsa_circ_0000285 serves as a prognostic biomarker for bladder cancer and is involved in cisplatin resistance. Neoplasma. 2019 Sep;66(2):197–202. doi: 10.4149/neo_2018_180318n185
  59. Chou M, Hu F, Yu C, Yu C. Sox2 expression involvement in the oncogenicity and radiochemoresistance of oral cancer stem cells. Oral Oncol. 2015;51(1):31–39.doi: 10.1016/j.oraloncology.2014.10.002
  60. Chuang TJ, Wu CS, Chen CY, et al. NCLscan: accurate identification of non-co-linear transcripts (fusion, trans-splicing and circular RNA) with a good balance between sensitivity and precision. Nucleic Acids Res. 2016;44(3): e29. doi: 10.1093/nar/gkv1013
  61. Cocquerelle B, Mascrez B, Hétuin D, Bailleul B. Mis-splicing yields circular RNA molecules. FASEB J. 1993;7(1):155–160.doi: 10.1096/fasebj.7.1.7678559
  62. Conn SJ, Pillman KA, Toubia J, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015;160(6):1125–1134. doi: 10.1016/j.cell.2015.02.014
  63. Conn VM, Hugouvieux V, Nayak A, et al. A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat Plants. 2017 Apr 18;3:17053.doi: 10.1038/nplants.2017.53
  64. Cortés-López M, Gruner MR, Cooper DA, et al. Global accumulation of circRNAs during aging in Caenorhabditis elegans. BMC Genom. 2018;19(1):8. doi: 10.1186/s12864-017-4386-y
  65. Danac JMC, Garcia RL. CircPVT1 attenuates negative regulation of NRAS by let-7 and drives cancer cells towards oncogenicity.Sci Rep. 2021;11(1):9021. doi: 10.1038/s41598-021-88539-3
  66. Dahl M, Daugaard I, Andersen MS, et al. Enzyme-free digital counting of endogenous circular RNA molecules in B-cell malignancies. Lab. Invest. 2018;98(12):1657–1669.doi: 10.1038/s41374-018-0108-6
  67. Dayton TL, Jacks T, Vander Heiden MG. PKM2, cancer metabolism, and the road ahead. EMBO Rep. 2016;17(12):1721–1730. doi: 10.15252/embr.201643300
  68. DeBonis S, Simorre J, Crevel I, et al. Interaction of the mitotic inhibitor monastrol with human kinesin Eg5. Biochemistry. 2003;42(2):338–349. doi: 10.1021/bi026716j
  69. Deng N, Li L, Gao J, et al. Hsa_circ_0009910 promotes carcinogenesis by promoting the expression of miR-449a target IL6R in osteosarcoma. Biochem Biophys Res Commun. 2018;495(1):189–196. doi: 10.1016/j.bbrc.2017.11.028
  70. Dhawan A, Tonekaboni SAM, Taube JH, et al. Mathematical modelling of phenotypic plasticity and conversion to a stem-cell state under hypoxia. Sci Rep. 2016;6:18074. doi: 10.1038/srep18074
  71. Ding C, Yi X, Chen X, et al. Warburg effect-promoted exosomal circ_0072083 releasing up-regulates NANGO expression through multiple pathways and enhances temozolomide resistance in glioma.J Exp Clin Cancer Res. 2021;40(1):164. doi: 10.1186/s13046-021-01942-6
  72. Diling C, Yinrui G, Longkai Q, et al. Circular RNA NF1-419 enhances autophagy to ameliorate senile dementia by binding Dynamin-1 and Adaptor protein 2 B1 in AD-like mice. Aging (Albany NY). 2019;11(24):12002–12031. doi: 10.18632/aging.102529
  73. Dilruba S, Kalayda G. Platinum-based drugs: past, present and future. Cancer Chemother Pharmacol. 2016;77(6):1103–1124. doi: 10.1007/s00280-016-2976-z
  74. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.doi: 10.1093/bioinformatics/bts635
  75. Dong R, Ma XK, Li GW, Yang L. CIRCpedia v2: An Updated Database for Comprehensive Circular RNA Annotation and Expression Comparison. Genomics Proteomics Bioinformatics. 2018 Aug;16(4):226–233. doi: 10.1016/j.gpb.2018.08.001
  76. Dong W, Dai ZH, Liu FC, et al. The RNA-binding protein RBM3 promotes cell proliferation in hepatocellular carcinoma by regulating circular RNA SCD-circRNA 2 production. EBioMedicine. 2019;45:155–167. doi: 10.1016/j.ebiom.2019.06.030
  77. Dong Y, Xu T, Zhong S, et al. Circ_0076305 regulates cisplatin resistance of non-small cell lung cancer via positively modulating STAT3 by sponging miR-296-5p. Life Sci. 2019;239:116984. doi: 10.1016/j.lfs.2019.116984
  78. Dou Y, Cha DJ, Franklin JL, et al. Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes. Sci Rep. 2016;6(1):1–11. doi: 10.1038/srep37982
  79. Du WW, Fang L, Yang W, et al. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ. 2017;24(2):357–370. doi: 10.1038/cdd.2016.133
  80. Du WW, Yang W, Chen Y, et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J. 2017;38(18):1402–1412. doi: 10.1093/eurheartj/ehw001
  81. Du WW, Yang W, Liu E, et al. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 2016;44(6):2846– 2858. doi: 10.1093/nar/gkw027
  82. Du WW, Yang W, Li X, et al. A circular RNA circ-DNMT1 enhances breast cancer progression by activating autophagy. Оncogene. 2018;37(44):5829–5842. doi: 10.1038/s41388-018-0369-у
  83. Dworkin M, Mehan W, Niemierko A, et al. Increase of pseudoprogression and other treatment related effects in low-grade glioma patients treated with proton radiation and temozolomide. J Neurooncol. 2019;142(1):69–77. doi: 10.1007/s11060-018-03063-1
  84. Enuka Y, Lauriola M, Feldman ME, et al. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor.Nucleic Acids Res. 2016;44(3):1370–1383. doi: 10.1093/nar/gkv1367
  85. Errichelli L, Modigliani SD, Laneve P, et al. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nat Commun. 2017;8(1):1–11. doi: 10.1038/ncomms14741
  86. Fantin VR, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 2006;9(6):425–434.doi: 10.1016/j.ccr.2006.04.023
  87. Feng Z, Zhang L, Wang S, Hong Q. Circular RNA circDLGAP4 exerts neuroprotective effects via modulating miR-134-5p/CREB pathway in Parkinson’s disease. Biochem Biophys Res Commun. 2020;522(2):388–394. doi: 10.1016/j.bbrc.2019.11.102
  88. Ferrero G, Licheri N, Coscujuela Tarrero L, et al. Docker4Circ: a framework for the reproducible characterization of circRNAs from RNA-Seq Data. Int J Mol Sci. 2019;21:293. doi: 10.3390/ijms21010293
  89. Foruzandeh Z, Zeinali-Sehnig E, Nejati K, et al. CircRNAs as potent biomarkers in ovarian cancer: a systematic scoping review.Cell Mol Biol Lett. 2021;26:41. doi: 10.1186/s11658-021-00284-7
  90. Fu D, Ji Q, Wang C, et al. Aloin decelerates the progression of hepatocellular carcinoma through circ_0011385/miR-149-5p/WT1 axis. Cell Cycle. 2021;20(23):2476–2493. doi: 10.1080/15384101.2021.1988227
  91. Fuchs Y, Steller H. Programmed cell death in animal development and disease. Cell. 2011;147(4):742–758.doi: 10.1016/j.cell.2011.10.033
  92. Fujita K, Nonomura N. Role of androgen receptor in prostate cancer: a review. World J Mens Health. 2019;37(3):288–95. doi: 10.5534/wjmh.180040
  93. Gaffo E, Bonizzato A, Kronnie GT, Bortoluzzi S. CirComPara:A Multi-Method Comparative Bioinformatics Pipeline to Detect and Study circRNAs from RNA-seq Data. Noncoding RNA. 2017;3(1):8. doi: 10.3390/ncrna3010008
  94. Galluzzi L, Maiuri M.C, Vitale I, et al. Cell death modalities: classification and pathophysiological implications. Cell Death Differ. 2007;14(7):1237–1243. doi: 10.1038/sj.cdd.4402148
  95. Gan X, Zhu H, Jiang X, et al. CircMUC16 promotes autophagy of epithelial ovarian cancer via interaction with ATG13 and miR-199a. Mol Cancer. 2020;19:45. doi: 10.1186/s12943-020-01163-z
  96. Gao D, Zhang X, Liu B, et al. Screening circular RNA related to chemotherapeutic resistance in breast cancer. Epigenomics. 2017;9(9):1175–1188. doi: 10.2217/epi-2017-0055
  97. Gao F, Han J, Wang Y, et al. Circ_0109291 promotes the cisplatin resistance of oral squamous cell carcinoma by sponging miR-188-3p to increase ABCB1 expression. Cancer Biother Radiopharm. 2020;37(4):233–245. doi: 10.1089/cbr.2020.3928
  98. Gao M, Li C, Xiao H, et al. hsa_circ_0007841: a novel potential biomarker and drug resistance for multiple myeloma. Front Oncol. 2019;9:1261. doi: 10.3389/fonc.2019.01261
  99. Gao Y, Liu J, Huan J, Che F. Downregulation of circular RNA hsa_circ_0000735 boosts prostate cancer sensitivity to docetaxel via sponging miR-7. Cancer Cell Int. 2020;20:334. doi: 10.1186/s12935-020-01421-6
  100. Gao Y, Wang H, Zhang, H, et al. PRAPI: post-transcriptional regulation analysis pipeline for Iso-Seq. Bioinformatics. 2018;34(9):1580–1582. doi: 10.1093/bioinformatics/btx830
  101. Gao Y, Wang J, Zhao F. CIRI: An efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol. 2015;16(1):4. doi: 10.1186/s13059-014-0571-3
  102. Gao Z, Li J, Luo M, et al. Characterization and cloning of grape circular RNAs identified the cold resistance-related Vv-circATS1. Plant Physiol. 2019;180(2):966–985. doi: 10.1104/pp.18.01331
  103. Ge Y, Porse BТ. The functional consequences of intron retention: alternative splicing coupled to NMD as a regulator of gene expression. Bioessays. 2014;36(3):236–243.doi: 10.1002/bies.201300156
  104. Ghafouri-Fard S, Khoshbakht T, Bahravian A, et al. CircMTO1:A circular RNA with roles in the carcinogenesis. Biomed Pharmacother. 2021;142:112025. doi: 10.1016/j.biopha.2021.112025
  105. Gilbert WV, Bell TA, Schaening C. Messenger RNA modifications: Form, distribution, and function. Science. 2016;352(6292):1408–1412. doi: 10.1126/science.aad8711
  106. Glažar P, Papavasileiou P, Rajewsky N. circBase: a database for circular RNAs. RNA. 2014;20(11):1666–1670. doi: 10.1261/rna.043687.113
  107. Green D.R, Llambi F. Cell Death Signaling. Cold Spring Harb. Perspect. Biol. 2015;7:a006080. doi: 10.1101/cshperspect.a006080
  108. Greene J, Baird AM, Casey O, et al. Circular RNAs are differentially expressed in prostate cancer and are potentially associated with resistance to enzalutamide. Sci Rep. 2019;9(1):10739.doi: 10.1038/s41598-019-47189-2
  109. Guan Z, Tan J, Gao W, et al. Circular RNA hsa_circ_0016788 regulates hepatocellular carcinoma tumorigenesis through miR-486/CDK4 pathway. J Cell Physiol. 2018;234(1):500–508.doi: 10.1002/jcp.26612
  110. Guarnerio J, Bezzi M, Jeong JC, et al. Oncogenic Role of Fusion-circRNAs Derived from Cancer-Associated Chromosomal Translocations. Cell. 2016;166(4):1055–1056.doi: 10.1016/j.cell.2016.07.035
  111. Guo C, Wang H, Jiang H, et al. Circ_0011292 enhances paclitaxel resistance in non-small cell lung cancer by regulating miR-379-5p/TRIM65 axis. Cancer Biother Radiopharm. 2020Aug 20. doi: 10.1089/cbr.2019.3546
  112. Guo J, Chen M, Ai G, et al. Hsa_circ_0023404 enhances cervical cancer metastasis and chemoresistance through VEGFA and autophagy signaling by sponging miR-5047. Biomed. Pharmacother. 2019;115:108957. doi: 10.1016/j.biopha.2019.108957
  113. Guo JU, Agarwal V, Guo H, Bartel DP. Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 2014;15:409(2014). doi: 10.1186/s13059-014-0409-z
  114. Guo X, Zhou Q, Su D, et al. Circular RNA circBFAR promotes the progression of pancreatic ductal adenocarcinoma via the miR-34b-5p/MET/Akt axis. Molecular Cancer. 2020;19:83.doi: 10.1186/s12943-020-01196-4
  115. Guria A, Kumar KVV, Srikakulam N, et al. Circular RNA rofiling by Illumina Sequencing via Template-Dependent Multiple Displacement Amplification. Biomed Res Int. 2019;2019:2756516. doi: 10.1155/2019/2756516. eCollection 2019
  116. Hammond SM, Boettcher S, Caudy AA, et al. Argonaute2,a link between genetic and biochemical analyses of RNAi. Science. 2001;293(5532):1146–1150. doi: 10.1126/science.1064023
  117. Han B, Zhang Y, Zhang Y, et al. Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: implications for cerebral ischemic stroke. Аutophagy. 2018;14(7):1164–1184. doi: 10.1080/15548627.2018.1458173
  118. Han C, Seebacher NA, Hornicek FJ, Kan Q, Duan Z. Regulation of microRNAs function by circular RNAs in human cancer.Oncotarget. 2017;8(38):64622–64637. doi: 10.18632/oncotarget.19930
  119. Han C, Wang S, Wang H, Zhang J. Exosomal circ-HIPK3 facilitates tumor progression and temozolomide resistance by regulating miR-421/ZIC5 axis in glioma. Cancer Biother Radiopharm. 2021;36(7):537–548. doi: 10.1089/cbr.2019.3492
  120. Han D, Li J, Wang H, et al. Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology. 2017;66(4):1151–1164. doi: 10.1002/hep.29270
  121. Hang D, Zhou J, Qin N, et al. A novel plasma circular RNA circFARSA is a potential biomarker for non-small cell lung cancer. Cancer Med. 2018;7(6):2783–2791. doi: 10.1002/cam4.1514
  122. Hansen TB. Improved circRNA Identification by Combining Prediction Algorithms. Front Cell Dev Biol. 2018;6:20.doi: 10.3389/fcell.2018.00020
  123. Hansen TB, Kjems J, Damgaard C.K. Circular RNA and miR-7 in Cancer. Cancer Res. 2013;73(18):5609–5612.doi: 10.1158/0008-5472.CAN-13-1568
  124. Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384–388. doi: 10.1038/nature11993
  125. Hansen TB, Wiklund ED, Bramsen JB, et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 2011;30(21):4414–22.doi: 10.1038/emboj.2011.359
  126. Hao S, Cong L, Qu R, et al. Emerging roles of circular RNAs in colorectal cancer. Onco Targets Ther. 2019;12:4765–4777. doi: 10.2147/ott.s208235
  127. Haupenthal J, Baehr C, Kiermayer S, et al. Inhibition of RNAse A family enzymes prevents degradation and loss of silencing activity of siRNAs in serum. Biochem. Pharmacol. 2006;71(5):702–10. doi: 10.1016/j.bcp.2005.11.015
  128. He R, Liu P, Xie X, et al. circGFRA1 and GFRA1 act as ceRNAs in triple negative breast cancer by regulating miR-34a. J Exp Clin Cancer Research. 2017;36(1):1–12. doi: 10.1186/s13046-017-0614-1
  129. He X, Ma J, Zhang M, Cui J, Yang H. Circ_0007031 enhances tumor progression and promotes 5-fluorouracil resistance in colorectal cancer through regulating miR-133b/ABCC5 axis. Cancer Biomark. 2020;29(4):531–542. doi: 10.3233/CBM-200023
  130. Hoffmann S, Otto C, Doose G, et al. A multi-split mapping algorithm for circular RNA, splicing, trans-splicing and fusion detection. Genome Biology. 2014;15(2):1–11. doi: 10.1186/gb-2014-15-2-r34
  131. Holdt LM, Stahringer A, Sass K, et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun. 2016;7:12429. doi: 10.1038/ncomms12429
  132. Hon KW, Ab-Mutalib NS, Abdullah NMA, et al. Extracellular vesicle-derived circular RNAs confers chemoresistance in colorectal cancer.Sci. Rep. 2019;9:16497(2019). doi: 10.1038/s41598-019-53063-y
  133. Hong W, Xue M, Jiang J, Zhang Y, Gao X. Circular RNA circ-CPA4/let-7 miRNA/PD-L1 axis regulates cell growth, stemness, drug resistance and immune evasion in non-small cell lung cancer (NSCLC).J Exp Clin Cancer Res. 2020;39:149. doi: 10.1186/s13046-020-01648-1
  134. Hongmin Yu, Haiping L, Xunbi L. Knockdown of circ_0102273 inhibits the proliferation, metastasis and glycolysis of breast cancer through miR-1236-3p/PFKFB3 axis. Anticancer Drugs. 2022;33(4):323–334. doi: 10.1097/CAD.0000000000001264
  135. Hsiao K.-Y, Lin Y.-C, Gupta S.K, et al. Noncoding effects of circular RNA CCDC66 promote colon cancer growth and metastasis. Cancer Res. 2017;77(9):2339–2350. doi: 10.1158/0008-5472.CAN-16-1883
  136. Hsu MT, Coca-Prados M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature. 1979;280(5720):339–340. doi: 10.1038/280339a0
  137. Hu Х-В, Zheng B-А, Hu Z.-М, et al. Circular RNA hsa_circ_000984 promotes colon cancer growth and metastasis by sponging miR-106b. Оncotarget. 2017;8(53):91674–91683.doi: 10.18632/oncotarget.21748
  138. Hu Y, Gu J, Shen H, et al. Circular RNA LARP4 correlates with decreased Enneking stage, better histological response, and prolonged survival profiles, and it elevates chemosensitivity to cisplatin and doxorubicin via sponging microRNA-424 in osteosarcoma. J Clin Lab Anal. 2020;34(2):e23045. doi: 10.1002/jcla.23045
  139. Hua L, Huang L, Zhang X, Feng H, Shen B. Knockdown of circular RNA CEP128 suppresses proliferation and improves cytotoxic efficacy of temozolomide in glioma cells by regulating miR-145–5p. Neuroreport. 2019;30(18):1231–1238. doi: 10.1097/WNR.0000000000001326
  140. Huang A, Zheng H, Wu Z, Chen M, Huang Y. Circular RNA-protein interactions: functions, mechanisms, and identification. Theranostics. 2020;10(8):3503–3517. doi: 10.7150/thno.42174
  141. Huang C, Liang D, Tatomer DC, Wilusz JE. A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs. Genes Dev. 2018;32(9–10):639–644. doi: 10.1101/gad.314856.118
  142. Huang H, Tindall DJ. The role of the androgen receptor in prostate cancer. Crit Rev Eukaryot Gene Expr. 2002;12(3):193–207. doi: 10.1615/critreveukaryotgeneexpr.v12.i3.30
  143. Huang MS, Yuan FQ, Gao Y, et al. Circular RNA screening from EIF3a in lung cancer. Cancer Med. 2019 Aug;8(9):4159–4168. doi: 10.1002/cam4.2338
  144. Huang R, Zhang Y, Han B, et al. Circular RNA HIPK2 regulates astrocyte activation via cooperation of autophagy and ER stress by targeting MIR124–2HG. Autophagy. 2017;13(10):1722–1741.doi: 10.1080/15548627.2017.1356975
  145. Huang W, Yang Y, Wu J, et al. Circular RNA cESRP1 sensitises small cell lung cancer cells to chemotherapy by sponging miR-93-5p to inhibit TGF-β signalling. Cell Death Differ. 2020;27(5):1709–1727. doi: 10.1038/s41418-019-0455-x
  146. Huang X, He M, Huang S, et al. Circular RNA circERBB2 promotes gallbladder cancer progression by regulating PA2G4-dependent rDNA transcription. Моl Cancer. 2019;18(1):1–19.doi: 10.1186/s12943-019-1098-8
  147. Huang X, Li Z, Zhang Q, et al. Circular RNA AKT3 upregulates PIK3R1 to enhance cisplatin resistance in gastric cancer via miR-198 suppression. Mol Cancer. 2019;18(1):71. doi: 10.1186/s12943-019-0969-3
  148. Huang XX, Zhang Q, Hu H, et al. A novel circular RNA circFN1 enhances cisplatin resistance in gastric cancer via sponging miR-182-5p.J Cell Biochem. 2020;122(9):1009–1020. doi: 10.1002/jcb.29641
  149. Huang XY, Zhang PF, Wei CY, et al. Circular RNA circMET drives immunosuppression and anti-PD1 therapy resistance in hepatocellular carcinoma via the miR-30-5p/snail/DPP4 axis.Mol Cancer. 2020;19(1):92. doi: 10.1186/s12943-020-01213-6
  150. Huang Y, Zhu Q. Mechanisms Regulating Abnormal Circular RNA Biogenesis in Cancer. Cancers (Basel). 2021;13(16):4185. doi: 10.3390/cancers13164185
  151. Hu K, Liu X, Li Y, et al. Exosomes mediated transfer of circ_UBE2D2 enhances the resistance of breast cancer to tamoxifen by binding to MiR-200a-3p. Med Sci Monit. 2020;26:e922253–1. doi: 10.12659/MSM.922253
  152. Hui L, Chen Y. Tumor microenvironment: sanctuary of the devil. Cancer Lett. 2015;368(1):7–13. doi: 10.1016/j.canlet.2015.07.039
  153. Humphreys DT, Fossat N, Demuth M, et al. Ularcirc: visualization and enhanced analysis of circular RNAs via back and canonical forward splicing. Nucleic Acids Res. 2019;47(20):e123.doi: 10.1093/nar/gkz718
  154. Iparraguirre L, Alberro A, Hansen TB, et al. Profiling of Plasma Extracellular Vesicle Transcriptome Reveals That circRNAs Are Prevalent and Differ between Multiple Sclerosis Patients and Healthy Controls. Biomedicines. 2021;9(12):1850.doi: 10.3390/biomedicines9121850
  155. Iparraguirre L, Muñoz-Culla M, Prada-Luengo I, et al. Circular RNA profiling reveals that circular RNAs from ANXA2 can be used as new biomarkers for multiple sclerosis. Hum Mol Genet. 2017;26(18):3564–3572. doi: 10.1093/hmg/ddx243
  156. Ivanov A, Memczak SS, Wyler EE, et al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep. 2015;10(2):170–177. doi: 10.1016/j.celrep.2014.12.019
  157. Izuogu OG, Alhasan AA, Alafghani HM, et al. PTESFinder: a computational method to identify post-transcriptional exon shuffling (PTES) events. BMC Bioinformatics. 2016;17:31. doi: 10.1186/s12859-016-0881-4
  158. Jakobi T, Dieterich C. Deep computational circular RNA analytics from RNA-seq data / Circular RNAs. Humana Press, New York, NY, 2018. P. 9–25. doi: 10.1007/978-1-4939-7562-4_2
  159. Jakobi T, Uvarovskii A, Dieterich C. circtools-a one-stop software solution for circular RNA research. Bioinformatics. 2019;35(13):2326–2328. doi: 10.1093/bioinformatics/bty948
  160. Ji X, Sun W, Lv C, et al. Circular RNAs Regulate Glucose Metabolism in Cancer Cells. Onco Targets Ther. 2021;14:4005–4021. doi: 10.2147/OTT.S316597
  161. Jeck WR, Sorrentino J.A, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19(2):141–157. doi: 10.1261/rna.035667.112
  162. Ji P, Wu W, Chen S, et al. Expanded expression landscape and prioritization of circular RNAs in mammals. Cell Rep. 2019 19;26(12):3444–3460.e5.doi: 10.1016/j.celrep.2019.02.078
  163. Ji X, Sun W, Lv C, Huang J, Zhang H. Сircular RNAs Regulate Glucose Metabolism in Cancer Cells. Onco Targets Ther. 2021;14:4005–4021. doi: 10.2147/OTT.S316597
  164. Jia GY, Wang DL, Xue MZ, et al. CircRNAFisher: a systematic computational approach for de novo circular RNA identification. Аcta Pharmacol Sin. 2019;40(1):55–63. doi: 10.1038/s41401-018-0063-1
  165. Jia R, Xiao MS, Li Z, et al. Defining an evolutionarily conserved role of GW182 in circular RNA degradation. Cell Discov. 2019;5:45. doi: 10.1038/s41421-019-0113-y
  166. Jian X, He H, Zhu J, et al. Hsa_circ_001680 affects the proliferation and migration of CRC and mediates its chemoresistance by regulating BMI1 through miR-340. Mol Cancer. 2020;19(1):20. doi: 10.1186/s12943-020-1134-8
  167. Jin C, Dong D, Yang Z, Xia R, Tao S, Piao M. CircMYC regulates glycolysis and cell proliferation in melanoma. Cell Biochem Biophys. 2020;78(1):77–88. doi: 10.1007/s12013-019-00895-0
  168. Jin M, Shi C, Yang C, Liu J, Wang W. Upregulated circRNA ARHGAP10 predicts an unfavorable prognosis in NSCLC through regulation of the miR-150-5p/GLUT-1 axis. Mol Ther Nucleic Acids. 2019;18:219–231. doi: 10.1016/j.omtn.2019.08.016
  169. Jin H, Jin X, Zhang H, Huang G. Circular RNA hsa-circ-0016347 promotes proliferation, invasion and metastasis of osteosarcoma cells. Oncotarget. 2017;8(15):25571–25581. doi: 10.18632/oncotarget.16104
  170. Johnstone RW, Ruefli AA, Lowe SW. Apoptosis: a link between cancer genetics and chemotherapy. Cell. 2002;108(2):153–64. doi: 10.1016/s0092-8674(02)00625-6
  171. Joseph NA, Chiou SH, Lung Z, et al. The role of HGF-MET pathway and CCDC66 cirRNA expression in EGFR resistance and epithelial-to-mesenchymal transition of lung adenocarcinoma cells. J Hematol Oncol. 2018;11(1):74. doi: 10.1186/s13045-018-0557-9
  172. Ju Y, Yuan L, Yang Y, Zhao H. CircSLNN: Identifying RBP-Binding Sites on circRNAs via Sequence Labeling Neural Networks. Front Genet. 2019;10:1184. doi: 10.3389/fgene.2019.01184. eCollection 2019
  173. Junn E, Lee KW, Jeong BS, et al. Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci. USA. 2009;106(31):13052–13057. doi: 10.1073/pnas.0906277106
  174. Kai D, Yannian L, Yitian et al. Circular RNA HIPK3 promotes gallbladder cancer cell growth by sponging microRNA-124. Biochem BiophysRes Commun. 2018;503(2):863–869. doi: 10.1016/j.bbrc.2018.06.088
  175. Karedath T, Ahmed I, Al Ameri W, et al. Silencing of ANKRD12 circRNA induces molecular and functional changes associated with invasive phenotypes. BMC Cancer. 2019;19(1):565.doi: 10.1186/s12885-019-5723-0
  176. Kasapi A, Triantafyllopoulou A. Genotoxic stress signalling as a driver of macrophage diversity. Cell Stress. 2022;6(3):30–44. doi: 10.15698/cst2022.03.265
  177. Kefas B, Godlewski J, Comeau L, et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res. 2008;68(10):3566–3572. doi: 10.1158/0008-5472.CAN-07-6639
  178. Kelly S, Greenman C, Cook PR, Papantonis A. Exon Skipping Is Correlated with Exon Circularization. J Моl Biol.2015;427(15):2414–2417. doi: 10.1016/j.jmb.2015.02.018
  179. Kim D, Pertea G, Trapnell C, Pimentel H, et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4): R36.doi: 10.1186/gb-2013-14-4-r36
  180. Kleaveland B, Shi CY, Stefano J, Bartel DP. A Network of Noncoding Regulatory RNAs Acts in the Mammalian Brain.Cell. 2018;174(2):350–362.e17. doi: 10.1016/j.cell.2018.05.022
  181. Koh HR, Xing L, Kleiman L, Myong S. Repetitive RNA unwinding by RNA helicase A facilitates RNA annealing. Nucleic Acids Res. 2014;42(13):8556–8564. doi: 10.1093/nar/gku523
  182. Kong R. Circular RNA hsa_circ_0085131 is involved in cisplatin-resistance of non-small-cell lung cancer cells by regulating autophagy. Cell Biol Int. 2020;44(9):1945–1956.doi: 10.1002/cbin.11401
  183. Koppenol WH, Bounds PL, Dang CV. Otto warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11(5):325–337. doi: 10.1038/nrc3038
  184. Kramer MC, Liang D, Tatomer DC, et al. Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev. 2015;29(20):2168–2182.doi: 10.1101/gad.270421.115
  185. Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20(11):675–691. doi: 10.1038/s41576-019-0158-7
  186. Kristensen LS, Jakobsen T, Hager H, Kjems J. The emerging roles of circRNAs in cancer and oncology. J Nat Rev Clin Oncol. 2022;19(3):188–206. doi: 10.1038/s41571-021-00585-y
  187. Кumar L, Shamsuzzama, O, Haque R, et al. Circular RNAs: the emerging class of non-coding RNAs and their potential role in human neurodegenerative diseases. Моl Neurobiol. 2017;54(9):7224–7234. doi: 10.1007/s12035-016-0213-8
  188. Kumar A, Watkins R, Vilgelm AE. Cell Therapy With TILs: Training and Taming T Cells to Fight Cancer. Front Immunol. 2021;12:690499. doi: 10.3389/fimmu.2021.690499
  189. Kun-Peng Z, Chun-Lin Z, Jian-Ping H, Lei Z. A novel circulating hsa_circ_0081001 act as a potential biomarker for diagnosis and prognosis of osteosarcoma. Int J Biol Sci. 2018;14(11):1513–1520. doi: 10.7150/ijbs.27523
  190. Kun-Peng Z, Xiao-Long M, Chun-Lin Z. Overexpressed circPVT1, a potential new circular RNA biomarker, contributes to doxorubicin and cisplatin resistance of osteosarcoma cells by regulating ABCB1. Int J Biol Sci. 2018;14(3):321–330. doi: 10.7150/ijbs.24360
  191. Kun-Peng Z, Xiao-Long M, et al. Screening circular RNA related to chemotherapeutic resistance in osteosarcoma by RNA sequencing. Epigenomics. 2018;10(10):1327–1346. doi: 10.2217/epi-2018-0023
  192. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–359.doi: 10.1038/nmeth.1923
  193. Lasda E, Parker R. Circular RNAs Co-precipitate with extracellular vesicles: a possible mechanism for circRNA clearance.PLoS One. 2016;11(2):e0148407. doi: 10.1371/journal.pone.0148407
  194. Legnini I, Timoteo GD, Rossi F, et al. Circ-ZNF609 is a Circular RNA that can be translated and functions in myogenesis. Mol Cell. 2017;66(1):22–37.e9. doi: 10.1016/j.molcel.2017.02.017
  195. Li F, Zhang L, Li W, et al. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway. Oncotarget. 2015; 6:6001–6013. doi: 10.18632/oncotarget.3469
  196. Li G, Yang H, Han K, et al. A novel circular RNA, hsa_circ_0046701, promotes carcinogenesis by increasing the expression of miR-142-3p target ITGB8 in glioma. Biochem Biophys Res. Commun. 2018;498(1):254–261. doi: 10.1016/j.bbrc.2018.01.076
  197. Li H, Tian L, Li J, et al. The Roles of circRNAs in Intervertebral Disc Degeneration: inflammation, extracellular matrix metabolism, and apoptosis. Anal Cell Pathol (Amst). 2022;2022:9550499. doi: 10.1155/2022/9550499
  198. Li J, Sun D, Pu W, et al. Circular RNAs in Cancer: Biogenesis, Function, and Clinical Significance. Trends Cancer. 2020;6(4):319–336. doi: 10.1016/j.trecan.2020.01.012
  199. Li J, Wang J, Chen Z, Chen Y, Jin M. Hsa_circ_0079530 promotes cell proliferation and invasion in non-small cell lung cancer. Gene. 2018;665:1–5. doi: 10.1016/j.gene.2018.04.059
  200. Li P, Liu С, Yu Z, Wu М. New Insights into RegulatoryT Cells: Exosome- and Non-Coding RNA-Mediated Regulation of Homeostasis and Resident Treg Cells. Front Immunol. 2016;7:574.doi: 10.3389/fimmu.2016.00574
  201. Li Q, Pan X, Zhu D, et al. Circular RNA MAT2B promotes glycolysis and malignancy of hepatocellular carcinoma through the miR-338-3p/PKM2 axis under hypoxic stress. Hepatology. 2019;70(4):1298–1316. doi: 10.1002/hep.30671
  202. Li Q, Yu J, Mu C. al. Association between the level of ERCC-1 expression and the repair of cisplatin-induced DNA damage in human ovarian cancer cells. Anticancer Res. 2000;20(2A):645–652
  203. Li L, Bu D, Zhao Y. CircRNAwrap — a flexible pipeline for circRNA identification, transcript prediction, and abundance estimation. FEBS Lett. 2019;593(11):1179–1189. doi: 10.1002/1873-3468.13423
  204. Li S, Gu H, Huang Y, et al. Circular RNA 101368/miR-200a axis modulates the migration of hepatocellular carcinoma through HMGB1/RAGE signaling. Cell Cycle. 2018;17(19–20):2349–2359.doi: 10.1080/15384101.2018.1526599
  205. Li S, Li Y, Chen B, et al. exoRBase: a database of circRNA, lncRNA and mRNA in human blood exosomes. Nucleic Acids Res. 2018;46(D1):D106–D112. doi: 10.1093/nar/gkx891
  206. Li T, Xian H-C, Dai L, Tang Y-L, Liang X-H.Tip of the Iceberg: Roles of CircRNAs in Cancer Glycolysis. Onco Targets Ther. 2021;14:2379–2395. doi: 10.2147/OTT.S297140
  207. Li X, Chu C, Pei J, Mãndoiu I, Wu Y. CircMarker: a fast and accurate algorithm for circular RNA detection. BMC Genomics. 2018;19(Suppl 6):572. doi: 10.1186/s12864-018-4926-0
  208. Li X, Yang B, Ren H, et al. Hsa_circ_0002483 inhibited the progression and enhanced the Taxol sensitivity of non-small cell lung cancer by targeting miR-182-5p. Cell Death Dis. 2019;10(12):1–12. doi: 10.1038/s41419-019-2180-2
  209. Li X, Liu CX, Xue W, et al. Coordinated circRNA Biogenesis and Function with NF90/NF110 in Viral Infection. Mol Cell. 2017;67(2):214–227.e7. doi: 10.1016/j.molcel.2017.05.023
  210. Li X, Liu Y, Zhang X, Shen J, et al. Circular RNA hsa_circ_0000073 contributes to osteosarcoma cell proliferation, migration, invasion and methotrexate resistance by sponging miR-145-5pand miR-151-3p and upregulating NRAS. Aging (Albany NY). 2020;12(14):14157–14173. doi: 10.18632/aging.103423
  211. Li X, Wang J, Zhang C, Lin C, Zhang J. Circular RNA circITGA7 inhibits colorectal cancer growth and metastasis by modulating the Ras pathway and upregulating transcription of its host gene ITGA7.J Pathol. 2018;246(2):166–179. doi: 10.1002/path.5125
  212. Li XN, Wang ZJ, Ye CX, et al. Circular RNA circVAPA is up-regulated and exerts oncogenic properties by sponging miR-101 in colorectal cancer. Biomed Pharmacother. 2019;112:108611. doi: 10.1016/j.biopha.2019.108611
  213. Li X, Yang B, Ren H, et al. Hsa_circ_0002483 inhibited the progression and enhanced the Taxol sensitivity of non-small cell lung cancer by targeting miR-182–5p. Cell Death Dis. 2019;10(12):953. doi: 10.1038/s41419-019-2180-2
  214. Li XX, Xiao L, Chung HK, et al. Interaction between HuR and circPABPN1 Modulates Autophagy in the Intestinal Epithelium by Altering ATG16L1 Translation. Mol Cell Biol. 2020;40(6):e00492–19. doi: 10.1128/MCB.00492-19
  215. Li Y, Huang S. Response to circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer.Cancer Lett. 2017;388(2017):208–219. doi: 10.1016/j.canlet.2017.05.008
  216. Li Y, Wan B, Liu L, et al. Circular RNA circMTO1 suppresses bladder cancer metastasis by sponging miR-221 and inhibiting epithelial-to-mesenchymal transition. Biochem Biophys Res Commun. 2019;508(4):991–996. doi: 10.1016/j.bbrc.2018.12.046
  217. Li Y, Zhao J, Yu S, et al. Extracellular Vesicles Long RNA Sequencing Reveals Abundant mRNA, circRNA, and lncRNA in Human Blood as Potential Biomarkers for Cancer Diagnosis. Clin Chem. 2019;65(6):798–808. doi: 10.1373/clinchem.2018.301291
  218. Li Y, Zheng F, Xiao Х, et al. CircHIPK3 sponges miR-558 to suppress heparanase expression in bladder cancer cells. EMBO Rep. 2017;18(9):1646–1659. doi: 10.15252/embr.201643581
  219. Li Y, Zheng Q, Bao C, et al. Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Res. 2015;25(8):981–984. doi: 10.1038/cr.2015.82
  220. Li Z, Hu Y, Zeng Q, et al. Circular RNA MYLK promotes hepatocellular carcinoma progression by increasing Rab23 expression by sponging miR-362-3p. Cancer Cell Int. 2019;19(1):1–11.doi: 10.1186/s12935-019-0926-7
  221. Li Z, Huang C, Bao C, Chen L, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 2015;22(3):256–264. doi: 10.1038/nsmb.2959
  222. Li Z, Yanfang W, Li J, et al. Tumor-released exosomal circular RNA PDE8A promotes invasive growth via the miR-338/MACC1/MET pathway in pancreatic cancer. Cancer Lett. 2018;432:237–250. doi: 10.1016/j.canlet.2018.04.035
  223. Li Z, Zhou Y, Yang G, et al. Using circular RNA SMARCA5 asa potential novel biomarker for hepatocellular carcinoma. Clin Chim Acta. 2019;492:37–44. doi: 10.1016/j.cca.2019.02.001
  224. Liang D, Tatomer DC, Luo Z, et al. The output of protein-coding genes shifts to circular RNAs when the Pre-mRNA processing machinery is limiting. Mol Cell. 2017;68(5):940–954.e943.doi: 10.1016/j.molcel.2017.10.034
  225. Liang G, Ling Y, Mehrpour M, et al. Autophagy-associated circRNA circCDYL augments autophagy and promotes breast cancer progression. Mol Cancer. 2020;19(1):65. doi: 10.1186/s12943-020-01152-2
  226. Liang HF, Zhang XZ, Liu BG, Jia GT, Li WL. Circular RNA circ-ABCB10 promotes breast cancer proliferation and progression through sponging miR-1271. Am J Cancer Res. 2017;7(7):1566–1576. eCollection 2017
  227. Liang WC, Wong CW, Liang PP, et al. Translation of the circular RNA circβ-catenin promotes liver cancer cell growth through activation of the Wnt pathway. Genome biology. 2019;20(1):1–12.doi: 10.1186/s13059-019-1685-4
  228. Liang Y, Song X, Li Y, et al. Targeting the circBMPR2/miR-553/USP4 axis as a potent therapeutic approach for breast cancer. Mol Ther Nucleic Acids. 2019;17:347–361.doi: 10.1016/j.omtn.2019.05.005
  229. Liang Y, Song X, Li Y, et al. circKDM4C suppresses tumor progression and attenuates doxorubicin resistance by regulating miR-548p/PBLD axis in breast cancer. Oncogene. 2019;38(42):6850–6866. doi: 10.1038/s41388-019-0926-z
  230. Lidonnici MR, Aprile A, Frittoli MC, et al. Plerixafor and G-CSF combination mobilizes hematopoietic stem and progenitors cells with a distinct transcriptional profile and a reduced in vivo homing. Haematologica. 2017;102(4):e120–e124.doi: 10.3324/haematol.2016.154740
  231. Lin J, Cai D, Li W, et al. Plasma circular RNA panel acts as a novel diagnostic biomarker for colorectal cancer. Clin Biochem. 2019;74:60–68. doi: 10.1016/j.clinbiochem.2019.10.012
  232. Lin Y, Yu Y, Lin H, Hsiao K. Oxaliplatin-induced DHX9 phosphorylation promotes oncogenic circular RNA CCDC66 expression and development of chemoresistance. Cancers. 2020;12(3):697. doi: 10.3390/cancers12030697
  233. Lindeboom RGH, Supek F, Lehner B. The rules and impact of nonsense-mediated mRNA decay in human cancers. Nat Genet. 2016;48(10):1112–1118. doi: 10.1038/ng.3664
  234. Ling Y, Liang G, Liu Q, et al. Circ CDYL2 promotes trastuzumab resistance via sustaining HER2 downstream signaling in breast cancer.Mol Cancer. 2022;21(1):8. doi: 10.1186/s12943-021-01476-7
  235. Liu CX, Guo SK, Nan F, et al. RNA circles with minimized immunogenicity as potent PKR inhibitors. Mol Cell. 2022;82(2):420–434.e6. doi: 10.1016/j.molcel.2021.11.019
  236. Liu F, Zhang J, Qin L, et al. Circular RNA EIF6 (Hsa_circ_0060060) sponges miR-144-3p to promote the cisplatin-resistance of human thyroid carcinoma cells by autophagy regulation.Aging (Albany NY). 2018;10(12):3806–3820. doi: 10.18632/aging.101674
  237. Liu J, Kong F, Lou S, Yang D, Gu L. Global identification of circular RNAs in chronic myeloid leukemia reveals hsa_circ_0080145 regulates cell proliferation by sponging miR-29b. Biochem Biophys Res Commun. 2018;504(4):660–665. doi: 10.1016/j.bbrc.2018.08.154
  238. Liu J, Zhang X, Yan M, Li H. Emerging Role of Circular RNAs in Cancer. Front Oncol. 2020;10:663. doi: 10.3389/fonc.2020.00663
  239. Liu M, Wang Q, Shen J, et al. Circbank: a comprehensive database for circRNA with standard nomenclature. RNA Biol. 2019;16(7):899–905. doi: 10.1080/15476286.2019.1600395
  240. Liu Y, Chen X, Yao J, Kang J. Circular RNA ACR relieves high glucose-aroused RSC96 cell apoptosis and autophagy via declining microRNA-145-3p. J Cell Biochem. 2019. doi: 10.1002/jcb.29568
  241. Liu Y, Li H, Ye X, et al. Hsa_circ_0000231 knockdown inhibits the glycolysis and progression of colorectal cancer cells by regulating miR-502-5p/MYO6 axis. World J Surg Oncol. 2020;18(1):255. doi: 10.1186/s12957-020-02033-0
  242. Liu Y-Y, Zhang Q, Guo J, et al.The Role of Circular RNAs in the Drug Resistance of Cancers. Front Oncol. 2022;05 January. doi: 10.3389/fonc.2021.790589
  243. Liu Z, Yu Y, Huang Z, et al. CircRNA-5692 inhibits the progression of hepatocellular carcinoma by sponging miR-328-5p to enhance DAB2IP expression. Cell Death Dis. 2019;10(12):900.doi: 10.1038/s41419-019-2089-9
  244. Lykke-Andersen S, Jensen TH. Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes. Nat Rev Mol Cell Biol. 2015;16(11):665–677. doi: 10.1038/nrm4063
  245. Long MY, Chen JW, Zhu Y, et al. Comprehensive circular RNA profiling reveals the regulatory role of circRNA_0007694 in papillary thyroid carcinoma. Am J Transl Res. 2020;12(4):1362–1378.eCollection 2020
  246. Long X, Zheng M, Yang Y, et al. circ_ZFR Is Linked to Paclitaxel Resistance in Cervical Cancer via miR-944 Sponging and IL-10 Upregulation. Anal Cell Pathol (Amst). 2022;2022:4807287. doi: 10.1155/2022/4807287
  247. López-Carrasco A, Flores R. Dissecting the secondary structure of the circular RNA of a nuclear viroid in vivo: A “naked” rod-like conformation similar but not identical to that observed in vitro.RNA Biol. 2017;14(8):1046–1054. doi: 10.1080/15476286.2016.1223005
  248. Lu D, Ho ES, Mai H, et al. Identification of blood circular rnas as potential biomarkers for acute ischemic stroke. Front Neurosci. 2020;14:81. doi: 10.3389/fnins.2020.0008
  249. Lu H, Xie X, Wang K, et al. Circular RNA hsa_circ_0096157 contributes to cisplatin resistance by proliferation, cell cycle progression, and suppressing apoptosis of non-small-cell lung carcinoma cells. Mol Cell Biochem. 2020;475(1–2):63–77.doi: 10.1007/s11010-020-03860-1
  250. Lukiw WJ. Circular RNA (circRNA) in Alzheimer’s disease (AD) Front Genet. 2013;4:307. doi: 10.3389/fgene.2013.00307
  251. Luo Y, Fu Y, Huang R, et al. CircRNA_101505 sensitizes hepatocellular carcinoma cells to cisplatin by sponging miR-103 and promotes oxidored-nitro domain-containing protein 1 expression. Cell Death Discov. 2019;5(1):1–9. doi: 10.1038/s41420-019-0202-6
  252. Ma J, Fang L, Yang Q, et al. Posttranscriptional regulation of AKT by circular RNA angiomotin-like 1 mediates chemoresistance against paclitaxel in breast cancer cells. Aging. 2019;11(23):11369–11381. doi: 10.18632/aging.102535
  253. Ma J, Qi G, Li L. A novel serum exosomes-based biomarker hsa_circ_0002130 facilitates osimertinib-resistance in non-small cell lung cancer by sponging miR-498. Onco Targets Ther. 2020;13:5293–5307. doi: 10.2147/OTT.S243214
  254. Ma L, Wang Z, Xie M, et al. Silencing of circRACGAP1 sensitizes gastric cancer cells to apatinib via modulating autophagy by targeting miR-3657 and ATG7. Cell Death Dis. 2020; 11(3):1–18.doi: 10.1038/s41419-020-2352-0
  255. Maass PG, Glažar P, Memczak S, et al. A map of human circular RNAs in clinically relevant tissues. J Mol Med. 2017;95(11):1179–1189. doi: 10.1007/s00109-017-1582-1589
  256. McMullen M, Karakasis K, Rottapel R, Oza AM. Advances in ovarian cancer, from biology to treatment. Nat Cancer. 2021;2:6–8. doi: 10.1038/s.43018-020-00166-5
  257. Mao M, Hu Y, Yang Y, et al. Modeling and predicting the activities of trans-acting splicing factors with machine learning. Cell Syst. 2018;7(5):510–520.e514. doi: 10.1016/j.cels.2018.09.002
  258. Mao Y, Xu R. Circular RNA CDR1-AS contributes to pemetrexed and cisplatin chemoresistance through EGFR/PI3K signaling pathway in lung adenocarcinoma. Biomed Pharmacother. 2020;123:109771. doi: 10.1016/j.biopha.2019
  259. Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333–338. doi: 10.1038/nature11928
  260. Meng J, Chen S, Han JX, et al. Twist1 regulates vimentin through Cul2 circular RNA to promote EMT in hepatocellular carcinoma. Cancer Res. 2018;78(15):4150–4162.doi: 10.1158/0008-5472.can-17-3009
  261. Meng L, Liu S, Ding P, Chang S, Sang M. Circular RNA ciRS-7 inhibits autophagy of ESCC cells by functioning as miR-1299 sponge to target EGFR signaling. J Cell Biochem. 2020;121(2):1039–1049. doi: 10.1002/jcb.29339
  262. Meng X, Chen Q, Zhang P, Chen M. CircPro: an integrated tool for the identification of circRNAs with protein-coding potential. Bioinformatics. 2017;33(20):3314–3316. doi: 10.1093/bioinformatics/btx446
  263. Mitra A, Pfeifer K, Park KS. Circular RNAs and competing endogenous RNA (ceRNA) networks. Transl Cancer Res. 2018;7(Suppl 5):S624. doi: 10.21037/tcr.2018.05.12
  264. Moreno-Sánchez R, Rodríguez-Enríquez S, Marín-Hernández A, Saavedra E. Energy metabolism in tumor cells. FEBS J. 2007;274(6):1393–1418. doi: 10.1111/j.1742-4658.2007.05686.x
  265. Murphy C, Dickler M. Endocrine resistance in hormone-responsive breast cancer: mechanisms and therapeutic strategies. Endocr Relat Cancer. 2016;23(8):R337–52. doi: 10.1530/ERC-16-0121
  266. Nigro JM, Cho KR, Fearon ER, et al. Scrambled exons. Cell. 1991;64(3):607–613. doi: 10.1016/0092-8674(91)90244-s
  267. Nisar S, Bhat A.A, Singh M, Karedath T, et al. Insights Into the Role of CircRNAs: Biogenesis, Characterization, Functional, and Clinical Impact in Human Malignancies. Front Cell Dev Biol. 2021;9:617281. doi: 10.3389/fcell.2021.617281
  268. Nobili S, Lapucci A, Landini I, et al. Role of ATP-binding cassette transporters in cancer initiation and progression. Semin Cancer Biol. 2020;60:72–95. doi: 10.1016/j.semcancer.2019.08.006
  269. Noorlag L, De Vos FY, Kok A, et al. Treatment of malignant gliomas with ketogenic or caloric restricted diets: a systematic review of preclinical and early clinical studies. Clin Nutr. 2019;38(5):1986–1994. doi: 10.1016/j.clnu.2018.10.024
  270. Oberbeck N, Pham VC, Webster JD, et al. The RIPK4-IRF6 signalling axis safeguards epidermal differentiation and barrier function.Nature. 2019;574(7777):249–253. doi: 10.1038/s41586-019-1615-3
  271. O’Connor JP, Rose CJ, Waterton JC, et al. Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin Cancer Res. 2015;21(2):249–57.doi: 10.1158/1078-0432.CCR-14-0990
  272. Okholm TLH, Nielsen MM, Hamilton MP, et al. Circular RNA expression is abundant and correlated to aggressiveness in early-stage bladder cancer. NPJ Genom Med. 2017;2:36.doi: 10.1038/s41525-017-0038-z
  273. Ou R, Mo L, Tang H, et al. circRNA-AKT1 sequesters miR-942-5p to upregulate AKT1 and promote cervical cancer progression. Mol Ther Nucleic Acids. 2020;20:308–322. doi: 10.1016/j.omtn.2020.01.003
  274. Pamudurti NR, Bartok O, Jens M, et al. Translation of CircRNAs. Mol Cell. 2017;66(1);9–21.e7. doi: 10.1016/j.molcel.2017.02.021
  275. Pan B, Qin J, Liu X, et al. Identification of serum exosomal hsa-circ-0004771 as a novel diagnostic biomarker of colorectal cancer. Front Genet. 2019;10:1096. doi: 10.3389/fgene.2019.01096
  276. Pan H, Li T, Jiang Y, et al. Overexpression of circular RNA ciRS-7 abrogates the tumor suppressive effect of miR-7 on gastric cancer via PTEN/PI3K/AKT signaling pathway. J Cell Biochem. 2018;119(1), 440–446. doi: 10.1002/jcb.26201
  277. Pan Y, Lou J, Wang H, et al. CircBA9.3 supports the survival of leukaemic cells by up-regulating c-ABL1 or BCR-ABL1 protein levels. Blood Cells Mol Dis. 2018;73:38–44. doi: 10.1016/j.bcmd.2018.09.002
  278. Panda AC, Grammatikakis I, Kim KM, et al. Identification of senescence-associated circular RNAs (SAC-RNAs) reveals senescence suppressor CircPVT1. Nucleic Acids Res. 2017;45(7):4021–4035. doi: 10.1093/nar/gkw1201
  279. Peng L, Chen G, Zhu Z, et al. Circular RNA ZNF609 functions as a competitive endogenous RNA to regulate AKT3 expression by sponging miR-150-5p in Hirschsprung’s disease. Oncotarget. 2017;8(1):808–818. doi: 10.18632/oncotarget.13656
  280. Peng L, Fang Z, Renauer PA, et. al. Multiplexed LNP-mRNA vaccination against pathogenic coronavirus species. Cell Rep. 2022;40(5):111160. doi: 10.1016/j.celrep.2022.111160
  281. Pendleton KE, Park S-K, Hunter OV, Bresson SM, Conrad NK. Balance between MAT2A intron detention and splicing is determinedcotranscriptionally. RNA. 2018;24(6):778–786. doi: 10.1261/rna.064899.117
  282. Pitolli C, Marini A, Sette C, Pagliarini V. Non-Canonical Splicing and Its Implications in Brain Physiology and Cancer. Int J Mol Sci. 2022;23(5):2811. doi: 10.3390/ijms23052811
  283. Piwecka M, Glažar P, Hernandez-Miranda LR, et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science. 2017;357(6357):eaam8526. doi: 10.1126/science.aam8526
  284. Plati J, Bucur O, Khosravi-Far R. Dysregulation of apoptotic signaling in cancer: molecular mechanisms and therapeutic opportunities. J Cell Biochem. 2008;104(4):1124–1149
  285. Preußer C, Hung LH, Schneider T, et al. Selective release of circRNAs in platelet-derived extracellular vesicles. J Extracell Ves. 2018;7(1):1424473. doi: 10.1080/20013078.2018.1424473
  286. Qin M, Liu G, Huo X, et al. Hsa_circ_0001649: a circular RNA and potential novel biomarker for hepatocellular carcinoma. Cancer Biomarkers. 2016;16(1):161–169. doi: 10.3233/CBM-150552
  287. Qiu L, Huang Y, Li Z, et al. Circular RNA profiling identifies circADAMTS13 as a miR-484 sponge which suppresses cell proliferation in hepatocellular carcinoma. Mol. Oncol. 2019;13(2):441–455. doi: 10.1002/1878-0261.12424
  288. Qu S, Zhong Y, Shang R, et al. The emerging landscape of circular RNA in life processes. RNA Biol. 2017;14(8):992–999.doi: 10.1080/15476286.2016.1220473
  289. Rachner T, Coleman R, Hadji P, Hofbauer L. Bone health during endocrine therapy for cancer. Lancet Diabetes Endocrinol. 2018;6(11):901–910. doi: 10.1016/S2213-8587(18)30047-0
  290. Raz O, Granot G, Pasmanik-Chor M, et al. Profiling and bioinformatics analyses reveal chronic lymphocytic leukemia cells share a unique circular RNA expression pattern. Exp Hematol. 2020;85:8–12. doi: 10.1016/j.exphem.2020.04.001
  291. Ren T, Liu C, Hou J, Shan F. Hsa_circ_0043265 suppresses proliferation, metastasis, EMT and promotes apoptosis in non-small cell lung cancer through miR-25-3p/FOXP2 pathway. Oncol Targets Ther. 2020;13:3867–3880. doi: 10.2147/ott.s235231
  292. Rybak-Wolf A, Stottmeister C, Glažar P, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell. 2015;58(5):870–885.doi: 10.1016/j.molcel.2015.03.027
  293. Rynaldi L, Datta D, Serrat J, et al. Dnmt3a and Dnmt3b Associate with Enhancers to Regulate Human Epidermal Stem Cell Homeostasis. Cell Stem Cell. 2016;19(4):491–501. doi: 10.1016/j.stem.2016.06.020
  294. Robey RW, Pluchino KM, Hall MD, et al. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer. 2018;18(7):452–464. doi: 10.1038/s41568-018-0005-8
  295. Robic A, Demars J, Kühn C. In-Depth analysis reveals production of circular RNAs from non-coding sequences. Cells. 2020;9(8):1806. doi: 10.3390/cells9081806
  296. Salzman J. Circular RNA expression: Its potential regulation and function. Trends Genet. 2016;32(5):309–316. doi: 10.1016/j.tig.2016.03.002
  297. Salzman J, Gawad C, Wang PL, et al. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One. 2012;7(2): e30733. doi: 10.1371/journal.pone.030733
  298. Sang Y, Chen B, Song X, et al. circRNA_0025202 regulates tamoxifen sensitivity and tumor progression via regulating the miR-182-5p/FOXO3a axis in breast cancer. Mol Ther. 2019;27(9):1638–1652. doi: 10.1016/j.ymthe.2019.05.011
  299. Sanger HL, Klotz G, Riesner D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl AcadSci USA. 1976; 73(11):3852–3856. doi: 10.1073/pnas.73.11.3852
  300. Shagufta, Ahmad I. Tamoxifen a pioneering drug: an update on the therapeutic potential of tamoxifen derivatives. Eur J Med Chem. 2018;143:515–531
  301. Shang J, Chen WM, Liu S, et al. CircPAN3 contributes to drug resistance in acute myeloid leukemia through regulation of autophagy. Leuk Res. 2019;85:106198. doi: 10.1016/j.leukres.2019.106198
  302. Shang J, Chen WM, Wang ZH, et al. CircPAN3 mediates drug resistance in acute myeloid leukemia through the miR-153-5p/miR-183-5p-XIAP axis. Exp Hematol. 2019;70:42–54.e43. doi: 10.1016/j.exphem.2018.10.011
  303. Shang Q, Yang Z, Jia R, Ge S. The novel roles of circRNAs in human cancer. Mol Cancer. 2019;18(1):6. doi: 10.1186/s12943-018-0934-6
  304. Shao Y, Li J, Lu R, et al. Global circular RNA expression profile of human gastric cancer and its clinical significance. Cancer Med. 2017;6(6):1173–1180. doi: 10.1002/cam4.1055
  305. Sharma G, Sharma AR, Bhattacharya M, Lee SS, Chakraborty C. CRISPR-Cas9: A preclinical and clinical perspective for the treatment of human diseases. Mol Ther. 2021 Feb 3;29(2):571–586. doi: 10.1016/j.ymthe.2020.09.028.
  306. Shi X, Wang B, Feng X, Xu Y, Lu K, Sun M. circRNAs and exosomes: a mysterious frontier for human cancer. Mol Ther Nucleic Acids. 2020;19:384–392. doi: 10.1016/j.omtn.2019.11.023
  307. Shi Y, Fang N, Li Y, et al. Circular RNA LPAR3 sponges microRNA-198 to facilitate esophageal cancer migration, invasion, and metastasis. Cancer Sci. 2020;111(8):2824–2836.doi: 10.1111/cas.14511
  308. Shukla S, Kavak E, Gregory M, et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature. 2011;479(7371):74–79. doi: 10.1038/nature10442
  309. Srivastava AK, Banerjee A, Cui T, et al. Inhibition of miR-328-3p impairs cancer stem cell function and prevents metastasis in ovarian cancer. Cancer Res. 2019 May 1;79(9):2314–2326.doi: 10.1158/0008-5472.CAN-18-3668
  310. Stefanetti RJ, Voisin S, Russel A, Lamon S. Recent advances in understanding the role of FOXO3. F1000Res. 2018;7(F1000 Faculty Rev):1372. doi: 10.12688/f1000research.15258.1
  311. Stoll L, Sobel J, Rodriguez-Trejo A, et al. Circular RNAs as novel regulators of β-cell functions in normal and disease conditions. Mol Metab. 2018;9:69–83. doi: 10.1016/j.molmet.2018.01.010
  312. Song X, Zhang N, Han P, et al. Circular RNA profile in gliomas revealed by identification tool UROBORUS. Nucleic Acids Res. 2016;44(9):e87. doi: 10.1093/nar/gkw075
  313. Starke SЕ, eJost I, Oliver Rossbach O, et al. Exon circularization requires canonical splice signals. Cell Rep. 2015;10(1):103–111. doi: 10.1016/j.celrep.2014.12.002
  314. Su C, Zheng X, He Y, et al. Transcriptomic profiling and functional prediction reveal aberrant expression of circular RNAs during osteogenic differentiation in human umbilical cord mesenchymal stromal cells. Sci Rep. 2021;11(1):19881.doi: 10.1038/s41598-021-98470-2
  315. Su H, Tao T, Yang Z, et al. Circular RNA cTFRC acts as the sponge of MicroRNA-107 to promote bladder carcinoma progression. Моl Cancer. 2019;18(1):27. doi: 10.1186/s12943-019-0951-0
  316. Su M, Xiao Y, Ma J, et al. Circular RNAs in Cancer: emerging functions in hallmarks, stemness, resistance and roles as potential biomarkers. Моl Cancer. 2019;18(1):1–17. doi: 10.1186/s12943-019-1002-6
  317. Su Y, Yang W, Jiang N, Shi J, Chen L, Zhong G, et al. Hypoxia-elevated circELP3 contributes to bladder cancer progression and cisplatin resistance. Int J Biol Sci. 2019;15:441–52. doi: 10.7150/ijbs.26826
  318. Sui С, Qu W, Lian Y, Feng C, Zhan Y. Hsa_circ_0069094 knockdown inhibits cell proliferation, migration, invasion and glycolysis, while induces cell apoptosis by miR-661/HMGA1 axis in breast cancer. Anticancer Drugs. 2021;32(8):829–841.doi: 10.1097/CAD.0000000000001076
  319. Sun H, Tang W, Rong D, et al. Hsa_circ_0000520, a potential new circular RNA biomarker, is involved in gastric carcinoma.Сancer Biomark. 2018;21(2):299–306. doi: 10.3233/cbm-170379
  320. Szabo L, Morey R, Palpant NJ, et al. Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genom Biol. 2015;16(1):1–26. doi: 10.1186/s13059-015-0690-5
  321. Taïbi F, Metzinger-Le Meuth V, Massy ZA, Metzinger L. miR-223: An inflammatory oncomiR enters the cardiovascular field. Biochim. Biophys Acta. 2014;1842(7):1001–1009.doi: 10.1016/j.bbadis.2014.03.005
  322. Tang H, Huang X, Wang J, et al. circKIF4A acts as a prognostic factor and mediator to regulate the progression of triple-negative breast cancer. Моl Cancer. 2019;18(1):1–9. doi: 10.1186/s12943-019-0946-x
  323. Tang Q, Chen Z, Zhao L, Xu H. Circular RNA hsa_circ_0000515 acts as a miR-326 sponge to promote cervical cancer progression through up-regulation of ELK1. Aging (Albany NY). 2019;11(22):9982–9999. doi: 10.18632/aging.102356
  324. Tatomer DC, Wilusz JE. An unchartered journey for ribosomes: circumnavigating circular RNAs to produce proteins. Mol Cell. 2017;66(1):1–2. doi: 10.1016/j.molcel.2017.03.011
  325. Taulli R, Loretelli C, Pandolfi PP, et al. From pseudo-ceRNAs to circ-ceRNAs: A tale of cross-talk and competition. Nat Struct Mol Biol. 2013;20(5):541–3. doi: 10.1038/nsmb.2580
  326. Tian L, Cao J, Jiao H, et al. circRASSF2 promotes laryngeal squamous cell carcinoma progression by regulating the miR-302b-3p/IGF-1R axis. Clin Sci (Lond). 2019;133(9):1053–1066. doi: 10.1042/CS20190110
  327. Vander Heiden MG. Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov. 2011;10(9):671–684. doi: 10.1038/nrd3504
  328. van Rossum D, Verheijen BM, Pasterkamp RJ. Circular RNAs: Novel Regulators of Neuronal Development. Front Mol Neurosci. 2016;9:74. doi: 10.3389/fnmol.2016.00074
  329. Verduci L, Ferraiuolo M, Sacconi A, et al. The oncogenic role of circPVT1 in head and neck squamous cell carcinoma is mediated through the mutant p53/YAP/TEAD transcription-competent complex.Genome Biol. 2017;18(1):237. doi: 10.1186/s13059-017-1368-y
  330. Vo JN, Cieslik M, Zhang Y, et al. The landscape of Circular RNA in cancer. Cell. 2019;176(4):869–881.e813.doi: 10.1016/j.cell.2018.12.021
  331. Wan B, Hu H, Wang R, et al. Therapeutic potential of circular RNAs in osteosarcoma. Front Oncol. 2020;10:370.doi: 10.3389/fonc.2020.00370
  332. Wan J, Liu Y, Long F, et al. circPVT1 promotes osteosarcoma glycolysis and metastasis by sponging miR-423-5p to activate Wnt5a/Ror2 signaling. Cancer Science. 2021;112(5):1707–1722.doi: 10.1111/cas14787
  333. Wang C, Tan S, Li J, et al. CircRNAs in lung cancer — Biogenesis, function and clinical implication. Cancer Lett. 2020;492:106–115. doi: 10.1016/j.canlet.2020.08.013
  334. Wang J, Zhang Y, Liu L, et al. Circular RNAs: new biomarkers of chemoresistance in cancer. Cancer Biol Med. 2021;18(2):421–36. doi: 10.20892/j.issn.2095-3941.2020.0312
  335. Wang K, Gan TY, Li N, et al. Circular RNA mediates cardiomyocyte death via miRNA-dependent upregulation of MTP18 expression. Cell Death Differ. 2017;24(6):1111–1120.doi: 10.1038/cdd.2017.61
  336. Wang K, Singh D, Zeng Z, et al. MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res. 2010;38(18): e178. doi: 10.1093/nar/gkq622
  337. Wang L, Zhou Y, Jiang L, et al. CircWAC induces chemotherapeutic resistance in triple-negative breast cancer by targeting miR-142, upregulating WWP1 and activating the PI3K/AKT pathway. Mol Cancer. 2021;20(1):43. doi: 10.1186/s12943-021-01332-8
  338. Wang M, Yu F, Wu W, et al. Circular RNAs: A novel type of non-coding RNA and their potential implications in antiviral immunity. Intern. J Biol Sci. 13(12):1497–1506. doi: 10.7150/ijbs.22531
  339. Wang S, Zhang Y, Cai Q, et al. Circular RNA FOXP1 promotes tumor progression and Warburg effect in gallbladder cancer by regulating PKLR expression. Mol Cancer. 2019;18(1):1–15.doi: 10.1186/s12943-019-1078-z
  340. Wang X, Zhang C, Wu Z, et al. CircIBTK inhibits DNA demethylation and activation of AKT signaling pathway via miR-29b in peripheral blood mononuclear cells in systemic lupus erythematosus. Arthr Res Ther. 2018;20(1):1–10.doi: 10.1186/s13075-018-1618-8
  341. Wang, X, Fang L. Advances in circular RNAs and their roles in breast Cancer. J Exp Clin Cancer Res. 2018;37(1):1–12.doi: 10.1186/s13046-018-0870-8
  342. Wang X, Zhang H, Yang H, et al. Exosome-delivered circRNA promotes glycolysis to induce chemoresistance through the miR-122-PKM2 axis in colorectal cancer. Mol Oncol. 2020;14(3):539–555. doi: 10.1002/1878-0261.12629
  343. Wang Y, Gao Y, Zhang H, et al. Genome-wide profiling of circular RNAs in the rapidly growing shoots of Moso bamboo (Phyllostachys edulis) Plant Cell Physiol. 2019;60(6):1354–1373.doi: 10.1093/pcp/pcz043
  344. Wang Y, Li Z, Xu S, Guo J. Novel potential tumor biomarkers: Circular RNAs and exosomal circular RNAs in gastrointestinal malignancies. J Clin Lab Anal. 2020;34(7):e23359.doi: 10.1002/jcla.23359
  345. Wang Y, Yang M, Wei S, et al. Identification of circular RNAs and their targets in leaves of Triticum aestivum L. under dehydration stress. Front Plant Sci. 2017;7:2024. doi: 10.3389/fpls.2016.02024
  346. Wei Y, Chen X, Liang C, et al. A noncoding regulatory RNAs network driven by circ-CDYL acts specifically in the early stages hepatocellular carcinoma. Hepatology. 2020;71(1):130–147.doi: 10.1002/hep.30795
  347. Wei Y, Zhang Y, Meng Q, Cui L, Xu C. Hypoxia-induced circular RNA has_circRNA_403658 promotes bladder cancer cell growth through activation of LDHA. Am J Transl Res. 2019;11(11):6838–6849
  348. Weng W, Wei Q, Toden S, Yoshida K. Circular RNA ciRS-7-A Promising Prognostic Biomarker and a Potential Therapeutic Target in Colorectal Cancer. Clin Cancer Res. 2017;23(14):3918–3928. doi: 10.1158/1078-0432.CCR-16-2541
  349. Wesselhoeft RA, Kowalski PS, Anderson DG. Engineering circular RNA for potent and stable translation in eukaryotic cells.Nat Commun. 2018;9(1):1–10. doi: 10.1038/s41467-018-05096-6
  350. Westholm JO, Miura P, Olson S, et al. Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep. 2014;9(5):1966–1980. doi: 10.1016/j.celrep.2014.10.062
  351. Wu DM, Wen X, Han XR, et al. Role of circular RNA DLEU2 in human acute myeloid leukemia. Моl Cell Biol. 2018;38(20):e00259–18. doi: 10.1128/MCB.00259-18
  352. Wu F, Sun G, Zheng W, et al. circCORO1C promotes the proliferation and metastasis of hepatocellular carcinoma by enhancing the expression of PD-L1 through NF-κB pathway.J Clin Lab Anal. 2021;35(12):e24003. doi: 10.1002/jcla.24003
  353. Wu G, Sun Y, Xiang Z, et al. Preclinical study using circular RNA 17 and microRNA 181c-5p to suppress the enzalutamide-resistant prostate cancer progression. Cell Death Dis. 2019;10(2):37. doi: 10.1038/s41419-018-1048-1
  354. Wu Q, Li P, Wu M, Liu Q. Deregulation of Circular RNAs in Cancer From the Perspectives of Aberrant Biogenesis, Transport and Removal. Front Genet. 2019;10:16. doi: 10.3389/fgene.2019.00016
  355. Wu R, Yun Q, Zhang J, et al. Knockdown of circular RNA tousled-like kinase 1 relieves ischemic stroke in middle cerebral artery occlusion mice and oxygen-glucose deprivation and reoxygenation-induced N2a cell damage. Bioengineered. 2022;13(2):3434–3449.doi: 10.1080/21655979.2021.2024684
  356. Wu Z, Sun H, Li J, Jin H. Circular RNAs in leukemia. Aging (Albany NY). 2019;11(13):4757–4771. doi: 10.18632/aging.102091
  357. Xia B, Zhao Z, Wu Y, et al. Circular RNA circTNPO3 regulates paclitaxel resistance of ovarian cancer cells by miR-1299/NEK2 signaling pathway. Mol Ther Nucleic Acids. 2020;21:780–791. doi: 10.1016/j.omtn.2020.06.002
  358. Xia P, Wang S, Ye B, et al. A circular RNA protects dormant hematopoietic stem cells from DNA sensor cGAS-mediated exhaustion. Immunity. 2018;48(4):688–701.e7. doi: 10.1016/j.immuni.2018.03.016
  359. Xia S, Feng J, Chen K, et al. CSCD: база данных для специфичных к раку циркулярных РНК. Nucleic Acids Res. 2018;46, D925–D929.
  360. Xia S, Feng J, Lei L, et al. Comprehensive characterization of tissue-specific circular RNAs in the human and mouse genomes. Briefings in bioinformatics. 2017;18(6):984–992. doi: 10.1093/bib/bbw081
  361. Xia W, Qiu M, Chen R, et al. Circular RNA has_circ_0067934 is upregulated in esophageal squamous cell carcinoma and promoted proliferation. Sci Rep. 2016;6(1):1–9.
  362. Xia X, Li X, Li F, et al. A novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent Kinase-1.Mol Cancer. 2019;18(1):1–16. doi: 10.1186/s12943-019-1056-5
  363. Xiang Z, Xu C, Wu G, Liu B, Wu D. CircRNA-UCK2 Increased TET1 inhibits proliferation and invasion of prostate cancer cells via sponge MiRNA-767–5p. Open Med (Wars). 2019;14:833–842. doi: 10.1515/med-2019-0097
  364. Xiong W, Ai YQ, Li YF, et al. Microarray analysis of circular RNA expression profile associated with 5-fluorouracil-based chemoradiation resistance in colorectal cancer cells. Biomed Res Int. 2017: ID8421614. doi: 10.1155/2017/8421614
  365. Xiong Y, Lei QY, Zhao S, Guan KL. Regulation of glycolysis and gluconeogenesis by acetylation of PKM and PEPCK. Cold Spring Harb Symp Quant Biol. 2011;76:285–289. doi: 10.1101/sqb.2011.76.010942
  366. Xu G, Chen Y, Fu M, et al. Circular RNA CCDC66 promotes gastric cancer progression by regulating c-Myc and TGF-β signaling pathways. J Cancer. 2020;11(10):2759–2768. doi: 10.7150/jca.37718
  367. Xu H, Guo S, Li W, Yu P. The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci Rep. 2015;5:12453. doi: 10.1038/srep12453
  368. Xu QY, Xie MJ, Huang J, Wang ZW. Effect of circ MTHFD2 on resistance to pemetrexed in gastric cancer through regulating expression of miR-124. Eur Rev Med Pharmacol Sci. 2019;23(23):10290–10299. doi: 10.26355/eurrev_201912_19667
  369. Xu H, Zhang Y, Qi L, et al. NFIX circular RNA promotes glioma progression by regulating miR-34a-5p via notch signaling pathway. Front Mol Neurosci. 2018;11:225. doi: 10.3389/fnmol.2018.00225
  370. Xu Y, Yao Y, Leng K, et al. Increased expression of circular RNA circ_0005230 indicates dismal prognosis in breast cancer and regulates cell proliferation and invasion via miR-618/CBX8 signal pathway. Cell Physiol Biochem. 2018;51(4):1710–1722. doi: 10.1159/000495675
  371. Xu Y, Yu J, Huang Z, et al. Circular RNA hsa_circ_0000326 acts as a miR-338-3p sponge to facilitate lung adenocarcinoma progression. J Exp Clin Cancer Res. 2020;39(1):1–14.doi: 10.1186/s13046-020-01556-4
  372. Xu Z, Li P, Fan L, Wu М. The Potential Role of circRNA in Tumor Immunity Regulation and Immunotherapy. Front Immunol. 2018;9:9. doi: 10.3389/fimmu.2018.00009
  373. Yan B, Zhang W, Mao XW, Jiang LY. Circular RNA ciRS-7 correlates with advance disease and poor prognosis, and its down-regulation inhibits cells proliferation while induces cells apoptosis in non-small cell lung cancer. Eur Rev Med Pharmacol Sci. 2018;22(24): 8712–8721. doi: 10.26355/eurrev_201812_16636
  374. Yan L, Liu G, Cao H, et al. Hsa_circ_0035483 sponges hsa-miR-335 to promote the gemcitabine-resistance of human renal cancer cells by autophagy regulation. Biochem Biophys Res Commun. 2019;519(1):172–178. doi: 10.1016/j.bbrc.2019.08.093
  375. Yang C, Sudderth J, Dang T, et al. Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. Cancer Res. 2009;69(20):7986–7993. doi: 10.1158/0008-5472.CAN-09-2266
  376. Yang F, Liu DY, Guo JT, et al. Circular RNA circ-LDLRAD3as a biomarker in diagnosis of pancreatic cancer. World J Gastroenterol. 2017;23(47):8345–8354. doi: 10.3748/wjg.v23.i47.8345
  377. Yang H, Li X, Meng Q, et al. CircPTK2 (hsa_circ_0005273) as a novel therapeutic target for metastatic colorectal cancer. Mol Cancer. 2020.19(1):1–15. doi: 10.1186/s12943-020-1139-3
  378. Yang P, Yun K, Zhang R, et al. CircRNA circ-ATAD1 is downregulated in endometrial cancer and suppresses cell invasion and migration by downregulating miR-10a through methylation. Mamm Genome. 2021;32(6):488–494. doi: 10.1007/s00335-021-09899-9
  379. Yang R, Wang RC. Research Techniques Made Simple: Studying Circular RNA in Skin Diseases. J Invest Dermatol. 2021;141(10):2313–2319.e1. doi: 10.1016/j.jid.2021.07.156
  380. Yang X, Liu L, Zou H, et al. circZFR promotes cell proliferation and migration by regulating miR-511/AKT1 axis in hepatocellular carcinoma. Dig Liver Dis. 2019;51(10):1446–1455.doi: 10.1016/j.dld.2019.04.012
  381. Yang Y, Fan X, Mao M, et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 2017;27(5):626–641. doi: 10.1038/cr.2017.31
  382. Yang Y, Gao X, Zhang M, et al. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst. 2018;110(3):304–315. doi: 10.1093/jnci/djx166
  383. Yang Y, Wang Z. IRES-mediated cap-independent translation, a path leading to hidden proteome. J Mol Cell Biol. 2019;11(10):911–919. doi: 10.1093/jmcb/mjz091
  384. Yang W, Gong P, Yang Y, et al. Circ-ABCB10 contributes to paclitaxel resistance in breast cancer through let-7a-5p/DUSP7 axis. Cancer Biother Radiopharm. 2021;36(4):347–359.doi: 10.1089/cbr.2020.3578
  385. Yang W, Gu J, Wang X, et al. Inhibition of circular RNA CDR1as increases chemosensitivity of 5-FU-resistant BC cells through up-regulating miR-7. J Cell Mol Med. 2019;23(5):3166–3177. doi: 10.1111/jcmm.14171
  386. Yang Y, Gao X, Zhang M, et al. Novel Role of FBXW7 Circular RNA in Repressing Glioma Tumorigenesis. J Natl Cancer Inst. 2018;110(3):304–15. doi: 10.1093/jnci/djx166
  387. Yang Z, Xie L, Han L, et al. Circular RNAs: regulators of cancer-related signaling pathways and potential diagnostic biomarkers for human cancers. Theranostics. 2017;7(12):3106–3117. doi: 10.7150/thno.19016
  388. Yang Z, He T, Chen Q. The Roles of CircRNAs in Regulating Muscle Development of Livestock Animals. Front Cell Dev Biol. 2021;9:619329. doi: 10.3389/fcell.2021.619329
  389. Yang ZG, Awan F.M, Du WW, et al. The Circular RNA Interacts with STAT3, Increasing Its Nuclear Translocation and Wound Repair by Modulating Dnmt3a and miR-17 Function. Mol Ther. 2017;25(9):2062–2074. doi: 10.1016/j.ymthe.2017.05.022
  390. Yao D, Zhang L, Zheng M, et al. Circ2Disease: a manually curated database of experimentally validated circRNAs in human disease. Sci Rep. 2018;8(1):1–6. doi: 10.1038/s41598-018-29360-3
  391. Yao W, Guo P, Mu Q, Wang Y. Exosome-derived circ-PVT1 contributes to cisplatin resistance by regulating autophagy, invasion, and apoptosis via miR-30a-5p/YAP1 axis in gastric cancer cells. Cancer Biother Radiopharm. 2021;36(4):347–359. doi: 10.1089/cbr.2020.3578
  392. Ye CY, Chen L, Liu C, Zhu QH, Fan L. Widespread noncoding circular RNAs in plants. New Phytol. 2015;208(1):88–95. doi: 10.1111/nph.13585
  393. Ye J, Li J, Zhao P. Roles of ncRNAs as ceRNAs in Gastric Cancer. Genes (Basel). 2021;12(7):1036. doi: 10.3390/genes12071036
  394. Ye Q, Qi C, Xi M, Ye G. Circular RNA hsa_circ_0001874 is an indicator for gastric cancer. J Clin Lab Anal. 2021;35(7):e23851. doi: 10.1002/jcla.23851
  395. Ye Y, Zhao L, Li Q, et al. circ_0007385 served as competing endogenous RNA for miR-519d-3p to suppress malignant behaviors and cisplatin resistance of non-small cell lung cancer cells.Thorac Cancer. 2020;11(8):2196–2208. doi: 10.1111/1759-7714.13527
  396. Yi YY, Yi J, Zhu X, et al. Circular RNA of vimentin expression as a valuable predictor for acute myeloid leukemia development and prognosis. J. Cell Physiol. 2019;234(4):3711–3719.doi: 10.1002/jcp.27145
  397. Yin H, Cui X. Knockdown of circHIPK3 facilitates temozolomide sensitivity in glioma by regulating cellular behaviors through miR-524-5p/KIF2A-mediated PI3K/AKT pathway. Cancer Biother Radiopharm. 2021;36(7):556–567. doi: 10.1089/cbr.2020.3575
  398. You X, Vlatkovic I, Babic A, et al. Neural circular RNAs are derived from synaptic genes and regulated by development andplasticity. Nat Neurosci. 2015;18(4):603–610. doi: 10.1038/nn.3975
  399. Yu DD, Wu Y, Shen HY, et al. Exosomes in development, metastasis and drug resistance of breast cancer. Cancer Sci. 2015;106(8):959–64. doi: 10.1111/cas.12715
  400. Yu J, Ding WB, Wang MC, et al. Plasma circular RNA panel to diagnose hepatitis B virus-related hepatocellular carcinoma:A large-scale, multicenter study. Int J Cancer. 2020;146(6):1754–1763. doi: 10.1002/ijc.32647
  401. Yu W, Peng W, Sha H, Li J. Hsa_circ_0003998 promotes chemoresistance via modulation of miR-326 in lung adenocarcinoma cells. Oncol Res. 2019;27(5):623–628.doi: 10.3727/096504018X15420734828058
  402. Yuan G, Zhao Y, Wu D, Gao C. Mir-150 up-regulates Glut1 and increases glycolysis in osteosarcoma cells. Asian Pac J Cancer Prev. 2017;18(4):1127–1131
  403. Yuan W, Zhou R, Wang J, et al. Circular RNA Cdr1as sensitizes bladder cancer to cisplatin by upregulating APAF1 expression through miR-1270 inhibition. Моl Oncol. 2019;13(7):1559–1576. doi: 10.1002/1878-0261.12523
  404. Zahra K, Dey T, Ashish MSP, Pandey U. Pyruvate kinase M2 and cancer: the role of PKM2 in promoting tumorigenesis. Front Oncol. 2020;10:159. doi: 10.3389/fonc.2020.00159
  405. Zang H, Li Y, Zhang X, Huang G. Circ-RNF111 contributes to paclitaxel resistance in breast cancer by elevating E2F3 expression via miR-140-5p. Thorac Cancer. 2020;11(7):1891–903. doi: 10.1111/1759-7714.13475
  406. Zeng Y, Du WW, Wu Y, et al. Circular RNA Binds To and Activates AKT Phosphorylation and Nuclear Localization Reducing Apoptosis and Enhancing Cardiac Repair. Theranostics. 2017;7(16):3842–3855. doi: 10.7150/thno.19764
  407. Zhang M, Bai X, Zeng X, et al. circRNA-miRNA-mRNA in breast cancer. Clin Chim Acta. 2021;523:120–130.doi: 10.1016/j.cca.2021.09.013
  408. Zhang H, Yan J, Lang X, Zhuang Y. Expression of circ_001569 is upregulated in osteosarcoma and promotes cell proliferation and cisplatin resistance by activating the Wnt/β-catenin signaling pathway. Oncol Lett. 2018;16(5):5856–62. doi: 10.3892/ol.2018.9410
  409. Zhang J, Hou L, Zuo Z, et al. Comprehensive profiling of circular RNAs with nanopore sequencing and CIRI-long. Nat Biotechnol. 2021;39(7):836–845.doi: 10.1038/s41587-021-00842-6
  410. Zhang L, Zhou Q, Qiu Q, et al. CircPLEKHM3 acts as a tumor suppressor through regulation of the miR-9/BRCA1/DNAJB6/KLF4/AKT1 axis in ovarian cancer. Моl Cancer. 2019;18(1):1–19. doi: 10.1186/s12943-019-1080-5
  411. Zhang M, Huang N, Yang X, et al. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene. 2018;37(13):1805–1814.doi: 10.1038/s41388-017-0019-9
  412. Zhang M, Zhao K, Xu X, et al. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat Commun. 2018;9(1):4475.doi: 10.1038/s41467-018-06862-2
  413. Zhang MY, Guo BH. Comprehensive analysis of competitive endogenous RNA network in colorectal cancer. Transl Cancer Res. 2020;9(7):4306–4316. doi: 10.21037/tcr-19-2973
  414. Zhang PF, Pei X, Li KS, et al. Circular RNA circFGFR1 promotes progression and anti-PD-1 resistance by sponging miR-381-3p in non-small cell lung cancer cells. Mol Cancer. 2019;18(1):179. doi: 10.1186/s12943-019-1111-2
  415. Zhang Р, Xu J, Zhao J, et al. Silencing of hsa_circ_0007534 suppresses proliferation and induces apoptosis in colorectal cancer cells. Eur Rev Med Pharmacol Sci. 2018;22(1):118–126
  416. Zhang S, Cheng J, Quan C, et al. circCELSR1 (hsa_circ_0063809) contributes to paclitaxel resistance of ovarian cancer cells by regulating FOXR2 expression via miR-1252. Mol Ther Nucleic Acids. 2019;19:718–730. doi: 10.1016/j.omtn.2019.12.005
  417. Zhang X, Wang S, Wang H, et al. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Моl Cancer. 2019;18(1):1–24.doi: 10.1186/s12943-018-0935-5
  418. Zhang XL, Xu LL, Wang F. Hsa_circ_0020397 regulates colorectal cancer cell viability, apoptosis and invasion by promoting the expression of the miR-138 targets TERT and PD-L1. Cell Biol. Int. 2017;41(9):1056–1064. doi: 10.1002/cbin.10826
  419. Zhang X, Xu Y, Qian Z, et al. CircRNA_104075 stimulates YAP-dependent tumorigenesis through the regulation of HNF4a and may serve as a diagnostic marker in hepatocellular carcinoma. Cell Death Dis. 2018;9(11):1–14. doi: 10.1038/s41419-018-1132-6
  420. Zhang X, Yang D, Wei Y. Overexpressed CDR1as functions as an oncogene to promote the tumor progression via miR-7 in non-small-cell lung cancer. Oncol Targets Ther. 2018;11:3979–3987. doi: 10.2147/ott.s158316
  421. Zhang X-L, Xu L-L, Wang F. Hsa_circ_0020397 regulates colorectal cancer cell viability, apoptosis and invasion by promoting the expression of the miR-138 targets TERT and PD-L1. Cell Biol Int. 2017;41(9):1056–1064. doi: 10.1002/cbin.10826
  422. Zhang XO, Wang HB, Zhang Y, et al. Complementary sequence-mediated exon circularization. Cell. 2014;159(1):134–147. doi: 10.1016/j.cell.2014.09.001
  423. Zhang Z, Yu X, Zhou B, et al. Circular RNA circ_0026359 enhances cisplatin resistance in gastric cancer via targeting miR-1200/POLD4 pathway. Biomed Res Int. 2020;2020:5103272. doi: 10.1155/2020/5103272
  424. Zhang Y, Zhang X.-O, Chen T, et al. Circular intronic long noncoding RNAs. Mol Cell. 2013;51(6):792–806. doi: 10.1016/j.molcel.2013.08.017
  425. Zhang Y, Liu Q, Liao Q. CircHIPK3: a promising cancer-related circular RNA. Am J Transl Res. 2020;12(10):6694–6704.eCollection 2020
  426. Zhang ZJ, Zhang YH, Qin XJ, Wang YX, Fu J. CircularRNA circDENND4C facilitates proliferation, migration and glycolysis of colorectal cancer cells through miR-760/GLUT1 axis. Eur Rev Med Pharmacol Sci. 2020;24(5):2387–2400.doi: 10.26355/eurrev_202003_20506
  427. Zhao X, Cai Y, Xu J. Circular RNAs: biogenesis, mechanism, and function in human cancers. Int J Mol Sci. 2019;20(16):3926. doi: 10.3390/ijms20163926
  428. Zhao X, Wang Y, Yu Q, et al. Circular RNAs in gastrointestinal cancer: Current knowledge, biomarkers and targeted therapy (Review). Int J Mol Med. 2020;46(5):1611–1632. doi: 10.3892/ijmm.2020.4731
  429. Zhao W, Cheng Y, Zhang C, et al. Genome-wide identification and characterization of circular RNAs by high throughput sequencing in soybean. Sci Rep. 2017;7(1):5636. doi: 10.1038/s41598-017-05922-9
  430. Zhao X, Dai D, Li X, et al. A polymorphism within the mismatch repair gene predicts prognosis and adjuvant chemotherapy benefit in gastric cancer. Gastric Cancer. 2019;22(6):1121–1129.doi: 10.1007/s10120-019-00962-8
  431. Zhao Z, Ji M, Wang Q. He N, Li Y. Circular RNA Cdr1as upregulates SCAI to suppress cisplatin resistance in ovarian cancer via miR-1270 suppression. Mol Ther Nucleic Acids. 2019;18:24–33. doi: 10.1016/j.omtn.2019.07.012
  432. Zheng F, Xu R. CircPVT1 contributes to chemotherapy resistance of lung adenocarcinoma through miR-145-5p/ABCC1 axis. Biomed Pharmacother. 2020;124:109828.doi: 10.1016/j.biopha.2020.109828
  433. Zheng Q, Bao C, Guo W, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun. 2016;7:11215. doi: 10.1038/ncomms11215
  434. Zheng X, Chen L, Zhou Y, et al. A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling. Mol Cancer. 2019;18(1):47. doi: 10.1186/s12943-019-1010-6
  435. Zheng Y, Ji P, Chen S, Hou L, Zhao F. Reconstruction of full-length circular RNAs enables isoform-level quantification. Genome Med. 2019;11(1):1–20. doi: 10.1186/s13073-019-0614-1
  436. Zhong Z, Lv M, Chen J. Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma.Sci Rep. 2016;6:30919. doi: 10.1038/srep30919
  437. Zhou C, Molinie, B, Daneshvar K, et al. Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs. Cell Rep. 2017;20(9):2262–2276. doi: 10.1016/j.celrep.2017.08.027
  438. Zhou J, Zhang S, Chen Z, et al. CircRNA-ENO1 promoted glycolysis and tumor progression in lung adenocarcinoma through upregulating its host gene ENO1. Cell Death Dis. 2019;10(12):1–12. doi: 10.1038/s41419-019-2127-7
  439. Zhou LH, Yang YC, Zhang RY, et al. CircRNA_0023642 promotes migration and invasion of gastric cancer cells by regulating EMT. Eur Rev Med Pharmacol Scie. 2018;22(8):2297–2303.doi: 10.26355/eurrev_201804_14818
  440. Zhou LY, Zhai M, Huang Y, et al. The circular RNA ACR attenuates myocardial ischemia/reperfusion injury by suppressing autophagy via modulation of the Pink1/ FAM65B pathway. Cell Death Differ. 2019;26(7):1299–1315. doi: 10.1038/s41418-018-0206-4
  441. Zhou J, Zhang S, Chen Z, et al. CircRNA-ENO1 promoted glycolysis and tumor progression in lung adenocarcinoma through upregulating its host gene ENO1. Cell Death Dis. 2019;10(12):885. doi: 10.1038/s41419-019-2127-7
  442. Zhou Y, Zheng X, Xu B, et al. Circular RNA hsa_circ_0004015 regulates the proliferation, invasion, and TKI drug resistance of non-small cell lung cancer by miR-1183/PDPK1 signaling pathway. Biochem BiophysRes Commun. 2019;508(2):527–535. doi: 10.1016/j.bbrc.2018.11.157
  443. Zhou ZB, Niu YL, Huang GX, et al. Silencing of circRNA.2837 Plays a Protective Role in Sciatic Nerve Injury by Sponging the miR-34 Family via Regulating Neuronal Autophagy. Mol Ther Nucleic Acids. 2018;12:718–729. doi: 10.1016/j.omtn.2018.07.011
  444. Zhu KP, Zhang CL, Ma XL, et al. Analyzing the interactions of mRNAs and ncRNAs to predict competing endogenous RNA networks in osteosarcoma chemo-resistance. Mol Ther. 2019;27(3):518–530. doi: 10.1016/j.ymthe.2019.01.001
  445. Zhu X, Wang X, Wei S, et al. hsa_circ_0013958: a circular RNA and potential novel biomarker for lung adenocarcinoma. FEBS J. 2017;284(14):2170–2182. doi: 10.1111/febs.14132
  446. Zong ZH, Du YP, Guan X, Chen S, Zhao Y. CircWHSC1 promotes ovarian cancer progression by regulating MUC1 and hTERT through sponging miR-145 and miR-1182. Clin Cancer Res. 2019;38:437. doi: 10.1186/s13046-019-1437-z

Copyright (c) 2023 Vashchenko V.I., Chuklovin A.B., Shabanov P.D.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».