Relationship of clinical efficacy of glucose lowering agents, gut microbiota, diet, and patient’s genotype in diabetes mellitus type 2
- Authors: Urakov A.L.1, Gurevich K.G.2, Sorokina I.A.3, Lovtsova L.V.3, Zanozina O.V.3, Barsuk A.L.3
-
Affiliations:
- Izhevsk State Medical Academy
- Moscow State Medical and Stomatological University
- Povolzhskii Research Medical University
- Issue: Vol 16, No 4 (2018)
- Pages: 11-18
- Section: Articles
- URL: https://journals.rcsi.science/RCF/article/view/11083
- DOI: https://doi.org/10.17816/RCF16411-18
- ID: 11083
Cite item
Full Text
Abstract
The review is devoted to revealing the connection between the intestinal microflora, diet and the effectiveness of glucose – lowering therapy in patients with type 2 diabetes. Potential targets and the effects of oral and injectable hypoglycemic agents on microbiota in this category of patients are considered. The work reflects modern views on hypoglycemic drugs from the standpoint of the science of metabolomics within the framework of personalized medicine.
Full Text
##article.viewOnOriginalSite##About the authors
Aleksandr L. Urakov
Izhevsk State Medical Academy
Author for correspondence.
Email: urakoval@live.ru
Dr. Med. Sci., Professor, Head, Department of General and Clinical Pharmacology
Russian Federation, IzhevskKonstantin G. Gurevich
Moscow State Medical and Stomatological University
Email: kgurevich@mail.ru
PhD, Professor, Head, Department of UNESCO
Russian Federation, MoscowIuliia A. Sorokina
Povolzhskii Research Medical University
Email: zwx@inbox.ru
PhD, Assistant Professor, Department of General and Clinical Pharmacology
Russian Federation, Nizhnii NovgorodLiubov V. Lovtsova
Povolzhskii Research Medical University
Email: lovcovalubov@mail.ru
Dr. Med. Sci., Assistant Professor, Head, Department of General and Clinical Pharmacology
Russian Federation, Nizhnii NovgorodOlga V. Zanozina
Povolzhskii Research Medical University
Email: zwx2@mail.ru
Dr. Med. Sci., Professor, Department of Hospital Therapy
Russian Federation, Nizhnii NovgorodAleksandr L. Barsuk
Povolzhskii Research Medical University
Email: bar-suk@yandex.ru
PhD, Assistant Professor, Department of General and Clinical Pharmacology
Russian Federation, Nizhnii NovgorodReferences
- Архангельская А.Н., Анищенко А.П., Рогозная Е.В., и др. Проблемы рационального питания в РФ // Университетская медицина Урала. - 2016. - Т. 2. - № 1. - С. 6-9. [Arkhangel’skaya AN, Anishchenko AP, Rogoznaya EV, et al. Problemy ratsional’nogo pitaniya v RF. Universitetskaya meditsina Urala. 2016;2(1):6-9. (In Russ.)]
- Гуревич К.Г., Никитюк Д.Б., Никонов Е.Л., и др. Роль пробиотиков и микробиоты в пищеварении, метаболизме нутриентов, гормонов и поддержании гормонального фона // Профилактическая медицина. - 2018. - Т. 21. - № 3. - С. 45-50. [Gurevich KG, Nikityuk DB, Nikonov EL, et al. The role of probiotics and microbiota in digestion, nutrient and hormone metabolism, and hormonal background maintenance. Profilakticheskaya meditsina. 2018;21(3):45-50. (In Russ.)]
- Дементьев В.Б., Ураков А.Л., Уракова Н.А. Тело человека как источник физико-химических факторов локального взаимодействия и основа создания материалов с новыми свойствами // Морфологические ведомости. - 2016. - Т. 24. - № 2. - С. 24-29. [Dement’ev VB, Urakov AL, Urakova NA. The human body as a source of physico-chemical factors of local interaction and the basis for the creation of materials with new properties. Morphological newsletter. 2016;24(2):24-29. (In Russ.)]
- Козлова А.С., Пятибрат А.О., Бузник Г.В., и др. Возможные молекулярно-генетические предикторы развития патологии локомоторной системы при экстремальных физических нагрузках // Обзоры по клинической фармакологии и лекарственной терапии. - 2015. - Т. 13. - № 3. - С. 53-62. [Kozlova AS, Pyatibrat AO, Buznik GV, et al. Probable molecular genetic predictors for development of the locomotor system pathology in the extreme physical exertion. Reviews on Clinical Pharmacology and Drug Therapy. 2015;13(3):53-62. (In Russ.)]. doi: 10.17816/RCF13353-62.
- Козлова А.С., Пятибрат А.О., Мельнов С.Б., и др. Полиморфизм генов системы биотрансформации ксенобиотиков и его роль в индивидуализации фармакотерапевтической поддержки лиц, подвергающихся тяжелым психофизическим нагрузкам // Обзоры по клинической фармакологии и лекарственной терапии. - 2015. - Т. 13. - № 2. - С. 43-48. [Kozlova AS, Pyatibrat AO, Mel’nov SB, et al. Polymorphisms of xenobiotic biotransformation genes and their role in individualization of pharmacological therapy and support of humans after heavy psychophysical loading. Reviews on Clinical Pharmacology and Drug Therapy. 2015;13(2):43-48. (In Russ.)]. doi: 10.17816/RCF13243-48.
- Козлова А.С., Пятибрат А.О., Пономарев Г.Н., и др. Молекулярно-генетические предикторы развития патологии локомоторной системы на фоне экстремальных физических нагрузок // Спортивная медицина, рекреация, реабилитация и АФК. - 2015. - № 3. - С. 84-92. [Kozlova AS, Pyatibrat AO, Ponomarev GN, et al. Molecular genetic predictors for development of the locomotor system pathology on the background of extreme physical exertion. Sportivnaya meditsina, rekreatsiya, reabilitatsiya i AFK. 2015;(3):84-92. (In Russ.)]
- Никонов Е.Л., Гуревич К.Г. Микробиота различных локусов организма. - М., 2017. [Nikonov EL, Gurevich KG. Mikrobiota razlichnykh lokusov organizma. Moscow; 2017. (In Russ.)]
- Пятибрат А.О., Мельнов С.Б., Козлова А.С., Шабанов П.Д. Особенности биохимических изменений при выполнении задач в экстремальных условиях у военнослужащих с различными генотипами генов-регуляторов метаболизма // Медико-биологические и социально-психологические проблемы безопасности в чрезвычайных ситуациях. - 2015. - № 3. - C. 67-77. [Pyatibrat AO, Mel’nov SB, Kozlova AS, Shabanov PD. Character of biochemical changes in military men with different genotypes of metabolism regulator genes when performing tasks in extreme conditions. Medico-biological and socio-psychological problems of safety in emergency situations. 2015;(3):67-77. (In Russ.)]
- Рогозная Е.В., Игнатов Н.Г., Матосян К.А., и др. Ожирение: новый взгляд на старую проблему // Доказательная гастроэнтерология. - 2016. - Т. 5. - № 1. - С. 16-21. [Rogoznaya EV, Ignatov NG, Matosyan KA, et al. Obesity: the new view of the old problem. Evidence-based gastroenterology. 2016;5(1):16-21. (In Russ.)]
- Сорокина Ю.А., Занозина О.В., Ловцова Л.В., Занозин А.В. Фармакоэкономическое обоснование приемлемости генотипирования пациентов с впервые выявленным сахарным диабетом 2-го типа при применении препарата метформин // Медицинский совет. - 2016. - № 19. - С. 126-130. [Sorokina YA, Zanozina OV, Lovtsova LV, Zanozin AV. Pharmacoeconomical approval of genotyping eligibility in patients with diabetes mellitus type 2 taking metformin. Meditsinskiy sovet. 2016;(19):126-130. (In Russ.)]. doi: 10.21518/2079-701X-2016-19-126-130.
- Alvarez-Curto E, Milligan G. Metabolism meets immunity: The role of free fatty acid receptors in the immune system. Biochem Pharmacol. 2016;114:3-13. doi: 10.1016/j.bcp.2016.03.017.
- Arora T, Backhed F. The gut microbiota and metabolic disease: current understanding and future perspectives. J Intern Med. 2016;280(4):339-49. doi: 10.1111/joim.12508.
- Bai J, Zhu Y, Dong Y. Response of gut microbiota and inflammatory status to bitter melon (Momordica charantia L.) in high fat diet induced obese rats. J Ethnopharmacol. 2016;194:717-726. doi: 10.1016/j.jep.2016.10.043.
- Boutagy NE, McMillan RP, Frisard MI, Hulver MW. Metabolic endotoxemia with obesity: Is it real and is it relevant? Biochimie. 2016;124:11-20. doi: 10.1016/j.biochi.2015.06.020.
- Calanna S, Christensen M, Holst JJ, et al. Secretion of glucagon-like peptide-1 in patients with type 2 diabetes mellitus: systematic review and meta-analyses of clinical studies. Diabetologia. 2013;56(5):965-972. doi: 10.1007/s00125-013-2841-0.
- Calvani R, Picca A, Lo Monaco MR, et al. Of Microbes and Minds: A Narrative Review on the Second Brain Aging. Front Med (Lausanne). 2018;5:53. doi: 10.3389/fmed.2018.00053.
- Cho YM. Incretin physiology and pathophysiology from an Asian perspective. J Diabetes Investig. 2015;6(5):495-507. doi: 10.1111/jdi.12305.
- Clarke G, Stilling RM, Kennedy PJ, et al. Minireview: Gut microbiota: the neglected endocrine organ. Mol Endocrinol. 2014;28(8):1221-1238. doi: 10.1210/me.2014-1108.
- Clemmensen C, Smajilovic S, Smith EP, et al. Oral L-arginine stimulates GLP-1 secretion to improve glucose tolerance in male mice. Endocrinology. 2013;154(11):3978-83. doi: 10.1210/en.2013-1529.
- Dabrowska K, Witkiewicz W. Correlations of Host Genetics and Gut Microbiome Composition. Front Microbiol. 2016;7:1357. doi: 10.3389/fmicb.2016.01357.
- Davenport ER. Elucidating the role of the host genome in shaping microbiome composition. Gut Microbes. 2016;7(2):178-184. doi: 10.1080/19490976.2016.1155022.
- Davenport ER, Cusanovich DA, Michelini K, et al. Genome-Wide Association Studies of the Human Gut Microbiota. PLoS One. 2015;10(11):e0140301. doi: 10.1371/journal.pone.0140301.
- David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559-563. doi: 10.1038/nature 12820.
- Evans CC, LePard KJ, Kwak JW, et al. Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS One. 2014;9(3): e92193. doi: 10.1371/journal.pone.0092193.
- Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA. 2013;110(22):9066-71. doi: 10.1073/pnas.1219451110.
- Everard A, Cani PD. Diabetes, obesity and gut microbiota. Best Pract Res Clin Gastroenterol. 2013;27(1):73-83. doi: 10.1016/j.bpg.2013.03.007.
- Everard A, Cani PD. Gut microbiota and GLP-1. Rev Endocr Metab Disord. 2014;15(3):189-196. doi: 10.1007/s11154-014-9288-6.
- Forslund K, Hildebrand F, Nielsen T, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528(7581):262-266. doi: 10.1038/nature15766.
- Fujisaka S, Avila-Pacheco J, Soto M, et al. Diet, Genetics, and the Gut Microbiome Drive Dynamic Changes in Plasma Metabolites. Cell Rep. 2018;22(11):3072-3086. doi: 10.1016/j.celrep.2018.02.060.
- Geurts L, Neyrinck AM, Delzenne NM, et al. Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: novel insights into molecular targets and interventions using prebiotics. Benef Microbes. 2014;5(1):3-17. doi: 10.3920/BM2012.0065.
- Grasset E, Puel A, Charpentier J, et al. A Specific Gut Microbiota Dysbiosis of Type 2 Diabetic Mice Induces GLP-1 Resistance through an Enteric NO-Dependent and Gut-Brain Axis Mechanism. Cell Metab. 2017;25(5):1075-1090.e1075. doi: 10.1016/j.cmet.2017.04.013.
- Greiner TU, Backhed F. Microbial regulation of GLP-1 and L-cell biology. Mol Metab. 2016;5(9):753-758. doi: 10.1016/j.molmet.2016.05.012.
- Greiner TU, Hyotylainen T, Knip M, et al. The gut microbiota modulates glycaemic control and serum metabolite profiles in non-obese diabetic mice. PLoS One. 2014;9(11):e110359. doi: 10.1371/journal.pone.0110359.
- Gu Y, Wang X, Li J, et al. Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment. Nat Commun. 2017;8(1):1785. doi: 10.1038/s41467-017-01682-2.
- Heiman ML, Greenway FL. A healthy gastrointestinal microbiome is dependent on dietary diversity. Mol Metab. 2016;5(5):317-320. doi: 10.1016/j.molmet.2016.02.005.
- Kho ZY, Lal SK. The Human Gut Microbiome - A Potential Controller of Wellness and Disease. Front Microbiol. 2018;9:1835. doi: 10.3389/fmicb.2018.01835.
- Lee DM, Battson ML, Jarrell DK, et al. SGLT2 inhibition via dapagliflozin improves generalized vascular dysfunction and alters the gut microbiota in type 2 diabetic mice. Cardiovasc Diabetol. 2018;17(1):62. doi: 10.1186/s12933-018-0708-x.
- Li DY, Tang WHW. Gut Microbiota and Atherosclerosis. Curr Atheroscler Rep. 2017;19(10):39. doi: 10.1007/s11883-017-0675-9.
- Li J, Lin S, Vanhoutte PM, et al. Akkermansia Muciniphila Protects Against Atherosclerosis by Preventing Metabolic Endotoxemia-Induced Inflammation in Apoe-/- Mice. Circulation. 2016;133(24):2434-2446. doi: 10.1161/CIRCULATIONAHA.115.019645.
- Lyu Q, Hsu CC. Can Diet Influence Our Health by Altering Intestinal Microbiota-Derived Fecal Metabolites? mSystems. 2018;3(2). doi: 10.1128/mSystems.00187-17.
- Mathewson ND, Jenq R, Mathew AV, et al. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat Immunol. 2016;17(5):505-513. doi: 10.1038/ni.3400.
- Meijers B, Farre R, Dejongh S, et al. Intestinal Barrier Function in Chronic Kidney Disease. Toxins (Basel). 2018;10(7). pii: E298. doi: 10.3390/toxins10070298.
- Montandon SA, Jornayvaz FR. Effects of Antidiabetic Drugs on Gut Microbiota Composition. Genes (Basel). 2017;8(10). pii: E250. doi: 10.3390/genes8100250.
- Psichas A, Sleeth ML, Murphy KG, et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J Obes (Lond). 2015;39(3):424-429. doi: 10.1038/ijo.2014.153.
- Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55-60. doi: 10.1038/nature11450.
- Seino Y, Kuwata H, Yabe D. Incretin-based drugs for type 2 diabetes: Focus on East Asian perspectives. J Diabetes Investig. 2016;7 Suppl 1:102-109. doi: 10.1111/jdi.12490.
- Shen J, Obin MS, Zhao L. The gut microbiota, obesity and insulin resistance. Mol Aspects Med. 2013;34(1):39-58. doi: 10.1016/j.mam.2012.11.001.
- Sonnenburg JL, Backhed F. Diet-microbiota interactions as moderators of human metabolism. Nature. 2016;535(7610):56-64. doi: 10.1038/nature18846.
- Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693(Pt B):128-133. doi: 10.1016/j.brainres.2018.03.015.
- Tamburini S, Shen N, Wu HC, Clemente JC. The microbiome in early life: implications for health outcomes. Nat Med. 2016;22(7):713-722. doi: 10.1038/nm.4142.
- Tomas J, Mulet C, Saffarian A, et al. High-fat diet modifies the PPAR-gamma pathway leading to disruption of microbial and physiological ecosystem in murine small intestine. Proc Natl Acad Sci USA. 2016;113(40):E5934-E5943. doi: 10.1073/pnas.1612559113.
- Tuomainen M, Lindstrom J, Lehtonen M, et al. Associations of serum indolepropionic acid, a gut microbiota metabolite, with type 2 diabetes and low-grade inflammation in high-risk individuals. Nutr Diabetes. 2018;8(1):35. doi: 10.1038/ s41387-018-0046-9.
- Ussar S, Fujisaka S, Kahn CR. Interactions between host genetics and gut microbiome in diabetes and metabolic syndrome. Mol Metab. 2016;5(9):795-803. doi: 10.1016/j.molmet.2016.07.004.
- Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913-916 e917. doi: 10.1053/j.gastro.2012.06.031.
- Wang R, Zang P, Chen J, et al. Gut Microbiota Play an Essential Role in the Antidiabetic Effects of Rhein. Evid Based Complement Alternat Med. 2018;2018:6093282. doi: 10.1155/2018/6093282.
- Weiss GA, Hennet T. Mechanisms and consequences of intestinal dysbiosis. Cell Mol Life Sci. 2017;74(16):2959-77. doi: 10.1007/s00018-017-2509-x.
- Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105-108. doi: 10.1126/science.1208344.
- Xu P, Hong F, Wang J, et al. DBZ is a putative PPARgamma agonist that prevents high fat diet-induced obesity, insulin resistance and gut dysbiosis. Biochim Biophys Acta Gen Subj. 2017;1861(11 Pt A):2690-2701. doi: 10.1016/j.bbagen.2017.07.013.
- Yamane S, Inagaki N. Regulation of glucagon-like peptide-1 sensitivity by gut microbiota dysbiosis. J Diabetes Investig. 2018;9(2):262-264. doi: 10.1111/jdi.12762.
- Yarandi SS, Peterson DA, Treisman GJ, et al. Modulatory Effects of Gut Microbiota on the Central Nervous System: How Gut Could Play a Role in Neuropsychiatric Health and Diseases. J Neurogastroenterol Motil. 2016;22(2):201-212. doi: 10.5056/jnm15146.
- Zhang J, Lu Y, Wang Y, et al. The impact of the intestinal microbiome on bone health. Intractable Rare Dis Res. 2018;7(3):148-155. doi: 10.5582/irdr.2018.01055.
- Zhang Q, Xiao X, Li M, et al. Vildagliptin increases butyrate-producing bacteria in the gut of diabetic rats. PLoS One. 2017;12(10):e0184735. doi: 10.1371/journal.pone.0184735.
