Role of glutamate receptor complex in the organism. Ligands of NMDA receptors in neurodegenerative processes – a modern state of the problem
- Authors: Dergachev V.D.1, Yakovleva E.E.1,2, Bychkov E.R.1, Piotrovskiy L.B.1, Shabanov P.D.1
-
Affiliations:
- Institute of Experimental Medicine
- St. Petersburg State Pediatric Medical University
- Issue: Vol 20, No 1 (2022)
- Pages: 17-28
- Section: Reviews
- URL: https://journals.rcsi.science/RCF/article/view/108251
- DOI: https://doi.org/10.17816/RCF20117-28
- ID: 108251
Cite item
Abstract
(S)-glutamic acid (glutamate) is the main excitatory mediator in the central nervous system, responsible for regulating of many physiological functions. Dysfunction of the glutamatergic system characterizes of many pathological conditions in neurology and psychiatry, and the aberrant function of glutamate receptors plays a key role in the development of neurodegenerative processes. Glutamate is crucial for many aspects of normal brain function, including memory, learning, and motor planning. In addition, glutamate is involved in the regulation of the peripheral nervous and endocrine systems. Glutamate receptors are critically important molecules necessary for the physiological functioning of the brain: they modulate neurotransmission and regulate the strength of excitatory and inhibitory transmission in the nervous system. In this regard, the use of drugs that affect glutamatergic transmission has an impact on the most important processes of neuronal transmission. The research and development of pharmacological agents involved in the processes of glutamate transmission is a relevant task of modern neuropsychopharmacology and has a purpose to improve the effectiveness and safety of available glutamatergic molecules.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Vladimir D. Dergachev
Institute of Experimental Medicine
Author for correspondence.
Email: eeiakovleva@mail.ru
Postgraduate student
Russian Federation, Saint PetersburgEkaterina E. Yakovleva
Institute of Experimental Medicine; St. Petersburg State Pediatric Medical University
Email: eeiakovleva@mail.ru
ORCID iD: 0000-0002-0270-0217
Cand. Sci. (Med.), Researcher
Russian Federation, Saint Petersburg; Saint PetersburgEugenii R. Bychkov
Institute of Experimental Medicine
Email: bychkov@mail.ru
ORCID iD: 0000-0002-8911-6805
SPIN-code: 9408-0799
Cand. Sci. (Med.), Head of the Laboratory
Russian Federation, Saint PetersburgLevon B. Piotrovskiy
Institute of Experimental Medicine
Email: levon-piotrovsky@yandex.ru
ORCID iD: 0000-0001-8679-1365
SPIN-code: 2927-6178
Dr. Sci. (Biol.), Professor, Head of the Laboratory
Russian Federation, Saint PetersburgPetr D. Shabanov
Institute of Experimental Medicine
Email: pdshabanov@mail.ru
ORCID iD: 0000-0003-1464-1127
SPIN-code: 8974-7477
Dr. Sci. (Med.), Professor and Head of the Department
Russian Federation, Saint PetersburgReferences
- Bespalov AJu, Zvartau Je. Neirofarmakologiya antagonistov NMDA-retseptorov. Saint Petersburg: Nevskii dialekt; 2000. 297 p. (In Russ.)
- Gereau RW, Swanson G, ed. The glutamate receptors. Springer Science & Business Media; 2008. 587 p.
- Fernández-Montoya J, Avendaño C, Negredo P. The glutamatergic system in primary somatosensory neurons and its involvement in sensory input-dependent plasticity. Int J Mol Sci. 2018;19(1):69. doi: 10.3390/ijms19010069
- Márquez J, Campos-Sandoval JA, Peñalver A, et al. Glutamate and brain glutaminases in drug addiction. Neurochem Res. 2017;42(3):846–857. doi: 10.1007/s11064-016-2137-0
- Traunelis SF, Wollmuth LP, McBain CJ, et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev. 2010;62(3):405–496. doi: 10.1124/pr.109.002451
- Kadieva MG, Oganesjan JeT, Zefirova ON. AMRA/KA and NMDA (glycine site) glutamate receptor subtypes antagonists. Kimiko-farmatsevticheskii zhurnal. 2008;42(2):21–30. (In Russ.) doi: 10.1007/s11094-008-0063-4
- Orth A, Tapken D, Hollmann M. The delta subfamily of glutamate receptors: characterization of receptor chimeras and mutants. Europ J Neurosci. 2013;37(10):1620–1630. doi: 10.1111/ejn.12193
- Hellyer S, Leach K, Gregory KJ. Neurobiological insights and novel therapeutic opportunities for CNS disorders from mGlu receptor allosteric and biased modulation. Curr Opin Pharmacol. 2017;32:49–55. doi: 10.1016/j.coph.2016.10.007
- Karakas E, Furukawa H. Crystal structure of a heterotetrameric NMDA receptor ion channel. Science. 2014;344(6187):992–997. doi: 10.1126/science.1251915
- Pachernegg S, Strutz-Seebohm N, Hollmann M. GluN3 subunit-containing NMDA receptors: not just one-trick ponies. Trends Neurosci. 2012;35(4):240–249. doi: 10.1016/j.tins.2011.11.010
- Vyklicky V, Korinek M, Smejkalova T, et al. Structure, function, and pharmacology of NMDA receptor channels. Physiol Res. 2014;63(1):191–203. doi: 10.33549/physiolres.932678
- Vance KM, Hansen KB, Traynelis SF. GluN1 splice variant control of GluN1/GluN2D NMDA receptors. J Physiol. 2012;590(16): 3857–3875. doi: 10.1113/jphysiol.2012.234062
- Lee CH, Lü W, Michel JC, et al. NMDA receptor structures reveal subunit arrangement and pore architecture. Nature. 2014;511(7508):191–197. doi: 10.1038/nature13548
- Gezelius H, López-Bendito G. Thalamic neuronal specification and early circuit formation. Dev Neurobiol. 2017;77(7):830–843. doi: 10.1002/dneu.22460
- Acker TM, Yuan H, Hansen KB, et al. Mechanism for noncompetitive inhibition by novel GluN2C/D N-methyl-D-aspartate receptor subunit-selective modulators. Mol Pharmacol. 2011;80(5):782–795. doi: 10.1124/mol.111.073239
- Gielen M, Retchless SB, Mony L, et al. Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature. 2009;459(7247):703–707. doi: 10.1038/nature07993
- Mony L, Zhu S, Carvalho S, et al. Molecular basis of positive allosteric modulation of GluN2B NMDA receptors by polyamines. EMBO J. 2011;30(15):3134–3146. doi: 10.1038/emboj.2011.203
- Eriksson M, Nilsson A, Froelich-Fabre S, et al. Cloning and expression of the human N-methyl-D-aspartate receptor subunit NR3A. Neurosci Lett. 2002;321(3):177–181. doi: 10.1016/S0304-3940(01)02524-1
- Jewett B.E., Thapa B. Physiology, NMDA Receptor. 2021 Des 15. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2022 Jan. PMID: 30137779. Available from: https://www.ncbi.nlm.nih.gov/books/NBK519495/. Accessed: March 17, 2022.
- Van Zundert B, Yoshii A, Constantine-Paton M. Receptor compartmentalization and trafficking at glutamate synapses: a developmental proposal. Trends Neurosci. 2004;27(7):428–437. doi: 10.1016/j.tins.2004.05.010
- Roberts AC, Díez-García J, Rodriguiz RM, et al. Downregulation of NR3A-containing NMDARs is required for synapse maturation and memory consolidation. Neuron. 2009;63(3):342–356. doi: 10.1016/j.neuron.2009.06.016
- Papouin T, Ladepiche L, Ruel J, et al. Synaptic and extrasynaptic NMDA-receptors are gated by different endogenous coagonists. Cell. 2012;150(3):633–646. doi: 10.1016/j.cell.2012.06.029
- Novytska-Usenko LV, Muslin VP, Kryshtafor AA. Two opposite effects of NMDA-receptors in terms of increased range of pharmacological neuroprotection in acute cerebral ischemia. Medicina neotlojnyh sostoyaniy. 2016;1(72):24–29. (In Russ.)
- Gladding CM, Raymond LA. Mechanisms underlying NMDA receptor synaptic/extrasynaptic distribution and function. Mol Cell Neurosci. 2011;48(4):308–320. doi: 10.1016/j.mcn.2011.05.001
- Perfilova VN, Tyurenkov IN. Glutamate ionotropic receptors: structure, localisation, function. Progress Physiol Sci. 2016;47(1): 80–96. (In Russ.)
- Akkuratov EE, Westin L, Vazquez-Juarez E, et al. Ouabain Modulates the Functional Interaction Between Na, K-ATPase and NMDA Receptor. Mol Neurobiol. 2020;57(10):4018–4030 (2020). doi: 10.1007/s12035-020-01984-5
- Traynelis SF, Burgess MF, Zheng F, et al. Control of voltage-independent zinc inhibition of NMDA receptors by the NR1 subunit. J Neurosci. 1998;18(16):6163–6175. doi: 10.1523/JNEUROSCI.18-16-06163.1998
- Kew JN, Kemp JA. Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology (Berl). 2005;179(1):4–29. doi: 10.1007/s00213-005-2200-z
- Mehta A, Prabhakar M, Kumar P, et al. Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol. 2013;698(1–3):6–18. doi: 10.1016/j.ejphar.2012.10.032
- Wang CC, Wee HY, Hu CY, et al. The effects of memantine on glutamic receptor associated nitrosative stress in a traumatic brain injury rat model. World Neurosurg. 2018;112: e719–e731. doi: 10.1016/j.wneu.2018.01.140
- Cadinu D, Grayson B, Podda G, et al. NMDA receptor antagonist rodent models for cognition in schizophrenia and identification of novel drug treatments, an update. Neuropharmacol. 2018;142:41–62. doi: 10.1016/j.neuropharm.2017.11.045
- Theibert HPM, Carroll BT. NMDA antagonists in the treatment of catatonia: A review of case studies from the last 10 years. Gen Hosp Psychiatry. 2018;51:132–133. doi: 10.1016/j.genhosppsych.2017.10.010
- Aroniadou-Anderjaska V, Pidoplichko VI, Figueiredo TH, et al. Oscillatory Synchronous Inhibition in the Basolateral Amygdala and its Primary Dependence on NR2A-containing NMDA Receptors. Neuroscience. 2018;373:145–158. doi: 10.1016/j.neuroscience.2018.01.021
- Zhou JJ, Gao Y, Zhang X, et al. Enhanced Hypothalamic NMDA Receptor Activity Contributes to Hyperactivity of HPA Axis in Chronic Stress in Male Rats. Endocrinology. 2018;159(3):1537–1546. doi: 10.1210/en.2017-03176
- Mathews MJ, Mead RN, Galizio M. Effects of N-Methyl-D-aspartate (NMDA) antagonists ketamine, methoxetamine, and phencyclidine on the odor span test of working memory in rats. Exp Clin Psychopharmacol. 2018;26(1):6–17. doi: 10.1037/pha0000158
- Jackson AC, Nicoll RA. The expanding social network of ionotropic glutamate receptors: TARPs and other transmembrane auxiliary subunits. Neuron. 2011;70(2):178–199. doi: 10.1016/j.neuron.2011.04.007
- McBain СJ, Mayer ML. N-methyl-D-aspartate receptor structure and function. Physiol Rev. 1994;74(3):723–760. doi: 10.1152/physrev.1994.74.3.723
- Rogawski MA. Therapeutic potential of excitatory ammo acid antagonists channel blockers and 2,3-benzodiazepines. Trends Pharmacol Sci. 1993;14(9):325–331. doi: 10.1016/0165-6147(93)90005-5
- Danysz W, Parsons CG, Kornhuber J, et al. Aminoadamantanes as NMDA receptor antagonists and antiparkinsonian agents – preclinical studies. Neurosci Biobeh Rev. 1997;21(4):455–468. doi: 10.1016/S0149-7634(96)00037-1
- Priestley Т, Laughton P, Macaulay AJ, et al. Electrophysiological characterization of the antagonist properties of two novel NMDA receptor glycine site antagonists, L-695,902 and L-701,324. Neuropharmacology. 1996;35(11):1573–1581. doi: 10.1016/S0028-3908(96)00141-4
- Bonina FP, Arenareb L, Ippolito R, et al. Synthesis, pharmacokinetics and anticonvulsant activity of 7-chlorokynurenic acid prodrugs. Int J Pharm. 2000;202(1–2):79–88. doi: 10.1016/S0378-5173(00)00421-X
- Kohl BK, Dannhardt G. The NMDA receptor complex: a promising target for novel antiepileptic strategies. Curr Med Chem. 2001;8(11):1275–1289. doi: 10.2174/0929867013372328
- Carter C, Avenet P, Benavides J, et al. Ifenprodil and eliprodil: neuroprotective NMDA receptor antagonists and calcium channel blockers. In: Excitatory Amino Acids. 1st edition. P. Herrling ed. USA: Academic Press; 1997. P. 57–80.
- Avenet P, Leonardon J, Besnard F, et al. Antagonist properties of eliprodil and other NMDA receptor antagonists at rat NR1A/NR2A and NR1A/NR2B receptors expressed in Xenopus oocytes. Neurosci Lett. 1997;223(2):133–136. doi: 10.1016/S0304-3940(97)13422-X
- Chistoffersen СL, Meltzer LT. Evidence for N-methyl-D-aspartate and AMPA subtypes of the glutamate receptor on substantia nigra dopamine neurons possible preferential role for N-methyl D aspartate receptors. Neuroscience. 1995;67(2):373–381. doi: 10.1016/0306-4522(95)00047-M
- Criddle MW, Godfrey DA, Kaltenbach JA. Attenuation of noise-induced hyperactivity in the dorsal cochlear nucleus by pre-treatment with MK-801. Brain Res. 2018;1682:71–77. doi: 10.1016/j.brainres.2018.01.002
- Shabanov PD, Lebedev AA, Sheveleva MV. Uchastie prilezhashchego yadra v mekhanizmakh uslovnogo podkrepleniya u krys. Narkology. 2014;13(7(151)):52–59. (In Russ.)
- Shi LL, Dong J, Ni H, et al. Felbamate as an add-on therapy for refractory partial epilepsy. Cochrane Database Syst Rev. 2017;7(7): CD008295. doi: 10.1002/14651858.CD008295
- Hanrahan B., Carson R.P. Felbamate. 2021 Aug 25. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan. PMID: 30969621. Available at: https://www.ncbi.nlm.nih.gov/books/NBK539799/. Accessed: March 10, 2022.
- Vlasov PN, Naumova GI, Drozhzhina GR. Novye protivoepilepticheskie preparaty. Good Clinical Practice. 2018;(3):12–28. (In Russ.)
- Mellone M, Gardoni F. Glutamatergic mechanisms in L-DOPA-induced dyskinesia and therapeutic implications. J Neural Transm (Viena). 2018;125(8):1225–1236. doi: 10.1007/s00702-018-1846-8
- Nuzzo T, Punzo D, Devoto P, et al. The levels of the NMDA receptor co-agonist D-serine are reduced in the substantia nigra of MPTP-lesioned macaques and in the cerebrospinal fluid of Parkinson’s disease patients. Sci Rep. 2019;9(1):8898. doi: 10.1038/s41598-019-45419-1
- Wolosker H, Balu DT, Coyle JT. The Rise and Fall of the d-Serine-Mediated Gliotransmission Hypothesis. Trends Neurosci. 2016;39(11):712–721. doi: 10.1016/j.tins.2016.09.007
- Consolo S, Salmoiraghi P, Amoroso D, et al. Treatment with oxitracetam or choline restores cholinergic biochemical and pharmacological activities in striata of decorticated rats. J Neurochem. 1990;54(2):571–577. doi: 10.1111/j.1471-4159.1990.tb01909.x
- Damsma G, Robertson GS, Tham CS, et al. Dopaminergic regulation of striatal acetylcholine release: importance of Dl and N-methyl-D-aspartate receptors. J Pharmacol Exp Ther. 1991;259(3):1064–1072.
- Lancelot E, Callebert J, Plotkine M, et al. Striatal dopamine participates in glutamate-induced hydroxyl radical generation. Neuroreport. 1995;6(7):1033–1036. doi: 10.1097/00001756-199505090-00021
- Bhattacharya S, Ma Y, Dunn AR, et al. NMDA receptor blockade ameliorates abnormalities of spike firing of subthalamic nucleus neurons in a parkinsonian nonhuman primate. J Neurosci Res. 2018;96(7):1324–1335. doi: 10.1002/jnr.24230
- Espay AJ, Morgante F, Merola A, et al. Levodopa-induced dyskinesia in Parkinson disease: Current and evolving concepts. Ann Neurol. 2018;84(6):797–811. doi: 10.1002/ana.25364
- Kim A, Kim YE, Yun JY, et al. Amantadine and the risk of dyskinesia in patients with early Parkinson’s disease: an open-label, pragmatic trial. J Mov Disord. 2018;11(2):65–71. doi: 10.14802/jmd.18005
- Poewe W, Seppi K, Tanner CM, et al. Parkinson disease. Nat Rev Dis Primers. 2017;3:17013. doi: 10.1038/nrdp.2017.13
