Роль глутаматного рецепторного комплекса в организме. NMDA-лиганды при нейродегенеративных процессах — современное состояние проблемы
- Авторы: Дергачев В.Д.1, Яковлева Е.Е.1,2, Бычков Е.Р.1, Пиотровский Л.Б.1, Шабанов П.Д.1
-
Учреждения:
- Институт экспериментальной медицины
- Санкт-Петербургский государственный педиатрический медицинский университет
- Выпуск: Том 20, № 1 (2022)
- Страницы: 17-28
- Раздел: Научные обзоры
- URL: https://journals.rcsi.science/RCF/article/view/108251
- DOI: https://doi.org/10.17816/RCF20117-28
- ID: 108251
Цитировать
Аннотация
(S)-глутаминовая кислота (глутамат) — основной возбуждающий медиатор в центральной нервной системе, ответственный за регулирование многих физиологических функций. Дисфункция глутаматергической системы характеризует множество патологических состояний в неврологии и психиатрии, а аберрантная функция глутаматных рецепторов играет ключевую роль в развитии нейродегенеративных процессов. Глутамат имеет решающее значение для обеспечения физиологических функций мозга, включая память, обучение и моторные реакции. Кроме того, глутамат участвует в регуляции деятельности периферической нервной и эндокринной систем. Рецепторы глутамата — критически важные молекулы, необходимые для обеспечения работы мозга: они модулируют нейротрансмиссию и регулируют силу возбуждающей и тормозной передачи в нервной системе. В этой связи применение лекарственных средств, воздействующих на глутаматергическую передачу, оказывает влияние на важнейшие процессы нейрональной трансмиссии. Исследование и разработка фармакологических агентов, вовлекаемых в процессы глутаматной передачи, являются актуальными задачами современной нейропсихофармакологии и преследуют цели усовершенствования эффективности и безопасности имеющихся в настоящее время глутаматергических молекул.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Владимир Дмитриевич Дергачев
Институт экспериментальной медицины
Автор, ответственный за переписку.
Email: eeiakovleva@mail.ru
аспирант
Россия, Санкт-ПетербургЕкатерина Евгеньевна Яковлева
Институт экспериментальной медицины; Санкт-Петербургский государственный педиатрический медицинский университет
Email: eeiakovleva@mail.ru
ORCID iD: 0000-0002-0270-0217
канд. мед. наук, научный сотрудник
Россия, Санкт-Петербург; Санкт-ПетербургЕвгений Рудольфович Бычков
Институт экспериментальной медицины
Email: bychkov@mail.ru
ORCID iD: 0000-0002-8911-6805
SPIN-код: 9408-0799
канд. мед. наук, заведующий лабораторией
Россия, Санкт-ПетербургЛевон Борисович Пиотровский
Институт экспериментальной медицины
Email: levon-piotrovsky@yandex.ru
ORCID iD: 0000-0001-8679-1365
SPIN-код: 2927-6178
д-р биол. наук, руководитель лаборатории
Россия, Санкт-ПетербургПетр Дмитриевич Шабанов
Институт экспериментальной медицины
Email: pdshabanov@mail.ru
ORCID iD: 0000-0003-1464-1127
SPIN-код: 8974-7477
д-р мед. наук, профессор, заведующий отделом
Россия, Санкт-ПетербургСписок литературы
- Bespalov AJu, Zvartau Je. Neirofarmakologiya antagonistov NMDA-retseptorov. Saint Petersburg: Nevskii dialekt; 2000. 297 p. (In Russ.)
- Gereau RW, Swanson G, ed. The glutamate receptors. Springer Science & Business Media; 2008. 587 p.
- Fernández-Montoya J, Avendaño C, Negredo P. The glutamatergic system in primary somatosensory neurons and its involvement in sensory input-dependent plasticity. Int J Mol Sci. 2018;19(1):69. doi: 10.3390/ijms19010069
- Márquez J, Campos-Sandoval JA, Peñalver A, et al. Glutamate and brain glutaminases in drug addiction. Neurochem Res. 2017;42(3):846–857. doi: 10.1007/s11064-016-2137-0
- Traunelis SF, Wollmuth LP, McBain CJ, et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev. 2010;62(3):405–496. doi: 10.1124/pr.109.002451
- Kadieva MG, Oganesjan JeT, Zefirova ON. AMRA/KA and NMDA (glycine site) glutamate receptor subtypes antagonists. Kimiko-farmatsevticheskii zhurnal. 2008;42(2):21–30. (In Russ.) doi: 10.1007/s11094-008-0063-4
- Orth A, Tapken D, Hollmann M. The delta subfamily of glutamate receptors: characterization of receptor chimeras and mutants. Europ J Neurosci. 2013;37(10):1620–1630. doi: 10.1111/ejn.12193
- Hellyer S, Leach K, Gregory KJ. Neurobiological insights and novel therapeutic opportunities for CNS disorders from mGlu receptor allosteric and biased modulation. Curr Opin Pharmacol. 2017;32:49–55. doi: 10.1016/j.coph.2016.10.007
- Karakas E, Furukawa H. Crystal structure of a heterotetrameric NMDA receptor ion channel. Science. 2014;344(6187):992–997. doi: 10.1126/science.1251915
- Pachernegg S, Strutz-Seebohm N, Hollmann M. GluN3 subunit-containing NMDA receptors: not just one-trick ponies. Trends Neurosci. 2012;35(4):240–249. doi: 10.1016/j.tins.2011.11.010
- Vyklicky V, Korinek M, Smejkalova T, et al. Structure, function, and pharmacology of NMDA receptor channels. Physiol Res. 2014;63(1):191–203. doi: 10.33549/physiolres.932678
- Vance KM, Hansen KB, Traynelis SF. GluN1 splice variant control of GluN1/GluN2D NMDA receptors. J Physiol. 2012;590(16): 3857–3875. doi: 10.1113/jphysiol.2012.234062
- Lee CH, Lü W, Michel JC, et al. NMDA receptor structures reveal subunit arrangement and pore architecture. Nature. 2014;511(7508):191–197. doi: 10.1038/nature13548
- Gezelius H, López-Bendito G. Thalamic neuronal specification and early circuit formation. Dev Neurobiol. 2017;77(7):830–843. doi: 10.1002/dneu.22460
- Acker TM, Yuan H, Hansen KB, et al. Mechanism for noncompetitive inhibition by novel GluN2C/D N-methyl-D-aspartate receptor subunit-selective modulators. Mol Pharmacol. 2011;80(5):782–795. doi: 10.1124/mol.111.073239
- Gielen M, Retchless SB, Mony L, et al. Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature. 2009;459(7247):703–707. doi: 10.1038/nature07993
- Mony L, Zhu S, Carvalho S, et al. Molecular basis of positive allosteric modulation of GluN2B NMDA receptors by polyamines. EMBO J. 2011;30(15):3134–3146. doi: 10.1038/emboj.2011.203
- Eriksson M, Nilsson A, Froelich-Fabre S, et al. Cloning and expression of the human N-methyl-D-aspartate receptor subunit NR3A. Neurosci Lett. 2002;321(3):177–181. doi: 10.1016/S0304-3940(01)02524-1
- Jewett B.E., Thapa B. Physiology, NMDA Receptor. 2021 Des 15. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2022 Jan. PMID: 30137779. Available from: https://www.ncbi.nlm.nih.gov/books/NBK519495/. Accessed: March 17, 2022.
- Van Zundert B, Yoshii A, Constantine-Paton M. Receptor compartmentalization and trafficking at glutamate synapses: a developmental proposal. Trends Neurosci. 2004;27(7):428–437. doi: 10.1016/j.tins.2004.05.010
- Roberts AC, Díez-García J, Rodriguiz RM, et al. Downregulation of NR3A-containing NMDARs is required for synapse maturation and memory consolidation. Neuron. 2009;63(3):342–356. doi: 10.1016/j.neuron.2009.06.016
- Papouin T, Ladepiche L, Ruel J, et al. Synaptic and extrasynaptic NMDA-receptors are gated by different endogenous coagonists. Cell. 2012;150(3):633–646. doi: 10.1016/j.cell.2012.06.029
- Novytska-Usenko LV, Muslin VP, Kryshtafor AA. Two opposite effects of NMDA-receptors in terms of increased range of pharmacological neuroprotection in acute cerebral ischemia. Medicina neotlojnyh sostoyaniy. 2016;1(72):24–29. (In Russ.)
- Gladding CM, Raymond LA. Mechanisms underlying NMDA receptor synaptic/extrasynaptic distribution and function. Mol Cell Neurosci. 2011;48(4):308–320. doi: 10.1016/j.mcn.2011.05.001
- Perfilova VN, Tyurenkov IN. Glutamate ionotropic receptors: structure, localisation, function. Progress Physiol Sci. 2016;47(1): 80–96. (In Russ.)
- Akkuratov EE, Westin L, Vazquez-Juarez E, et al. Ouabain Modulates the Functional Interaction Between Na, K-ATPase and NMDA Receptor. Mol Neurobiol. 2020;57(10):4018–4030 (2020). doi: 10.1007/s12035-020-01984-5
- Traynelis SF, Burgess MF, Zheng F, et al. Control of voltage-independent zinc inhibition of NMDA receptors by the NR1 subunit. J Neurosci. 1998;18(16):6163–6175. doi: 10.1523/JNEUROSCI.18-16-06163.1998
- Kew JN, Kemp JA. Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology (Berl). 2005;179(1):4–29. doi: 10.1007/s00213-005-2200-z
- Mehta A, Prabhakar M, Kumar P, et al. Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol. 2013;698(1–3):6–18. doi: 10.1016/j.ejphar.2012.10.032
- Wang CC, Wee HY, Hu CY, et al. The effects of memantine on glutamic receptor associated nitrosative stress in a traumatic brain injury rat model. World Neurosurg. 2018;112: e719–e731. doi: 10.1016/j.wneu.2018.01.140
- Cadinu D, Grayson B, Podda G, et al. NMDA receptor antagonist rodent models for cognition in schizophrenia and identification of novel drug treatments, an update. Neuropharmacol. 2018;142:41–62. doi: 10.1016/j.neuropharm.2017.11.045
- Theibert HPM, Carroll BT. NMDA antagonists in the treatment of catatonia: A review of case studies from the last 10 years. Gen Hosp Psychiatry. 2018;51:132–133. doi: 10.1016/j.genhosppsych.2017.10.010
- Aroniadou-Anderjaska V, Pidoplichko VI, Figueiredo TH, et al. Oscillatory Synchronous Inhibition in the Basolateral Amygdala and its Primary Dependence on NR2A-containing NMDA Receptors. Neuroscience. 2018;373:145–158. doi: 10.1016/j.neuroscience.2018.01.021
- Zhou JJ, Gao Y, Zhang X, et al. Enhanced Hypothalamic NMDA Receptor Activity Contributes to Hyperactivity of HPA Axis in Chronic Stress in Male Rats. Endocrinology. 2018;159(3):1537–1546. doi: 10.1210/en.2017-03176
- Mathews MJ, Mead RN, Galizio M. Effects of N-Methyl-D-aspartate (NMDA) antagonists ketamine, methoxetamine, and phencyclidine on the odor span test of working memory in rats. Exp Clin Psychopharmacol. 2018;26(1):6–17. doi: 10.1037/pha0000158
- Jackson AC, Nicoll RA. The expanding social network of ionotropic glutamate receptors: TARPs and other transmembrane auxiliary subunits. Neuron. 2011;70(2):178–199. doi: 10.1016/j.neuron.2011.04.007
- McBain СJ, Mayer ML. N-methyl-D-aspartate receptor structure and function. Physiol Rev. 1994;74(3):723–760. doi: 10.1152/physrev.1994.74.3.723
- Rogawski MA. Therapeutic potential of excitatory ammo acid antagonists channel blockers and 2,3-benzodiazepines. Trends Pharmacol Sci. 1993;14(9):325–331. doi: 10.1016/0165-6147(93)90005-5
- Danysz W, Parsons CG, Kornhuber J, et al. Aminoadamantanes as NMDA receptor antagonists and antiparkinsonian agents – preclinical studies. Neurosci Biobeh Rev. 1997;21(4):455–468. doi: 10.1016/S0149-7634(96)00037-1
- Priestley Т, Laughton P, Macaulay AJ, et al. Electrophysiological characterization of the antagonist properties of two novel NMDA receptor glycine site antagonists, L-695,902 and L-701,324. Neuropharmacology. 1996;35(11):1573–1581. doi: 10.1016/S0028-3908(96)00141-4
- Bonina FP, Arenareb L, Ippolito R, et al. Synthesis, pharmacokinetics and anticonvulsant activity of 7-chlorokynurenic acid prodrugs. Int J Pharm. 2000;202(1–2):79–88. doi: 10.1016/S0378-5173(00)00421-X
- Kohl BK, Dannhardt G. The NMDA receptor complex: a promising target for novel antiepileptic strategies. Curr Med Chem. 2001;8(11):1275–1289. doi: 10.2174/0929867013372328
- Carter C, Avenet P, Benavides J, et al. Ifenprodil and eliprodil: neuroprotective NMDA receptor antagonists and calcium channel blockers. In: Excitatory Amino Acids. 1st edition. P. Herrling ed. USA: Academic Press; 1997. P. 57–80.
- Avenet P, Leonardon J, Besnard F, et al. Antagonist properties of eliprodil and other NMDA receptor antagonists at rat NR1A/NR2A and NR1A/NR2B receptors expressed in Xenopus oocytes. Neurosci Lett. 1997;223(2):133–136. doi: 10.1016/S0304-3940(97)13422-X
- Chistoffersen СL, Meltzer LT. Evidence for N-methyl-D-aspartate and AMPA subtypes of the glutamate receptor on substantia nigra dopamine neurons possible preferential role for N-methyl D aspartate receptors. Neuroscience. 1995;67(2):373–381. doi: 10.1016/0306-4522(95)00047-M
- Criddle MW, Godfrey DA, Kaltenbach JA. Attenuation of noise-induced hyperactivity in the dorsal cochlear nucleus by pre-treatment with MK-801. Brain Res. 2018;1682:71–77. doi: 10.1016/j.brainres.2018.01.002
- Shabanov PD, Lebedev AA, Sheveleva MV. Uchastie prilezhashchego yadra v mekhanizmakh uslovnogo podkrepleniya u krys. Narkology. 2014;13(7(151)):52–59. (In Russ.)
- Shi LL, Dong J, Ni H, et al. Felbamate as an add-on therapy for refractory partial epilepsy. Cochrane Database Syst Rev. 2017;7(7): CD008295. doi: 10.1002/14651858.CD008295
- Hanrahan B., Carson R.P. Felbamate. 2021 Aug 25. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan. PMID: 30969621. Available at: https://www.ncbi.nlm.nih.gov/books/NBK539799/. Accessed: March 10, 2022.
- Vlasov PN, Naumova GI, Drozhzhina GR. Novye protivoepilepticheskie preparaty. Good Clinical Practice. 2018;(3):12–28. (In Russ.)
- Mellone M, Gardoni F. Glutamatergic mechanisms in L-DOPA-induced dyskinesia and therapeutic implications. J Neural Transm (Viena). 2018;125(8):1225–1236. doi: 10.1007/s00702-018-1846-8
- Nuzzo T, Punzo D, Devoto P, et al. The levels of the NMDA receptor co-agonist D-serine are reduced in the substantia nigra of MPTP-lesioned macaques and in the cerebrospinal fluid of Parkinson’s disease patients. Sci Rep. 2019;9(1):8898. doi: 10.1038/s41598-019-45419-1
- Wolosker H, Balu DT, Coyle JT. The Rise and Fall of the d-Serine-Mediated Gliotransmission Hypothesis. Trends Neurosci. 2016;39(11):712–721. doi: 10.1016/j.tins.2016.09.007
- Consolo S, Salmoiraghi P, Amoroso D, et al. Treatment with oxitracetam or choline restores cholinergic biochemical and pharmacological activities in striata of decorticated rats. J Neurochem. 1990;54(2):571–577. doi: 10.1111/j.1471-4159.1990.tb01909.x
- Damsma G, Robertson GS, Tham CS, et al. Dopaminergic regulation of striatal acetylcholine release: importance of Dl and N-methyl-D-aspartate receptors. J Pharmacol Exp Ther. 1991;259(3):1064–1072.
- Lancelot E, Callebert J, Plotkine M, et al. Striatal dopamine participates in glutamate-induced hydroxyl radical generation. Neuroreport. 1995;6(7):1033–1036. doi: 10.1097/00001756-199505090-00021
- Bhattacharya S, Ma Y, Dunn AR, et al. NMDA receptor blockade ameliorates abnormalities of spike firing of subthalamic nucleus neurons in a parkinsonian nonhuman primate. J Neurosci Res. 2018;96(7):1324–1335. doi: 10.1002/jnr.24230
- Espay AJ, Morgante F, Merola A, et al. Levodopa-induced dyskinesia in Parkinson disease: Current and evolving concepts. Ann Neurol. 2018;84(6):797–811. doi: 10.1002/ana.25364
- Kim A, Kim YE, Yun JY, et al. Amantadine and the risk of dyskinesia in patients with early Parkinson’s disease: an open-label, pragmatic trial. J Mov Disord. 2018;11(2):65–71. doi: 10.14802/jmd.18005
- Poewe W, Seppi K, Tanner CM, et al. Parkinson disease. Nat Rev Dis Primers. 2017;3:17013. doi: 10.1038/nrdp.2017.13
