Peculiarities of carbamazepine pharmacogenetics and the most common adverse drug reactions during its use (literature review)
- Authors: Skryabin V.Y.1,2, Zastrozhin M.S.1,2,3, Bryun E.A.1,2, Sychev D.A.2
-
Affiliations:
- Moscow Research and Practical Center for Narcology of the Moscow Department of Health
- Russian Medical Academy of Continuing Professional Education
- University of California
- Issue: Vol 20, No 3 (2022)
- Pages: 255-267
- Section: Reviews
- URL: https://journals.rcsi.science/RCF/article/view/108123
- DOI: https://doi.org/10.17816/RCF203255-267
- ID: 108123
Cite item
Abstract
Carbamazepine is widely used for the treatment of epilepsy, trigeminal neuralgia and psychiatric disorders. However, therapy is often ineffective, and some patients experience adverse drug reactions, which negatively affect both the efficacy and safety of therapy.
This review systematized and presented up-to-date information regarding the pharmacokinetics and pharmacogenetics of carbamazepine, as well as the most common adverse drug reactions arising from its use. Knowledge of the pharmacokinetics, pharmacodynamics and pharmacogenetics of carbamazepine is necessary to assess the effect of genetically determined activity of cytochrome P450 isoenzymes on the efficacy and safety of this drug. This will make it possible to develop approaches to personalizing the selection of an effective and safe dose of therapy in patients based on individual clinical and biological parameters.
Full Text
##article.viewOnOriginalSite##About the authors
Valentin Yu. Skryabin
Moscow Research and Practical Center for Narcology of the Moscow Department of Health; Russian Medical Academy of Continuing Professional Education
Email: sardonios@yandex.ru
ORCID iD: 0000-0002-4942-8556
SPIN-code: 4895-5285
Scopus Author ID: 57204416163
Cand. Sci. (Med.), Clinical Branch Head, Associate Professor of Narcology Department
Russian Federation, 37/1, Lyublinskaya st., Moscow, 109390; MoscowMikhail S. Zastrozhin
Moscow Research and Practical Center for Narcology of the Moscow Department of Health; Russian Medical Academy of Continuing Professional Education; University of California
Email: m.s.zastrozhin@gmail.com
ORCID iD: 0000-0002-3964-9726
Dr. Sci. (Med.), Associate Professor, Head of the Laboratory of genetics and basic research, Associate Professor of Narcology Department
Russian Federation, 37/1, Lyublinskaya st., Moscow, 109390; Moscow; San Francisco, CA, (USA)Evgeny A. Bryun
Moscow Research and Practical Center for Narcology of the Moscow Department of Health; Russian Medical Academy of Continuing Professional Education
Email: e.a.bryun.mnpcn@rambler.ru
ORCID iD: 0000-0002-8366-9732
Dr. Sci. (Med.), Professor, President, Head of the Department of Narcology
Russian Federation, 37/1, Lyublinskaya st., Moscow, 109390; МоскваDmitry A. Sychev
Russian Medical Academy of Continuing Professional Education
Author for correspondence.
Email: d.a.sychev.rmapo@rambler.ru
ORCID iD: 0000-0002-4496-3680
Academician of RAS, Dr. Sci. (Med.), Professor, Rector, Head of the Department of Clinical Pharmacology
Russian Federation, 37/1, Lyublinskaya st., Moscow, 109390References
- Pearce RE, Lu W, Wang Y, et al. Pathways of carbamazepine bioactivation in vitro. III. The role of human cytochrome P450 enzymes in the formation of 2,3-dihydroxycarbamazepine. Drug Metab Dispos. 2008;36(8):1637–1649. doi: 10.1124/dmd.107.019562
- Schindler W., Häfliger F. Über Derivate des Iminodibenzyls. Helvetica Chimica Acta. 1954;37(2):472–483. (In Germ.)
- Kremets KG. Carbamazepine for treatment of alcohol withdrawal. Mezhdunarodnyi nevrologicheskii zhurnal. 2012;(2(48)):163–166. (In Russ.)
- Shnaider NA, Bochanova EN, Dmitrenko DV, et al. Pharmacogenetics of carbamazepine. Epilepsy and Paroxysmal Conditions. 2019;11(4): 364–378. (In Russ.) doi: 10.17749/2077-8333.2019.11.4.364-378
- Nechaev MO, Sychev DA, Zastrozhin MS, et al. Pharmacogenetic aspects of efficacy and safety profile of carbamazepine (review). Narcology. 2019;18(4):68–82. (In Russ.)
- Karlov VA, Vlasov PN, Kozhokaru AB, et al. Dynamics of epileptiform activity and the efficacy and tolerance of valproic acid formulations in adolescents and adults with newly diagnosed epilepsy. SS. Korsakov Journal of Neurology and Psychiatry. 2021;121(3):31–38. (In Russ.) doi: 10.17116/jnevro202112103131
- Tolou-Ghamari Z, Zare M, Habibabadi JM, et al. A quick review of carbamazepine pharmacokinetics in epilepsy from 1953 to 2012. J Res Med Sci. 2013;18(Supple 1):S81–S85.
- Kim KA, Oh SO, Park PW, et al. Effect of probenecid on the pharmacokinetics of carbamazepine in healthy subjects. Eur J Clin Pharmacol. 2005;61(4):275–280. doi: 10.1007/s00228-005-0940-7
- Ways of metabolism of valproic acid and carbamazepine preparations. Vestnik Klinicheskoi bol’nitsy № 51. 2010;3(10):52. (In Russ.)
- Yip VLM, Pertinez H, Meng X, et al. Evaluation of clinical and genetic factors in the population pharmacokinetics of carbamazepine. Br J Clin Pharmacol. 2021;87(6):2572–2588. doi: 10.1111/bcp.14667
- Acute intoxications with carbamazepine from the point of view of epoxide-diol pathway of biotransformation. Toxicological Review. 2013;(2(119)):30–33. (In Russ.)
- Iannaccone T, Sellitto C, Manzo V, et al. Pharmacogenetics of carbamazepine and valproate: focus on polymorphisms of drug metabolizing enzymes and transporters. Pharmaceuticals (Basel). 2021;14(3):204. doi: 10.3390/ph14030204
- Mosolov SN, Kostyukova EG. Klinicheskie rekomendatsii po farmakoprofilaktike retsidivov bipolyarnogo rasstroistva. Part 2. Sovremennaya Terapiya Psikhicheskikh Rasstroistv. 2008;(3):44–57. (In Russ.)
- Rembovskii VR, Mogilenkova LA. Protsessy detoksikatsii pri vozdeistvii khimicheskikh veshchestv na organizm. Saint Petersburg: izd-vo Politekhnicheskogo un-ta; 2017. 384 p.
- Baranov VS. Geneticheskii pasport — osnova individual’noi i prediktivnoi meditsiny. Baranov V.S., editor. Saint Petersburg: Izd-vo N-L, 2009. 528 p.
- Makmor-Bakry M, Sills GJ, Hitiris N, et al. Genetic variants in microsomal epoxide hydrolase influence carbamazepine dosing. Clin Neuropharmacol. 2009;32(4):205–212. doi: 10.1097/WNF.0b013e318187972a
- Daci A, Beretta G, Vllasaliu D, et al. Polymorphic variants of SCN1A and EPHX1 influence plasma carbamazepine concentration, metabolism and pharmacoresistance in a population of Kosovar Albanian epileptic patients. PLoS One. 2015;10(11):e0142408. doi: 10.1371/journal.pone.0142408
- Zhao GX, Shen ML, Zhang Z, et al. Association between EPHX1 polymorphisms and carbamazepine metabolism in epilepsy: A meta-analysis. Int J Clin Pharm. 2019;41(6):1414–1428. doi: 10.1007/s11096-019-00919-y
- He XJ, Jian LY, He XL, et al. Association of ABCB1, CYP3A4, EPHX1, FAS, SCN1A, MICA, and BAG6 polymorphisms with the risk of carbamazepine-induced Stevens–Johnson syndrome/toxic epidermal necrolysis in Chinese Han patients with epilepsy. Epilepsia. 2014;55(8):1301–1306. doi: 10.1111/epi.12655
- Chbili C, Fathallah N, Laouani A, et al. Effects of EPHX1 and CYP3A4*22 genetic polymorphisms on carbamazepine metabolism and drug response among Tunisian epileptic patients. J Neurogenet. 2016;30(1)16–21. doi: 10.3109/01677063.2016.1155571
- Caruso A, Bellia C, Pivetti A, et al. Effects of EPHX1 and CYP3A4 polymorphisms on carbamazepine metabolism in epileptic patients. Pharmgenomics Pers Med. 2014;7:117–120. doi: 10.2147/PGPM.S55548
- Saiz-Rodríguez M, Almenara S, Navares-Gómez M, et al. Effect of the most relevant CYP3A4 and CYP3A5 polymorphisms on the pharmacokinetic parameters of 10 CYP3A substrates. Biomedicines. 2020;8(4):94. doi: 10.3390/biomedicines8040094
- Park PW, Seo YH, Ahn JY, et al. Effect of CYP3A5*3 genotype on serum carbamazepine concentrations at steady state in Korean epileptic patients. J Clin Pharm Ther. 2009;34(5):569–574. doi: 10.1111/j.1365-2710.2009.01057.x
- Ganesapandian M, Ramasamy K, Adithan S, et al. Influence of cytochrome P450 3A5 (CYP3A5) genetic polymorphism on dose-adjusted plasma levels of carbamazepine in epileptic patients in South Indian population. Indian J Pharmacol. 2019;51(6):384–388. doi: 10.4103/ijp.IJP_122_19
- Al-Gahtany M, Karunakaran G, Munisamy M. Pharmacogenetics of CYP3A5 on Carbamazepine pharmacokinetics in epileptic patients developing toxicity. BMC Genom. 2014:2. doi: 10.1186/1471-2164-15-S2-P2
- Puranik YG, Birnbaum AK, Marino SE, et al. Association of carbamazepine major metabolism and transport pathway gene polymorphisms and pharmacokinetics in patients with epilepsy. Pharmacogenomics. 2013;14(1):35–45. doi: 10.2217/pgs.12.180
- Milovanovic DD, Radosavljevic I, Radovanovic M, et al. CYP3A5 polymorphism in Serbian paediatric epileptic patientson carbamazepine treatment. Ser J Exp Clin Res. 2015;16:93–99.
- Hong TP, Huynh Hieu TM, Vo T, et al. Effect of CYP3A5 genotypes on serum carbamazepine concentrations at steady-state in Vietnamese epileptic patients. Res J Pharm Technol. 2020;13:2802.
- Lu Q, Huang YT, Shu Y, et al. Effects of CYP3A5 and UGT2B7 variants on steady-state carbamazepine concentrations in Chinese epileptic patients. Medicine (Baltimore). 2018;97(30):e11662. doi: 10.1097/MD.0000000000011662
- Hung CC, Chang WL, Ho JL, et al. Association of polymorphisms in EPHX1, UGT2B7, ABCB1, ABCC2, SCN1A and SCN2A genes with carbamazepine therapy optimization. Pharmacogenomics. 2012;13(2):159–169. doi: 10.2217/pgs.11.141
- Ma CL, Jiao Z, Wu XY, et al. Association between PK/PD-involved gene polymorphisms and carbamazepine-individualized therapy. Pharmacogenomics. 2015;16(13):1499–1512. doi: 10.2217/pgs.15.94
- Djordjevic N, Milovanovic DD, Radovanovic M, et al. CYP1A2 genotype affects carbamazepine pharmacokinetics in children with epilepsy. Eur J Clin Pharmacol. 2016;72(4):439–445. doi: 10.1007/s00228-015-2006-9
- Tanno LK, Kerr DS, dos Santos B, et al. The absence of CYP3A5*3 is a protective factor to anticonvulsants hypersensitivity reactions: a case-control study in Brazilian subjects. PLoS One. 2015;10(8): e0136141. doi: 10.1371/journal.pone.0136141
- Laska AJ, Han MJ, Lospinoso JA, et al. CYP2C19*2 status in patients with Stevens–Johnson syndrome and toxic epidermal necrolysis. Pharmgenomics Pers Med. 2017;10:183–186. doi: 10.2147/PGPM.S129908
- Milovanovic DD, Milovanovic JR, Radovanovic M, et al. The influence of CYP2C8*3 on carbamazepine serum concentration in epileptic pediatric patients. Balkan J Med Genet. 2016;19(11):21–28. doi: 10.1515/bjmg-2016-0003
- Fricke-Galindo I, Lerena A, Jung-Cook H, et al. Carbamazepine adverse drug reactions. Expert Rev Clin Pharmacol. 2018;7:705–718. doi: 10.1080/17512433.2018.1486707
- Alfimov PV, Pavlichenko AV. Pharmacotherapy: normotimics. Psychiatry and Psychopharmacotherapy. 2021;23(6):4–9. (In Russ.)
- Ostroumova OD, Listratov AI, Kochetkov AI, et al. Drug-induced hyponatremia. 2021;(6(132)):22–34. (In Russ.) doi: 10.20333/25000136-2021-6-22-34
- Lu X, Wang X. Hyponatremia induced by antiepileptic drugs in patients with epilepsy. Expert Opin Drug Saf. 2017;16(1):77–87. doi: 10.1080/14740338.2017.1248399
- Witt JA, Helmstaedter C. Should cognition be screened in new-onset epilepsies? A study in 247 untreated patients. J Neurol. 2012;259(8):1727–1731. doi: 10.1007/s00415-012-6526-2
- Maksimova И.В. Kliniko-dinamicheskie osobennosti i terapiya kognitivnykh rasstroistv pri alkogolizme i alkogol’nykh psikhozakh s sudorozhnym sindromom [dissertation]. Tomsk; 2019.
- Witt JA, Helmstaedter C. Monitoring the cognitive effects of antiepileptic pharmacotherapy — approaching the individual patient. Epilepsy Behav. 2013;26(3):450–456. doi: 10.1016/j.yebeh.2012.09.015
- Shehata GA, Bateh AEM, Hamed SA, et al. Neuropsychological effects of antiepileptic drugs (carbamazepine versus valproate) in adult males with epilepsy. Neuropsychiatr Dis Treat. 2009;5:527–533. doi: 10.2147/ndt.s5903
- Eddy CM, Rickards HE, Cavanna AE. The cognitive impact of antiepileptic drugs. Ther Adv Neurol Disord. 2011;4(6):385–407. doi: 10.1177/1756285611417920
- Meador KJ, Loring DW, Ray PG, et al. Differential cognitive and behavioral effects of carbamazepine and lamotrigine. Neurology. 2001;56(9):1177–1182. doi: 10.1212/wnl.56.9.1177
- Äikiä M, Jutila L, Salmenperä T, et al. Long-term effects of tiagabine monotherapy on cognition and mood in adult patients with chronic partial epilepsy. Epilepsy Behav. 2006;8(4):750–755. doi: 10.1016/j.yebeh.2006.03.007
- Shorvon SD, Trinka E, Steinhoff BJ, et al. Eslicarbazepine acetate: its effectiveness as adjunctive therapy in clinical trials and open studies. J Neurol. 2017;264(3):421–431. doi: 10.1007/s00415-016-8338-2
- Park SP, Kwon SH. Cognitive effects of antiepileptic drugs. J Clin Neurol. 2008;4(3):99–106. doi: 10.3988/jcn.2008.4.3.99
- Khor AH, Lim KS, Tan CT, et al. HLA-B*15:02 association with carbamazepine-induced Stevens–Johnson syndrome and toxic epidermal necrolysis in an Indian population: a pooled-data analysis and meta-analysis. Epilepsia. 2014;55(11): e120–e124. doi: 10.1111/epi.12802
- Yun J, Cai F, Lee FJ, et al. T-cell-mediated drug hypersensitivity: immune mechanisms and their clinical relevance. Asia Pac Allergy. 2016;6(2):77–89. doi: 10.5415/apallergy.2016.6.2.77
- Błaszczyk B, Lasoń W, Czuczwar SJ. Antiepileptic drugs and adverse skin reactions: an update. Pharmacol Rep. 2015;67(3):426–434.
- Roujeau JC, Kelly JP, Naldi L, et al. Medication use and the risk of Stevens–Johnson syndrome or toxic epidermal necrolysis. N Engl J Med. 1995;333(24):1600–1607. doi: 10.1056/NEJM199512143332404
- Kim JY, Lee J, Ko YJ, et al. Multi-indication carbamazepine and the risk of severe cutaneous adverse drug reactions in Korean elderly patients: a Korean health insurance data-based study. PLoS One. 2013;8(12): e83849. doi: 10.1371/journal.pone.0083849
- Mockenhaupt M, Viboud C, Dunant A, et al. Stevens–Johnson syndrome and toxic epidermal necrolysis: assessment of medication risks with emphasis on recently marketed drugs. The EuroSCAR-study. J Invest Dermatol. 2008;128(1):35–44. doi: 10.1038/sj.jid.5701033
- Brodie MJ, Overstall PW, Giorgi L. Multicentre, double-blind, randomised comparison between lamotrigine and carbamazepine in elderly patients with newly diagnosed epilepsy. The UK lamotrigine elderly study group. Epilepsy Res. 1999;37(1):81–87.
- Choudhary S, McLeod M, Torchia D, et al. Drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome. J Clin Aesthet Dermatol. 2013;6(6):31–37.
- Chen YC, Chiu HC, Chu CY. Drug reaction with eosinophilia and systemic symptoms. Arch Dermatol. 2010;146(12):1373–1379.
- Letko E, Papaliodis DN, Papaliodis GN, et al. Stevens–Johnson syndrome and toxic epidermal necrolysis: a review of the literature. Ann Allergy Asthma Immunol. 2005;94(4):419–436. doi: 10.1016/S1081-1206(10)61112-X
- Ostroumova OD, Shikh EV, Shikh NV, et al. Drug-induced liver injury with cholestasis in the neurologist and psychiatric practice. Neurology, Neuropsychiatry, Psychosomatics. 2022;14(1):14–21. (In Russ.) doi: 10.14412/2074-2711-2022-1-14-21
- Björnsson E. Hepatotoxicity associated with antiepileptic drugs. Acta Neurol Scand. 2008;118(5):281–290. doi: 10.1111/j.1600-0404.2008.01009.x
- Pirmohamed M, Kitteringham N, Breckenridge A, et al. Detection of an autoantibody directed against human liver microsomal protein in a patient with carbamazepine hypersensitivity. Br J Clin Pharmacol. 1992;33(2):183–186. doi: 10.1111/j.1365-2125.1992.tb04022.x
- Pandit A, Sachdeva T, Bafna P. Drug-induced hepatotoxicity: a review. J Appl Pharm Sci. 2011;2(5):233–243. doi: 10.7324/JAPS.2012.2541
- Forbes GM, Jeffrey GP, Shilkin KB, et al. Carbamazepine hepatotoxicity: another cause of the vanishing bile duct syndrome. Gastroenterology. 1992;102:1385–1388. doi: 10.1016/0016-5085(92)90780-3
- Asadi-Pooya A, Sperling M. Antiepileptic drugs in patients with hematological disorders. In: Antiepileptic drugs a Clinician’s Manual. New York: Oxford University Press; 2009. P. 165–170. doi: 10.1093/med/9780190214968.003.0018
- Mihailova EA, Fidarova ZT, Troitskaya VV, et al. Clinical recommendations for the diagnosis and treatment of aplastic anemia (2019 edition). Russian Journal of Hematology and Transfusiology. 2020;65(2):208–226. (In Russ.) doi: 10.35754/0234-5730-2020-65-2-208-226
- Young NS, Scheinberg P, Calado RT. Aplastic anemia. Curr Opin Hematol. 2008;15(3):162–168. doi: 10.1097/MOH.0b013e3282fa7470
- Handoko KB, Souverein PC, van Staa TP, et al. Risk of aplastic anemia in patients using antiepileptic drugs. Epilepsia. 2006;47(7):1232–1236. doi: 10.1111/j.1528-1167.2006.00596.x
- Koutsavlis I, Lasebai M. Dose-dependent carbamazepine-induced agranulocytosis following bariatric surgery (sleeve gastrectomy): a possible mechanism. Bariatr Surg Pract Patient Care. 2015;10(3):130–134. doi: 10.1089/bari.2015.0020
- Andress DL, Ozuna J, Tirschwell D, et al. Antiepileptic drug-induced bone loss in young male patients who have seizures. Arch Neurol. 2002;59(5):781–786. doi: 10.1001/archneur.59.5.781
- Arora E, Singh H, Gupta Y. Impact of antiepileptic drugs on bone health: need for monitoring, treatment, and prevention strategies. J Fam Med Prim Care. 2016;5(2):248. doi: 10.4103/2249-4863.192338
- Fitzpatrick LA. Pathophysiology of bone loss in patients receiving anticonvulsant therapy. Epilepsy Behav. 2004;5:3–15. doi: 10.1016/j.yebeh.2003.11.026
- Lee RH, Lyles KW, Colón-Emeric C. A review of the effect of anticonvulsant medications on bone mineral density and fracture risk. Am J Geriatr Pharmacother. 2010;8(1):34–46. doi: 10.1016/j.amjopharm.2010.02.003
- Beerhorst K, Tan IY, De Krom M, et al. Antiepileptic drugs and high prevalence of low bone mineral density in a group of inpatients with chronic epilepsy. Acta Neurol Scand. 2013;128(4):273–280. doi: 10.1111/ane.12118
- Jetté N, Lix LM, Metge CJ, et al. Association of antiepileptic drugs with nontraumatic fractures: a population-based analysis. Arch Neurol. 2011;68(1):107–112. doi: 10.1001/archneurol.2010.341
- Kashihara K, Imai K, Shiro Y, et al. Reversible pitch perception deficit due to carbamazepine. Intern Med. 1998;37(9): 774–775. doi: 10.2169/internalmedicine.37.774
- Hamed SA. The auditory and vestibular toxicities induced by antiepileptic drugs. Expert Opin Drug Saf. 2017;16(11):1281–1294. doi: 10.1080/14740338.2017.1372420
