Peculiarities of carbamazepine pharmacogenetics and the most common adverse drug reactions during its use (literature review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Carbamazepine is widely used for the treatment of epilepsy, trigeminal neuralgia and psychiatric disorders. However, therapy is often ineffective, and some patients experience adverse drug reactions, which negatively affect both the efficacy and safety of therapy.

This review systematized and presented up-to-date information regarding the pharmacokinetics and pharmacogenetics of carbamazepine, as well as the most common adverse drug reactions arising from its use. Knowledge of the pharmacokinetics, pharmacodynamics and pharmacogenetics of carbamazepine is necessary to assess the effect of genetically determined activity of cytochrome P450 isoenzymes on the efficacy and safety of this drug. This will make it possible to develop approaches to personalizing the selection of an effective and safe dose of therapy in patients based on individual clinical and biological parameters.

About the authors

Valentin Yu. Skryabin

Moscow Research and Practical Center for Narcology of the Moscow Department of Health; Russian Medical Academy of Continuing Professional Education

Email: sardonios@yandex.ru
ORCID iD: 0000-0002-4942-8556
SPIN-code: 4895-5285
Scopus Author ID: 57204416163

Cand. Sci. (Med.), Clinical Branch Head, Associate Professor of Narcology Department

Russian Federation, 37/1, Lyublinskaya st., Moscow, 109390; Moscow

Mikhail S. Zastrozhin

Moscow Research and Practical Center for Narcology of the Moscow Department of Health; Russian Medical Academy of Continuing Professional Education; University of California

Email: m.s.zastrozhin@gmail.com
ORCID iD: 0000-0002-3964-9726

Dr. Sci. (Med.), Associate Professor, Head of the Laboratory of genetics and basic research, Associate Professor of Narcology Department

Russian Federation, 37/1, Lyublinskaya st., Moscow, 109390; Moscow; San Francisco, CA, (USA)

Evgeny A. Bryun

Moscow Research and Practical Center for Narcology of the Moscow Department of Health; Russian Medical Academy of Continuing Professional Education

Email: e.a.bryun.mnpcn@rambler.ru
ORCID iD: 0000-0002-8366-9732

Dr. Sci. (Med.), Professor, President, Head of the Department of Narcology

Russian Federation, 37/1, Lyublinskaya st., Moscow, 109390; Москва

Dmitry A. Sychev

Russian Medical Academy of Continuing Professional Education

Author for correspondence.
Email: d.a.sychev.rmapo@rambler.ru
ORCID iD: 0000-0002-4496-3680

Academician of RAS, Dr. Sci. (Med.), Professor, Rector, Head of the Department of Clinical Pharmacology

Russian Federation, 37/1, Lyublinskaya st., Moscow, 109390

References

  1. Pearce RE, Lu W, Wang Y, et al. Pathways of carbamazepine bioactivation in vitro. III. The role of human cytochrome P450 enzymes in the formation of 2,3-dihydroxycarbamazepine. Drug Metab Dispos. 2008;36(8):1637–1649. doi: 10.1124/dmd.107.019562
  2. Schindler W., Häfliger F. Über Derivate des Iminodibenzyls. Helvetica Chimica Acta. 1954;37(2):472–483. (In Germ.)
  3. Kremets KG. Carbamazepine for treatment of alcohol withdrawal. Mezhdunarodnyi nevrologicheskii zhurnal. 2012;(2(48)):163–166. (In Russ.)
  4. Shnaider NA, Bochanova EN, Dmitrenko DV, et al. Pharmacogenetics of carbamazepine. Epilepsy and Paroxysmal Conditions. 2019;11(4): 364–378. (In Russ.) doi: 10.17749/2077-8333.2019.11.4.364-378
  5. Nechaev MO, Sychev DA, Zastrozhin MS, et al. Pharmacogenetic aspects of efficacy and safety profile of carbamazepine (review). Narcology. 2019;18(4):68–82. (In Russ.)
  6. Karlov VA, Vlasov PN, Kozhokaru AB, et al. Dynamics of epileptiform activity and the efficacy and tolerance of valproic acid formulations in adolescents and adults with newly diagnosed epilepsy. SS. Korsakov Journal of Neurology and Psychiatry. 2021;121(3):31–38. (In Russ.) doi: 10.17116/jnevro202112103131
  7. Tolou-Ghamari Z, Zare M, Habibabadi JM, et al. A quick review of carbamazepine pharmacokinetics in epilepsy from 1953 to 2012. J Res Med Sci. 2013;18(Supple 1):S81–S85.
  8. Kim KA, Oh SO, Park PW, et al. Effect of probenecid on the pharmacokinetics of carbamazepine in healthy subjects. Eur J Clin Pharmacol. 2005;61(4):275–280. doi: 10.1007/s00228-005-0940-7
  9. Ways of metabolism of valproic acid and carbamazepine preparations. Vestnik Klinicheskoi bol’nitsy № 51. 2010;3(10):52. (In Russ.)
  10. Yip VLM, Pertinez H, Meng X, et al. Evaluation of clinical and genetic factors in the population pharmacokinetics of carbamazepine. Br J Clin Pharmacol. 2021;87(6):2572–2588. doi: 10.1111/bcp.14667
  11. Acute intoxications with carbamazepine from the point of view of epoxide-diol pathway of biotransformation. Toxicological Review. 2013;(2(119)):30–33. (In Russ.)
  12. Iannaccone T, Sellitto C, Manzo V, et al. Pharmacogenetics of carbamazepine and valproate: focus on polymorphisms of drug metabolizing enzymes and transporters. Pharmaceuticals (Basel). 2021;14(3):204. doi: 10.3390/ph14030204
  13. Mosolov SN, Kostyukova EG. Klinicheskie rekomendatsii po farmakoprofilaktike retsidivov bipolyarnogo rasstroistva. Part 2. Sovremennaya Terapiya Psikhicheskikh Rasstroistv. 2008;(3):44–57. (In Russ.)
  14. Rembovskii VR, Mogilenkova LA. Protsessy detoksikatsii pri vozdeistvii khimicheskikh veshchestv na organizm. Saint Petersburg: izd-vo Politekhnicheskogo un-ta; 2017. 384 p.
  15. Baranov VS. Geneticheskii pasport — osnova individual’noi i prediktivnoi meditsiny. Baranov V.S., editor. Saint Petersburg: Izd-vo N-L, 2009. 528 p.
  16. Makmor-Bakry M, Sills GJ, Hitiris N, et al. Genetic variants in microsomal epoxide hydrolase influence carbamazepine dosing. Clin Neuropharmacol. 2009;32(4):205–212. doi: 10.1097/WNF.0b013e318187972a
  17. Daci A, Beretta G, Vllasaliu D, et al. Polymorphic variants of SCN1A and EPHX1 influence plasma carbamazepine concentration, metabolism and pharmacoresistance in a population of Kosovar Albanian epileptic patients. PLoS One. 2015;10(11):e0142408. doi: 10.1371/journal.pone.0142408
  18. Zhao GX, Shen ML, Zhang Z, et al. Association between EPHX1 polymorphisms and carbamazepine metabolism in epilepsy: A meta-analysis. Int J Clin Pharm. 2019;41(6):1414–1428. doi: 10.1007/s11096-019-00919-y
  19. He XJ, Jian LY, He XL, et al. Association of ABCB1, CYP3A4, EPHX1, FAS, SCN1A, MICA, and BAG6 polymorphisms with the risk of carbamazepine-induced Stevens–Johnson syndrome/toxic epidermal necrolysis in Chinese Han patients with epilepsy. Epilepsia. 2014;55(8):1301–1306. doi: 10.1111/epi.12655
  20. Chbili C, Fathallah N, Laouani A, et al. Effects of EPHX1 and CYP3A4*22 genetic polymorphisms on carbamazepine metabolism and drug response among Tunisian epileptic patients. J Neurogenet. 2016;30(1)16–21. doi: 10.3109/01677063.2016.1155571
  21. Caruso A, Bellia C, Pivetti A, et al. Effects of EPHX1 and CYP3A4 polymorphisms on carbamazepine metabolism in epileptic patients. Pharmgenomics Pers Med. 2014;7:117–120. doi: 10.2147/PGPM.S55548
  22. Saiz-Rodríguez M, Almenara S, Navares-Gómez M, et al. Effect of the most relevant CYP3A4 and CYP3A5 polymorphisms on the pharmacokinetic parameters of 10 CYP3A substrates. Biomedicines. 2020;8(4):94. doi: 10.3390/biomedicines8040094
  23. Park PW, Seo YH, Ahn JY, et al. Effect of CYP3A5*3 genotype on serum carbamazepine concentrations at steady state in Korean epileptic patients. J Clin Pharm Ther. 2009;34(5):569–574. doi: 10.1111/j.1365-2710.2009.01057.x
  24. Ganesapandian M, Ramasamy K, Adithan S, et al. Influence of cytochrome P450 3A5 (CYP3A5) genetic polymorphism on dose-adjusted plasma levels of carbamazepine in epileptic patients in South Indian population. Indian J Pharmacol. 2019;51(6):384–388. doi: 10.4103/ijp.IJP_122_19
  25. Al-Gahtany M, Karunakaran G, Munisamy M. Pharmacogenetics of CYP3A5 on Carbamazepine pharmacokinetics in epileptic patients developing toxicity. BMC Genom. 2014:2. doi: 10.1186/1471-2164-15-S2-P2
  26. Puranik YG, Birnbaum AK, Marino SE, et al. Association of carbamazepine major metabolism and transport pathway gene polymorphisms and pharmacokinetics in patients with epilepsy. Pharmacogenomics. 2013;14(1):35–45. doi: 10.2217/pgs.12.180
  27. Milovanovic DD, Radosavljevic I, Radovanovic M, et al. CYP3A5 polymorphism in Serbian paediatric epileptic patientson carbamazepine treatment. Ser J Exp Clin Res. 2015;16:93–99.
  28. Hong TP, Huynh Hieu TM, Vo T, et al. Effect of CYP3A5 genotypes on serum carbamazepine concentrations at steady-state in Vietnamese epileptic patients. Res J Pharm Technol. 2020;13:2802.
  29. Lu Q, Huang YT, Shu Y, et al. Effects of CYP3A5 and UGT2B7 variants on steady-state carbamazepine concentrations in Chinese epileptic patients. Medicine (Baltimore). 2018;97(30):e11662. doi: 10.1097/MD.0000000000011662
  30. Hung CC, Chang WL, Ho JL, et al. Association of polymorphisms in EPHX1, UGT2B7, ABCB1, ABCC2, SCN1A and SCN2A genes with carbamazepine therapy optimization. Pharmacogenomics. 2012;13(2):159–169. doi: 10.2217/pgs.11.141
  31. Ma CL, Jiao Z, Wu XY, et al. Association between PK/PD-involved gene polymorphisms and carbamazepine-individualized therapy. Pharmacogenomics. 2015;16(13):1499–1512. doi: 10.2217/pgs.15.94
  32. Djordjevic N, Milovanovic DD, Radovanovic M, et al. CYP1A2 genotype affects carbamazepine pharmacokinetics in children with epilepsy. Eur J Clin Pharmacol. 2016;72(4):439–445. doi: 10.1007/s00228-015-2006-9
  33. Tanno LK, Kerr DS, dos Santos B, et al. The absence of CYP3A5*3 is a protective factor to anticonvulsants hypersensitivity reactions: a case-control study in Brazilian subjects. PLoS One. 2015;10(8): e0136141. doi: 10.1371/journal.pone.0136141
  34. Laska AJ, Han MJ, Lospinoso JA, et al. CYP2C19*2 status in patients with Stevens–Johnson syndrome and toxic epidermal necrolysis. Pharmgenomics Pers Med. 2017;10:183–186. doi: 10.2147/PGPM.S129908
  35. Milovanovic DD, Milovanovic JR, Radovanovic M, et al. The influence of CYP2C8*3 on carbamazepine serum concentration in epileptic pediatric patients. Balkan J Med Genet. 2016;19(11):21–28. doi: 10.1515/bjmg-2016-0003
  36. Fricke-Galindo I, Lerena A, Jung-Cook H, et al. Carbamazepine adverse drug reactions. Expert Rev Clin Pharmacol. 2018;7:705–718. doi: 10.1080/17512433.2018.1486707
  37. Alfimov PV, Pavlichenko AV. Pharmacotherapy: normotimics. Psychiatry and Psychopharmacotherapy. 2021;23(6):4–9. (In Russ.)
  38. Ostroumova OD, Listratov AI, Kochetkov AI, et al. Drug-induced hyponatremia. 2021;(6(132)):22–34. (In Russ.) doi: 10.20333/25000136-2021-6-22-34
  39. Lu X, Wang X. Hyponatremia induced by antiepileptic drugs in patients with epilepsy. Expert Opin Drug Saf. 2017;16(1):77–87. doi: 10.1080/14740338.2017.1248399
  40. Witt JA, Helmstaedter C. Should cognition be screened in new-onset epilepsies? A study in 247 untreated patients. J Neurol. 2012;259(8):1727–1731. doi: 10.1007/s00415-012-6526-2
  41. Maksimova И.В. Kliniko-dinamicheskie osobennosti i terapiya kognitivnykh rasstroistv pri alkogolizme i alkogol’nykh psikhozakh s sudorozhnym sindromom [dissertation]. Tomsk; 2019.
  42. Witt JA, Helmstaedter C. Monitoring the cognitive effects of antiepileptic pharmacotherapy — approaching the individual patient. Epilepsy Behav. 2013;26(3):450–456. doi: 10.1016/j.yebeh.2012.09.015
  43. Shehata GA, Bateh AEM, Hamed SA, et al. Neuropsychological effects of antiepileptic drugs (carbamazepine versus valproate) in adult males with epilepsy. Neuropsychiatr Dis Treat. 2009;5:527–533. doi: 10.2147/ndt.s5903
  44. Eddy CM, Rickards HE, Cavanna AE. The cognitive impact of antiepileptic drugs. Ther Adv Neurol Disord. 2011;4(6):385–407. doi: 10.1177/1756285611417920
  45. Meador KJ, Loring DW, Ray PG, et al. Differential cognitive and behavioral effects of carbamazepine and lamotrigine. Neurology. 2001;56(9):1177–1182. doi: 10.1212/wnl.56.9.1177
  46. Äikiä M, Jutila L, Salmenperä T, et al. Long-term effects of tiagabine monotherapy on cognition and mood in adult patients with chronic partial epilepsy. Epilepsy Behav. 2006;8(4):750–755. doi: 10.1016/j.yebeh.2006.03.007
  47. Shorvon SD, Trinka E, Steinhoff BJ, et al. Eslicarbazepine acetate: its effectiveness as adjunctive therapy in clinical trials and open studies. J Neurol. 2017;264(3):421–431. doi: 10.1007/s00415-016-8338-2
  48. Park SP, Kwon SH. Cognitive effects of antiepileptic drugs. J Clin Neurol. 2008;4(3):99–106. doi: 10.3988/jcn.2008.4.3.99
  49. Khor AH, Lim KS, Tan CT, et al. HLA-B*15:02 association with carbamazepine-induced Stevens–Johnson syndrome and toxic epidermal necrolysis in an Indian population: a pooled-data analysis and meta-analysis. Epilepsia. 2014;55(11): e120–e124. doi: 10.1111/epi.12802
  50. Yun J, Cai F, Lee FJ, et al. T-cell-mediated drug hypersensitivity: immune mechanisms and their clinical relevance. Asia Pac Allergy. 2016;6(2):77–89. doi: 10.5415/apallergy.2016.6.2.77
  51. Błaszczyk B, Lasoń W, Czuczwar SJ. Antiepileptic drugs and adverse skin reactions: an update. Pharmacol Rep. 2015;67(3):426–434.
  52. Roujeau JC, Kelly JP, Naldi L, et al. Medication use and the risk of Stevens–Johnson syndrome or toxic epidermal necrolysis. N Engl J Med. 1995;333(24):1600–1607. doi: 10.1056/NEJM199512143332404
  53. Kim JY, Lee J, Ko YJ, et al. Multi-indication carbamazepine and the risk of severe cutaneous adverse drug reactions in Korean elderly patients: a Korean health insurance data-based study. PLoS One. 2013;8(12): e83849. doi: 10.1371/journal.pone.0083849
  54. Mockenhaupt M, Viboud C, Dunant A, et al. Stevens–Johnson syndrome and toxic epidermal necrolysis: assessment of medication risks with emphasis on recently marketed drugs. The EuroSCAR-study. J Invest Dermatol. 2008;128(1):35–44. doi: 10.1038/sj.jid.5701033
  55. Brodie MJ, Overstall PW, Giorgi L. Multicentre, double-blind, randomised comparison between lamotrigine and carbamazepine in elderly patients with newly diagnosed epilepsy. The UK lamotrigine elderly study group. Epilepsy Res. 1999;37(1):81–87.
  56. Choudhary S, McLeod M, Torchia D, et al. Drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome. J Clin Aesthet Dermatol. 2013;6(6):31–37.
  57. Chen YC, Chiu HC, Chu CY. Drug reaction with eosinophilia and systemic symptoms. Arch Dermatol. 2010;146(12):1373–1379.
  58. Letko E, Papaliodis DN, Papaliodis GN, et al. Stevens–Johnson syndrome and toxic epidermal necrolysis: a review of the literature. Ann Allergy Asthma Immunol. 2005;94(4):419–436. doi: 10.1016/S1081-1206(10)61112-X
  59. Ostroumova OD, Shikh EV, Shikh NV, et al. Drug-induced liver injury with cholestasis in the neurologist and psychiatric practice. Neurology, Neuropsychiatry, Psychosomatics. 2022;14(1):14–21. (In Russ.) doi: 10.14412/2074-2711-2022-1-14-21
  60. Björnsson E. Hepatotoxicity associated with antiepileptic drugs. Acta Neurol Scand. 2008;118(5):281–290. doi: 10.1111/j.1600-0404.2008.01009.x
  61. Pirmohamed M, Kitteringham N, Breckenridge A, et al. Detection of an autoantibody directed against human liver microsomal protein in a patient with carbamazepine hypersensitivity. Br J Clin Pharmacol. 1992;33(2):183–186. doi: 10.1111/j.1365-2125.1992.tb04022.x
  62. Pandit A, Sachdeva T, Bafna P. Drug-induced hepatotoxicity: a review. J Appl Pharm Sci. 2011;2(5):233–243. doi: 10.7324/JAPS.2012.2541
  63. Forbes GM, Jeffrey GP, Shilkin KB, et al. Carbamazepine hepatotoxicity: another cause of the vanishing bile duct syndrome. Gastroenterology. 1992;102:1385–1388. doi: 10.1016/0016-5085(92)90780-3
  64. Asadi-Pooya A, Sperling M. Antiepileptic drugs in patients with hematological disorders. In: Antiepileptic drugs a Clinician’s Manual. New York: Oxford University Press; 2009. P. 165–170. doi: 10.1093/med/9780190214968.003.0018
  65. Mihailova EA, Fidarova ZT, Troitskaya VV, et al. Clinical recommendations for the diagnosis and treatment of aplastic anemia (2019 edition). Russian Journal of Hematology and Transfusiology. 2020;65(2):208–226. (In Russ.) doi: 10.35754/0234-5730-2020-65-2-208-226
  66. Young NS, Scheinberg P, Calado RT. Aplastic anemia. Curr Opin Hematol. 2008;15(3):162–168. doi: 10.1097/MOH.0b013e3282fa7470
  67. Handoko KB, Souverein PC, van Staa TP, et al. Risk of aplastic anemia in patients using antiepileptic drugs. Epilepsia. 2006;47(7):1232–1236. doi: 10.1111/j.1528-1167.2006.00596.x
  68. Koutsavlis I, Lasebai M. Dose-dependent carbamazepine-induced agranulocytosis following bariatric surgery (sleeve gastrectomy): a possible mechanism. Bariatr Surg Pract Patient Care. 2015;10(3):130–134. doi: 10.1089/bari.2015.0020
  69. Andress DL, Ozuna J, Tirschwell D, et al. Antiepileptic drug-induced bone loss in young male patients who have seizures. Arch Neurol. 2002;59(5):781–786. doi: 10.1001/archneur.59.5.781
  70. Arora E, Singh H, Gupta Y. Impact of antiepileptic drugs on bone health: need for monitoring, treatment, and prevention strategies. J Fam Med Prim Care. 2016;5(2):248. doi: 10.4103/2249-4863.192338
  71. Fitzpatrick LA. Pathophysiology of bone loss in patients receiving anticonvulsant therapy. Epilepsy Behav. 2004;5:3–15. doi: 10.1016/j.yebeh.2003.11.026
  72. Lee RH, Lyles KW, Colón-Emeric C. A review of the effect of anticonvulsant medications on bone mineral density and fracture risk. Am J Geriatr Pharmacother. 2010;8(1):34–46. doi: 10.1016/j.amjopharm.2010.02.003
  73. Beerhorst K, Tan IY, De Krom M, et al. Antiepileptic drugs and high prevalence of low bone mineral density in a group of inpatients with chronic epilepsy. Acta Neurol Scand. 2013;128(4):273–280. doi: 10.1111/ane.12118
  74. Jetté N, Lix LM, Metge CJ, et al. Association of antiepileptic drugs with nontraumatic fractures: a population-based analysis. Arch Neurol. 2011;68(1):107–112. doi: 10.1001/archneurol.2010.341
  75. Kashihara K, Imai K, Shiro Y, et al. Reversible pitch perception deficit due to carbamazepine. Intern Med. 1998;37(9): 774–775. doi: 10.2169/internalmedicine.37.774
  76. Hamed SA. The auditory and vestibular toxicities induced by antiepileptic drugs. Expert Opin Drug Saf. 2017;16(11):1281–1294. doi: 10.1080/14740338.2017.1372420

Copyright (c) 2022 Skryabin V.Y., Zastrozhin M.S., Bryun E.A., Sychev D.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».