Vasopressin in mechanisms of stress reactions and modulation of emotion

Cover Page

Cite item

Full Text

Abstract

The review presents modern conceptions about the role of the vasopressinergic system in regulating reactions to stress and modulation of emotions in animals and humans. The contribution of vasopressin to activation of the hypothalamic-pituitary-adrenal system in conditions of acute and chronic stress is reflected in the work. It is noted that the activation of vasopressin receptors of type 1 enhances the response to stress, which contributes to the development of psychopathology. It is emphasized that the role of vasopressin receptors of type 2 in the regulation of emotions has been studied little. At the same time, there is evidence that the activation of vasopressin receptors of type 2 in patients with depressive disorders after a stroke is accompanied by effects that are opposite in direction to the effects of activation of vasopressin receptors of type 1. The review examines promising areas of further studies of the involvement of vasopressin receptors of type 2 in modulating stress reactions and emotions. The use of receptor antagonist’s vasopressin of type 1 and receptor agonists of type 2 in the treatment of depressive and anxiety disorders are discussed.

About the authors

Svetlana G. Belokoskova

Institute of Experimental Medicine

Author for correspondence.
Email: belokoskova.s@yandex.ru

PhD (Medicine), Senior Researcher, Pavlov Department of Physiology

Russian Federation, St. Petersburg

Sergey G. Tsikunov

Institute of Experimental Medicine

Email: secikunov@yandex.ru

Doctor of Medical Sciences, Professor, Head of the Laboratory of Psychophysiology of Emotions, Pavlov Department of Physiology

Russian Federation, St. Petersburg

References

  1. Белокоскова С.Г., Степанов И.И., Цикунов С.Г. Агонист V2-рецепторов вазопрессина редуцирует депрессивные расстройства у постинсультных больных // Вестник РАМН. - 2012. - № 4. - C. 40-44. [Belokoskova SG, Stepanov II, Tsikunov SG. Agonist of V2 vasopressin receptor reduces depressive disorders in post-stroke patients. Vestn Ross Akad Med Nauk. 2012;(4):40-44. (In Russ.)]
  2. Aguilera G, Subburaju S, Young S, Chen J. The parvocellular vasopressinergic system and responsiveness of the hypothalamic pituitary adrenal axis during chronic stress. Prog Brain Res. 2008;170:29-39. doi: 10.1016/S0079-6123(08)00403-2.
  3. Alonso R, Griebel G, Pavone G, et al. Blockade of CRF(1) or V(1b) receptors reverses stress-induced suppression of neurogenesis in a mouse model of depression. Mol Psychiatry. 2004;9(3):278-86, 224. doi: 10.1038/sj.mp.4001464.
  4. Balázsfi D, Pintér O, Klausz B, et al. Restoration of peripheral V2 receptor vasopressin signaling fails to correct behavioral changes in Brattleboro rats. Psychoneuroendocrinology. 2015;51:11-23. doi: 10.1016/j.psyneuen.2014.09.011.
  5. Bao LL, Jiang WQ, Sun FJ, et al. The influence of psychological stress on arginine vasopressin concentration in the human plasma and cerebrospinal fluid. Neuropeptides. 2014;48(6):361-369. doi: 10.1016/j.npep. 2014.09.006.
  6. Baribeau DA, Anagnostou E. Oxytocin and vasopressin: linking pituitary neuropeptides and their receptors to social neurocircuits. Front Neurosci. 2015;9:335. doi: 10.3389/fnins.2015.00335.
  7. Ben-Efraim YJ, Wasserman D, Wasserman J, Sokolowski M. Family-based study of AVPR1B association and interaction with stressful life events on depression and anxiety in suicide attempts. Neuropsychopharmacology. 2013;38(8):1504-1511. doi: 10.1038/npp.2013.49.
  8. Beurel E, Nemeroff CB. Interaction of stress, corticotropin-releasing factor, arginine vasopressin and behaviour. Curr Top Behav Neurosci. 2014;18:67-80. doi: 10.1007/7854_2014_306.
  9. Bielsky IF, Hu SB, Ren X, et al. The V1a vasopressin receptor is necessary and sufficient for normal social recognition: a gene replacement study. Neuron. 2005;47(4):503-513. doi: 10.1016/j.neuron.2005.06.031.
  10. Broadbear JH, Kabel D, Tracy L, Mak P. Oxytocinergic regulation of endogenous as well as drug-induced mood. Pharmacol Biochem Behav. 2014;119:61-71. doi: 10.1016/j.pbb.2013.07.002.
  11. Brunner J, Keck ME, Landgraf R, et al. Vasopressin in CSF and plasma in depressed suicide attempters: preliminary results. Eur Neuropsychopharmacol. 2002;12(5):489-494.
  12. Brunnlieb C, Münte TF, Krämer U, et al. Vasopressin modulates neural responses during human reactive aggression. Soc Neurosci. 2013;8(2):148-164. doi: 10.1080/17470919.2013.763654.
  13. Brunnlieb C, Münte TF, Tempelmann C, Heldmann M. Vasopressin modulates neural responses related to emotional stimuli in the right amygdala. Brain Res. 2013;1499:29-42. doi: 10.1016/j.brainres.2013.01.009.
  14. D’Sa C, Dumam RS. Antidepressant and neuroplasticity. Bipolar Disord. 2002;4(3):183-194.
  15. De Bellis MD, Gold PW, Geracioti TD Jr, et al. Association of fluoxetine treatment with reductions in CSF concentrations of corticotropin-releasing hormone and arginine vasopressin in patients with major depression. Am J Psychiatry. 1993;150(4):656-657. doi: 10.1176/ajp.150.4.656.
  16. de Winter RF, van Hemert AM, Derijk RH, et al. Anxious-retarded depression: relation with plasma vasopressin and cortisol. Neuropsychopharmacology. 2003;28:140-147. doi: 10.1038/sj.npp.1300002.
  17. Dinan TG, Scott LV. Anatomy of melancholia: focus on hypothalamic-pituitary-adrenal axis overactivity and the role of vasopressin. J Anat. 2005;207(3):259-264. doi: 10.1111/j.1469-7580.2005.00443.x.
  18. Egashira N, Tanoue A, Matsuda T, et al. Impaired social interaction and reduced anxiety-related behavior in vasopressin V1a receptor knockout mice. Behav Brain Res. 2007;178(1):123-127. doi: 10.1016/j.bbr.2006.12.009.
  19. Engelmann M, Ebner K, Landgraf R, Wotjak CT. Swim stress triggers the release of vasopressin within the suprachiasmatic nucleus of male rats. Brain Res. 1998;792(2):343-347.
  20. Füchsl AM, Langgartner D, Reber SO. Mechanisms Underlying the Increased Plasma ACTH Levels in Chronic Psychosocially Stressed Male Mice. PLoS One. 2013;8(12): e84161. doi: 10.1371/journal.pone.0084161.
  21. Goncharova ND. Stress responsiveness of the hypothalamic-pituitary-adrenal axis: age-related features of the vasopressinergic regulation. Front Endocrinol (Lausanne). 2013;4:26. doi: 10.3389/fendo.2013.00026.
  22. Griebel G, Simiand J, Serradeil-Le Gal C, et al. Anxiolytic- and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR149415, suggest an innovative approach for the treatment of stress-related disorders. Proc Natl Acad Sci USA. 2002;99(9):6370-6375. doi: 10.1073/pnas.092012099.
  23. Herman JP, Tasker JG. Paraventricular Hypothalamic Mechanisms of Chronic Stress Adaptation. Front Endocrinol (Lausanne). 2016;7:137. doi: 10.3389/fendo.2016.00137.
  24. Hernando F, Schoots O, Lolait SJ, Burbach JP. Immunohistochemical localization of the vasopressin V1b receptor in the rat brain and pituitary gland: anatomical support for its involvement in the central effects of vasopressin. Endocrinology. 2001;142(4):1659-1668. doi: 10.1210/endo.142.4.8067.
  25. Hirasawa A, Hashimoto K, Tsujimoto G. Distribution and developmental change of vasopressin V1A and V2 receptor mRNA in rats. Eur J Pharmacol. 1994;267(1):71-75.
  26. Hodgson RA, Mullins D, Lu SX, et al. Characterization of a novel vasopressin V1b receptor antagonist, V1B-30N, in animal models of anxiety-like and depression-like behavior. Eur J Pharmacol. 2014;730:157-163. doi: 10.1016/j.ejphar.2014.02.027.
  27. Iijima M, Yoshimizu T, Shimazaki T, et al. Antidepressant and anxiolytic profiles of newly synthesized arginine vasopressin V1B receptor antagonists: TASP0233278 and TASP0390325. Br J Pharmacol. 2014;171(14):3511-3525. doi: 10.1111/bph.12699.
  28. Itoh S, Yamada S, Mori T, et al. Attenuated stress-induced catecholamine release in mice lacking the vasopressin V1b receptor. Am J Physiol Endocrinol Metab. 2006;291(1): E147-151.
  29. Kato Y, Igarashi N, Hirasawa A, et al. Distribution and developmental changes in vasopressin V2 receptor mRNA in rat brain. Differentiation. 1995;59(3):163-169. doi: 10.1046/j.1432-0436.1995.5930163.x.
  30. Kjaer A. Permissive, mediating and potentiating effects of vasopressin in the ACTH and beta-endorphin response to histamine and restraint stress. Neuroendocrinology. 1993;58(5):588-596. doi: 10.1159/000126595.
  31. Koshimizu TA, Nakamura K, Egashira N, et al. Vasopressin V1a and V1b Receptors: from Molecules to Physiological Systems. Physiol Rev. 2012;92(4):1813-1864. doi: 10.1152/physrev.00035.2011.
  32. Kvetnanský R, Lichardus B, Jezová D, et al. Vasopressin and 1-deamino-8-D-arginine-vasopressin (DDAVP) reduce elevated plasma catecholamine levels in rats with hypothalamic deafferentation. Cell Mol Neurobiol. 1988;8(2):225-233.
  33. Landgraf R, Neumann ID. Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front Neuroendocrinol. 2004;25(3-4):150-176. doi: 10.1016/j.yfrne.2004.05.001.
  34. Lee RJ, Coccaro EF, Cremers H, et al. A novel V1a receptor antagonist blocks vasopressin-induced changes in the CNS response to emotional stimuli: an fMRI study. Front Syst Neurosci. 2013;7:100. doi: 10.3389/fnsys.2013.00100.
  35. Leonard BE, Myint A. Changes in the immune system in depression and dementia: causal or coincidental effects? Dialogues Clin Neurosci. 2006;8(2):163-174.
  36. Lolait SL, Stewart LQ, Jessop DS, et al. The hypothalamic-pituitary adrenal axis response to stress in mice lacking functional vasopressin V1b receptors. Endocrinology. 2007;148:849-856. doi: 10.1210/en.2006-1309.
  37. Ludwig M, Apps D, Menzies J, et al. Dendritic release of neurotransmitters. Compr Physiol. 2016;7(1):235-252. doi: 10.1002/cphy.c160007.
  38. Ma XM, Lightman SL, Aguilera G. Vasopressin and corticotropin-releasing hormone gene responses to novel stress in rats adapted to repeated restraint. Endocrinology. 1999;140:3623-3632. doi: 10.1210/endo.140.8.6943.
  39. Meynen G, Unmehopa UA, van Heerikhuize JJ, et al. Increased arginine vasopressin mRNA expression in the human hypothalamus in depression: A preliminary report. Biol Psychiatry. 2006;60(8):892-895. doi: 10.1016/j.biopsych.2005.12.010.
  40. Ostrowski NL, Lolait SJ, Bradley DJ, et al. Distribution of V1a and V2 vasopressin receptor messenger ribonucleic acids in rat liver, kidney, pituitary and brain. Endocrinology. 1992;131(1):533-535.
  41. Ring RH. The central vasopressinergic system: examining the opportunities for psychiatric drug development. Curr Pharm Des. 2005;11(2):205-225.
  42. Roper J, OʼCarroll AM, Young W 3rd, Lolait S. The vasopressin Avpr1b receptor: molecular and pharmacological studies. Stress. 2011;14(1):98-115. doi: 10.3109/10253890.2010.512376.
  43. Serradeil-Le Gal C, Wagnon J 3rd, Tonnerre B, et al. An overview of SSR149415, a selective nonpeptide vasopressin V(1b) receptor antagonist for the tritment of stress-related disorders. CNS Drug Rev. 2005;11(1):53-68.
  44. Stewart LQ, Roper JA, Scott Young W 3rd, et al. The role of the arginine vasopressin Avp1b receptor in the acute neuroendocrine action of antidepressants. Psychoneuroendocrinology. 2008;33(4):405-415. doi: 10.1016/j.psyneuen.2007.12.009.
  45. Stoop R. Neuromodulation by oxytocin and vasopressin. Neuron. 2012;76(1):142-159. doi: 10.1016/j.neuron.2012.09.025.
  46. Tanoue A, Ito S, Honda K, et al. The vasopressin V1b receptor critically regulates hypothalamic-pituitary-adrenal axis activity under both stress and resting conditions. J Clin Invest. 2004;113(2):302-309. doi: 10.1172/JCI19656.
  47. Vargas KJ, Sarmiento JM, Ehrenfeld P, et al. Postnatal expression of V2 vasopressin receptor splice variants in the rat cerebellum. Differentiation. 2009;77(4):377-385. doi: 10.1016/j.diff.2008.11.002.
  48. Wigger A, Sánchez MM, Mathys KC, et al. Alterations in central neuropeptide expression, release, and receptor binding in rats bred for high anxiety: critical role of vasopressin. Neuropsychopharmacology. 2004;29:1-14. doi: 10.1038/sj.npp.1300290.
  49. Yang J, Pan YJ, Yin ZK, et al. Effect of arginine vasopressin on the behavioral activity in the behavior despair depression rat model. Neuropeptides. 2012;46(3):141-149. doi: 10.1016/j.npep.2012.03.003.
  50. Zelena D, Barna I, Pintér O, et al. Congenital absence of vasopressin and age-dependent changes in ACTH and corticosterone stress responses in rats. Stress. 2011;14(4): 420-30. doi: 10.3109/10253890.2011.552991.
  51. Zelena D, Domokos A, Barna I, et al. Control of the hypothalamo-pituitary-adrenal axis in the neonatal period: adrenocorticotropin and corticosterone stress responses dissociate in vasopressin-deficient brattleboro rats. Endocrinology. 2008;149(5):2576-2583. doi: 10.1210/en.2007-1537.
  52. Zelena D, Domokos A, Jain SK, et al. The stimuli-specific role of vasopressin in the hypothalamus-pituitary-adrenal axis response to stress. J Endocrinol. 2009;202(2):263-278. doi: 10.1677/JOE-09-0096.
  53. Zelena D, Mergl Z, Makara GB. The role of vasopressin in diabetes mellitus-induced hypothalamo-pituitary-adrenal axis activation: studies in Brattleboro rats. Brain Res Bull. 2006;69(1):48-56. doi: 10.1016/j.brainresbull.2005.10.009.
  54. Zhou JN, Riemersma RF, Unmehopa UA, et al. Alterations in arginine vasopressin neurons in the suprachiasmatic nucleus in depression. Arch Gen Psychiatry. 2001;58(7):655-662.
  55. Zink CF, Kempf L, Hakimi S, et al. Vasopressin modulates social recognition-related activity in the left temporoparietal junction in humans. Transl Psychiatry. 2011;1: e3. doi: 10.1038/tp.2011.2.
  56. Zink CF, Stein JL, Kempf L, et al. Vasopressin modulates medial prefrontal cortex-amygdala circuitry during emotion processing in humans. J Neurosci. 2010;30(20):7017-7022. doi: 10.1523/JNEUROSCI.4899-09.2010.

Copyright (c) 2018 Belokoskova S.G., Tsikunov S.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».