Domain Archaea – system overview, metabolism, biotechnological potential

Cover Page

Cite item

Full Text

Abstract

An overview of Archaea, the most ancient domain of life, was carried out. The phylogenetic relationship of Archaea with bacteria and eukaryotes are considered, and the morpho-physiological characteristics of their main groups are given. The biotechnological potential of Archaea is discussed. Cost-effective products of Archaeal biosynthesis are bacterioruberin, squalene, bacteriorhodopsin and diester/tetraether lipids. The production of other metabolic products of Archaea, such as carotenoids, hydrogen, polyhydroxyalkanoates and methane, are in advanced stages of development. While the biological production of methane and hydrogen currently lags behind the profitability of petrochemical plants, research aimed at enhancing the efficiency of this process with the involvement of Archaea holds strategic significance. Archaea also represent a promising target for application in nanotechnology and bioengineering. The aim of the present review is to unveil the biotechnological potential of Archaea, provide an overview of the main groups within this domain, their morphophysiological characteristics, present a generalized metabolite profile of these groups, and outline the spectrum of productions involving these intriguing microorganisms.

About the authors

Ivan V. Zmitrovich

Komarov Botanical Institute of the Russian Academy of Sciences

Email: iv_zmitrovich@mail.ru
ORCID iD: 0000-0002-3927-2527
SPIN-code: 4155-3190
https://binran.ru/sotrudniki/4926/

D.Sc. in Biology, Leading Researcher, Laboratory of Systematics and Geography of the Fungi

Russian Federation, Saint Petersburg

Vladimir V. Perelygin

Saint Petersburg State Chemical and Pharmaceutical University

Email: vladimir.pereligin@pharminnotech.com
ORCID iD: 0000-0002-0999-5644
SPIN-code: 3128-7451

Doctor of Medicine (MD), Professor, Head of the Industrial Ecology Department

Russian Federation, Saint Petersburg

Mikhail V. Zharikov

Saint Petersburg State Chemical and Pharmaceutical University

Author for correspondence.
Email: zharikov.mihail@pharminnotech.com
ORCID iD: 0000-0003-0720-501X
SPIN-code: 7818-7228

Master of the Department of Industrial Ecology

Russian Federation, Saint Petersburg

References

  1. Sorokhtin O. G. Globalnaya evolyutsiya Zemli [Global evolution of the Earth]. Izdatelstvo Moskovskogo universiteta, Moscow, 1991 (in Russ).
  2. Vologdin A. G. Zemlya i zhizn [Earth and life]. Nedra, Moscow, 1976 (in Russ).
  3. Hayes J. Evolution of the atmosphere. 2020. Encyclopedia Britannica. https://www.britannica.com/topic/evolution-of-the-atmosphere-1703862
  4. Lovelock J. E. Gaia as seen through the atmosphere. Atmospheric Environment 1972. V. 6. P. 579–580.
  5. James E.,Lovelock J. E., Margulis L. Atmospheric homeostasis by and for the biosphere: the gaia hypothesis. Tellus. 1974. V. 26. P. 1–2; 2–10. doi: 10.3402/tellusa.v26i1-2.9731
  6. Offre P., Spang A., Schleper C. Archaea in biogeochemical cycles. Annual Review of Microbiology. 2013. V. 67. P. 437–457. doi: 10.1146/annurev-micro-092412-155614
  7. Santoro A. E., Richter R. A., Dupont C. L. Planktonic marine Archaea. Annual Review of Marine Svience. 2019. V. 3(11). P. 131–158. doi: 10.1146/annurev-marine-121916-063141
  8. Koonin E. V. Origin of eukaryotes from within archaea, archaeal eukaryome and bursts of gene gain: eukaryogenesis just made easier? Philosophical Transactions of the Royal Society. B. Biological Sciences. 2015. V. 370(1678). e20140333. doi: 10.1098/rstb.2014.0333
  9. Woese C. R., Fox G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proceedings of the National Academy of Sciences of the United States of America. 1977. V. 74(11). P. 5088–5090. doi: 10.1073/pnas.74.11.5088
  10. Woese C. R., Kandler O., Wheelis M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences of the United States of America. 1990. V. 87(12). P. 4576–4579. doi: 10.1073/pnas.87.12.4576
  11. Kandler O., Hippe H. Lack of peptidoglycan in the cell walls of Methanosarcina barkeri. Archives of Microbiology. 1977. V. 113(1–2). P. 57–60. doi: 10.1007/BF00428580
  12. Tornabene T. G., Wolfe R. S., Balch W. E., Holzer G., Fox G. E., Oro J. Phytanyl-glycerol ethers and squalenes in the archaebacterium Methanobacterium thermoautotrophicum. Journal of Molecular Evolution. 1978. V. 11(3). P. 259–266. doi: 10.1007/BF01734487
  13. Cavalier-Smith T. Bacteria and eukaryotes. Nature. 1992. V. 356. P. 570. doi: 10.1038/356570a0
  14. Stoeckenius W. Walsby’s square bacterium: fine structure of an orthogonal procaryote. Journal of Bacteriology. 1981. V. 148(1). P. 352–360. doi: 10.1128/jb.148.1.352-360.1981
  15. Keenleyside W. Microbiology: Canadian edition. Pressbooks, Toronto, 2019.
  16. Jun S. R., Sims G. E., Wu G. A., Kim S. H. Whole-proteome phylogeny of prokaryotes by feature frequency profiles: An alignment-free method with optimal feature resolution. Proceedings of the National Academy of Sciences of the United States of America. 2010. V. 107(1). P. 133–138. doi: 10.1073/pnas.0913033107
  17. Lane N., Martin W. The energetics of genome complexity. Nature. 2010. V. 467(7318). P. 929–934. doi: 10.1038/nature09486
  18. Martin W., Koonin E. V. Introns and the origin of nucleus-cytosol compartmentalization. Nature. 2006. V. 440(7080). P. 41–45. doi: 10.1038/nature04531
  19. López-García P., Moreira D. Selective forces for the origin of the eukaryotic nucleus. Bioessays. 2006. V. 28(5). P. 525–533. doi: 10.1002/bies.20413
  20. Koonin E. V. The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate? Biology Direct. 2006. V. 1. P. 22 doi: 10.1186/1745-6150-1-22
  21. Koonin E. V., Makarova K. S., Aravind L. Horizontal gene transfer in prokaryotes: quantification and classification. Annual Review of Microbiology. 2001. V. 55. P. 709–742. doi: 10.1146/annurev.micro.55.1.709
  22. Wolf Y. I., Makarova K. S., Yutin N., Koonin E. V. Updated clusters of orthologous genes for Archaea: a complex ancestor of the Archaea and the byways of horizontal gene transfer. Biology Direct. 2012. V. 7. P. 46. doi: 10.1186/1745-6150-7-46
  23. Wolf Y. I., Koonin E. V. Genome reduction as the dominant mode of evolution. Bioessays. 2013. V. 35(9). P. 829–837. doi: 10.1002/bies.201300037
  24. Cavalier-Smith T. A 6-kingdom classification and a unified phylogeny. In: H.E.A. Schenk, W. Schwemmler (eds). Endocytobiology II. De Gruyter, Berlin, 1983, pp. 1027–1034.
  25. Philippe H., Adoutte A. The molecular phylogeny of Eukaryota: solid facts and uncertainties. In: G. Coombs, K. Vickerman, M. Sleigh, A. Warren (eds). Evolutionary relationships among Protozoa. Chapman and Hall, London, 1998, pp. 25−56.
  26. Baldauf S. L. The deep roots of eukaryotes. Science. 2003 V. 300(5626). P. 1703–1706. doi: 10.1126/science.1085544
  27. Cavalier-Smith T., Chao E. E., Lewis R. Multiple origins of Heliozoa from flagellate ancestors: New cryptist subphylum Corbihelia, superclass Corbistoma, and monophyly of Haptista, Cryptista, Hacrobia and Chromista. Molecular Phylogenetics and Evolution. 2015. V. 93. P. 331–362. doi: 10.1016/j.ympev.2015.07.004
  28. Strassert J. F. H., Irisarri I., Williams T. A., Burki F. A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. Nature Communications. 2021. V. 12(1). P. 1879. doi: 10.1038/s41467-021-22044-z
  29. Al Jewari C., Baldauf S. L. An excavate root for the eukaryote tree of life. Science Advances. 2023. V. 9(17). eade4973. doi: 10.1126/sciadv.ade4973
  30. Chow C., Padda K. P., Puri A., Chanway C. P. An archaic approach to a modern issue: endophytic Archaea for sustainable agriculture. Current Microbiology. 2022. V. 79(11). P. 322. doi: 10.1007/s00284-022-03016-y
  31. Bang C., Schmitz R. A. Archaea associated with human surfaces: not to be underestimated. FEMS Microbiol Reviews. 2015. V. 39(5). P. 631–648. doi: 10.1093/femsre/fuv010
  32. Moissl-Eichinger C., Pausan M., Taffner J., Berg G., Bang C., Schmitz R. A. Archaea are interactive components of complex microbiomes. Trends in Microbiology. 2018. V. 26(1). P. 70–85. doi: 10.1016/j.tim.2017.07.004
  33. McCalley C. K., Woodcroft B. J., Hodgkins S. B., Wehr R. A., Kim E. H., Mondav R., Crill P. M., Chanton J. P., Rich V. I., Tyson G. W., Saleska S. R. Methane dynamics regulated by microbial community response to permafrost thaw. Nature. 2014. V. 514(7523). P. 478–481. doi: 10.1038/nature13798
  34. Stieglmeier M., Alves R. J. E., Schleper C. The phylum Thaumarchaeota. In: E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, F. Thompson (eds). The Prokaryotes. Springer, Berlin, Heidelberg, 2014. doi: 10.1007/978-3-642-38954-2_338
  35. McGenity T. J., Grant W. D., Kamekura M. Genus X. Natrinema McGenity, Gemmell et Grant 1998, 1194VP. In: D. R. Boone, R. W. Castenholz, G. M. Garrity (eds). Bergey’s manual of systematic bacteriology. V. 1. The Archaea and the deeply branching and phototrophic bacteria. Springer, N.Y., 2001, pp. 327–329.
  36. Rosenberg E. (ed.). The Prokaryotes. Other major lineages of Bacteria and the Archaea. Springer, N.Y. etc., 2014, pp. 1–1028.
  37. Garrity G. M.,Holt J. G. Class V I. Archaeoglobi. In: D. R. Boone, R. W. Castenholz, G. M. Garrity (eds). Bergey’s manual of systematic bacteriology. V. 1, 2nd edn. Springer, N.Y., 2001, pp. 349–353.
  38. Martin M. R., Fornero J. J., Stark R., Mets L., Angenent L. T. A single-culture bioprocess of Methanothermobacter thermautotrophicus to upgrade digester biogas by CO2-to-CH4 conversion with H2. Archaea. 2013. e157529. doi: 10.1155/2013/157529
  39. Rittmann S. K. M. R., Seifert A. H., Krajete A. Biomethanisierung – ein Prozess zur Ermöglichung der Energiewende? Biospektrum. 2014. V. 20. P. 816–817. doi: 10.1007/s12268-014-0521-3
  40. Seifert A. H., Rittmann S., Herwig C. Analysis of process related factors to increase volumetric productivity and quality of biomethane with Methanothermobacter marburgensis. Applied Energy. 2014. V. 132, pp. 155–162. doi: 10.1016/j.apenergy.2014.07.002
  41. Taubner R. S., Pappenreiter P., Zwicker J., Smrzka D., Pruckner C., Kolar P., Bernacchi S., Seifert A. H., Krajete A., Bach W., Peckmann J., Paulik C., Firneis M. G., Schleper C., Rittmann S. K. M. R. Biological methane production under putative Enceladus-like conditions. Nature Communications. 2018. V. 9(1). doi: 10.1038/s41467-018-02876-y
  42. Hoffarth M. P., Broeker T., Schneider J. Effect of N2 on biological methanation in a continuous stirred-tank reactor with Methanothermobacter marburgensis. Fermentation. 2019. V. 5(56). doi: 10.3390/fermentation5030056
  43. Nishimura N., Kitaura S., Mimura A., Takahara Y. Cultivation of thermophilic methanogen KN-15 on H2 – CO2 under pressurized conditions. Journal of Fermentation and Bioingeneering. 1992. V. 73. P. 477–480. doi: 10.1016/0922-338X(92)90141-G
  44. Jee H. S., Nishio N., Nagai S. CH4 production from H2 and CO2 by Methanobacterium thermoautotrophicum cells fixed on hollow fibers. Biotechnology Letters. 1988. V. 10. P. 243–248. doi: 10.1007/BF01024413
  45. Jee H. S., Yano T., Nishio N., Nagai S. Biomethanation of H2 and CO2 by Methanobacterium thermoautotrophicum in membrane and ceramic bioreactors. Journal of Fermentation Technology. 1987. V. 65. P. 413–418. doi: 10.1016/0385-6380(87)90137-3
  46. Pappenreiter P. A., Zwirtmayr S., Mauerhofer L. M., Rittmann S. K. R., Paulik C. Development of a simultaneous bioreactor system for characterization of gas production kinetics of methanogenic archaea at high pressure. Engineering in Life Sciences. 2019. V. 19(7). P. 537–544. doi: 10.1002/elsc.201900035
  47. Abdel Azim A., Rittmann S. K. R., Fino D., Bochmann G. The physiological effect of heavy metals and volatile fatty acids on Methanococcus maripaludis S2. Biotechnology for Biofuels and Bioproducts. 2018. V. 11. P. 301. doi: 10.1186/s13068-018-1302-x
  48. Pfeifer K., Ergal İ., Koller M., Basen M., Schuster B., Rittmann S. K. R. Archaea biotechnology. Biotecnology Advances. 2021. V. 47. e107668. doi: 10.1016/j.biotechadv.2020.107668
  49. Stolten D. Hydrogen and fuel cells: fundamentals, technologies and applications. John Wiley and Sons, Hoboken etc., 2010.
  50. Handelsblatt. Drei-Phasen-Plan: Die Wasserstoff-Welt der Zukunft: So will die EU das Energiesystem umbauen. 2020 https://www.handelsblatt.com/unternehmen/energie/drei-phasen-plan-die-wasserstoff-welt-der-zukunft-so-will-die-eu-das-energiesystem-umbauen/25984390.html
  51. Fiala G., Stetter K. O. Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Archives of Microbiology. 1986. V. 145. P. 56–61. doi: 10.1007/BF00413027
  52. Bálint B., Bagi Z., Tóth A., Rákhely G., Perei K., Kovács K. L. Utilization of keratin-containing biowaste to produce biohydrogen. Applied Microbiology and Biotechnology. 2005. V. 69(4). P. 404–410. doi: 10.1007/s00253-005-1993-3
  53. Bae S. S., Kim T. W., Lee H. S., Kwon K. K., Kim Y. J., Kim M. S., Lee J. H., Kang S. G. H2 production from CO, formiate or starch using the hyperthermophilic archaeon, Thermococcus onnurineus. Biotechnology Letters. 2012. V. 34(1). P. 75–79. doi: 10.1007/s10529-011-0732-3
  54. Ergal İ., Fuchs W., Hasibar B., Thallinger B., Bochmann G., Rittmann S. K. R. The physiology and biotechnology of dark fermentative biohydrogen production. Biotecnology Advances. 2018. V. 36(8). P. 2165–2186. doi: 10.1016/j.biotechadv.2018.10.005
  55. Oslowski D. M., Jung J. H., Seo D. H., Park C. S., Holden J. F. Production of hydrogen from α-1,4- and β-1,4-linked saccharides by marine hyperthermophilic Archaea. Applied and Environmental Microbiology. 2011. V. 77(10). P. 3169–3173. doi: 10.1128/AEM.01366-10
  56. Müller V. New horizons in acetogenic conversion of one-carbon substrates and biological hydrogen storage. Trends in Biotechnologyogy. 2019. V. 37(12). P. 1344–1354. doi: 10.1016/j.tibtech.2019.05.008
  57. Bhattacharyya A., Jana K., Haldar S., Bhowmic A., Mukhopadhyay U. K., De S., Mukherjee J. Integration of poly-3-(hydroxybutyrate-co-hydroxyvalerate) production by Haloferax mediterranei through utilization of stillage from rice-based ethanol manufacture in India and its techno-economic analysis. World Journal of Microbiology and Biotechnology. 2015. V. 31(5). P. 717–727. doi: 10.1007/s11274-015-1823-4
  58. Koller M., Puppi D., Chiellini F., Braunegg G. Comparing chemical and enzymatic hydrolysis of whey lactose to generate feedstocks for haloarchaeal poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biosynthesis. International Journal of Pharmaceutical Sciences Review and Research. 2016. V. 3. P. 112. doi: 10.15344/2394-1502/2016/112
  59. Pais J., Serafim L. S., Freitas F., Reis M. A. Conversion of cheese whey into poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Haloferax mediterranei. New Biotechnology. 2016. V. 33(1). P. 224–230. doi: 10.1016/j.nbt.2015.06.001
  60. Pramanik A., Mitra A., Arumugam M., Bhattacharyya A., Sadhukhan S., Ray A., Haldar S., Mukhopadhyay U. K., Mukherjee J. Utilization of vinasse for the production of polyhydroxybutyrate by Haloarcula marismortui. Folia Microbiologica. 2012. V. 57(1). P. 71–79. doi: 10.1007/s12223-011-0092-3
  61. Koller M., Bona R., Braunegg G., Hermann C., Horvat P., Kroutil M., Martinz J., Neto J., Pereira L., Varila P. Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromolecules. 2005. V. 6(2). P. 561–565. doi: 10.1021/bm049478b
  62. Taran M. Utilization of petrochemical wastewater for the production of poly(3-hydroxybutyrate) by Haloarcula sp. IRU1. Journal of Hazardous Materials. 2011. V. 188(1–3). P. 26–28. doi: 10.1016/j.jhazmat.2011.01.036
  63. Amaro T. M. M. M., Rosa D., Comi G., Iacumin L. Prospects for the use of whey for polyhydroxyalkanoate (PHA) production. Frontiers in Microbiology. 2019. V. 10. P. 992. doi: 10.3389/fmicb.2019.00992
  64. Armstrong R. E., Warner J.B. Biology and the battlefield. Defence Horizons. 2003. N 25. P. 1–8.
  65. Khaled M., Knopf G. K., Bassi A. S. Organic photovoltaic cells based on photoactive bacteriorhodopsin proteins. In: Proc. SPIE 8615, Microfluidics, BioMEMS, and Medical Microsystems XI, 86150Q. 2013. doi: 10.1117/12.2004018
  66. Bertoncello P., Nicolini D., Paternolli C., Bavastrello V., Nicolini C. Bacteriorhodopsin-based langmuir-schaefer films for solar energy capture. IEEE Transactions on NanoBioscience. 2003. V. 2(2). P. 124–132. doi: 10.1109/tnb.2003.813940
  67. Das S., Wu C., Song Z., Hou Y., Koch R., Somasundaran P., Priya S., Barbiellini B., Venkatesan R. Bacteriorhodopsin enhances efficiency of Perovskite solar cells. ACS Applied Materials and Interfaces. 2019. V. 11(34). P. 30728–30734. doi: 10.1021/acsami.9b06372
  68. Mandelli F., Miranda V. S., Rodrigues E., Mercadante A. Z. Identification of carotenoids with high antioxidant capacity produced by extremophile microorganisms. World Journal of Microbiology and Biotechnology. 2012. V. 28(4). P. 1781–1790. doi: 10.1007/s11274-011-0993-y
  69. Rammuni M. N., Ariyadasa T. U., Nimarshana P. H. V., Attalage R. A. Comparative assessment on the extraction of carotenoids from microalgal sources: astaxanthin from H. pluvialis and β-carotene from D. salina. Food Chemistry. 2019. V. 277. P. 128–134. doi: 10.1016/j.foodchem.2018.10.066
  70. Jehlička J., Edwards H. G., Oren A. Bacterioruberin and salinixanthin carotenoids of extremely halophilic Archaea and Bacteria: a Raman spectroscopic study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2013. V. 106. P. 99–103. doi: 10.1016/j.saa.2012.12.081
  71. Naziri D., Hamidi M., Hassanzadeh S., Tarhriz V., Maleki Zanjani B., Nazemyieh H., Hejazi M. A., Hejazi M. S. Analysis of carotenoid production by Halorubrum sp. TBZ126; an extremely halophilic archeon from Urmia lake. Advanced Pharmaceutical Bulletin. 2014. V. 4(1). P. 61–67. doi: 10.5681/apb.2014.010
  72. Baumann L. M. F., Taubner R. S., Bauersachs T., Steiner M., Schleper C., Peckmann J., Birgel D. Intact polar lipid and core lipid inventory of the hydrothermal vent methanogens Methanocaldococcus villosus and Methanothermococcus okinawensis. Organic Geochemistry. 2018. doi: 10.1016/j.orggeochem.2018.10
  73. Gilmore S. F., Yao A. I., Tietel Z., Kind T., Facciotti M. T., Parikh A. N. Role of squalene in the organization of monolayers derived from lipid extracts of Halobacterium salinarum. Langmuir. 2013. V. 29(25). P. 7922–7930. doi: 10.1021/la401412t
  74. Engelhardt H. Mechanism of osmoprotection by archaeal S-layers: a theoretical study. Journal of Structural Biology. 2007. V. 160(2). P. 190–199. doi: 10.1016/j.jsb.2007.08.004
  75. Zink I. A., Pfeifer K., Wimmer E., Sleytr U. B., Schuster B., Schleper C. CRISPR-mediated gene silencing reveals involvement of the archaeal S-layer in cell division and virus infection. Nature Communications. 2019. V. 10(1). P. 4797. doi: 10.1038/s41467-019-12745-x
  76. Schuster B., Sleytr U. B. Relevance of glycosylation of S-layer proteins for cell surface properties. Acta Biomaterialia. 2015. V. 19. P. 149–157. doi: 10.1016/j.actbio.2015.03.020
  77. Douglas K., Devaud G., Clark N. A. Transfer of biologically derived nanometer-scale patterns to smooth substrates. Science. 1992. V. 257(5070). P. 642–644. doi: 10.1126/science.257.5070.642
  78. Winningham T. A., Whipple S. G., Douglas K. Pattern transfer from a biomolecular nanomask to a substrate via an intermediate transfer layer. Journal of Vacuum Science and Technology. B. Microelectronics and Nanometer Structures Processing Measurement and Phenomena. 2001. V. 19. P. 1796–1802. doi: 10.1116/1.1396643
  79. Bulte J. W. M. Gas vesicles as collapsible MRI contrast agents. Nature Materials. 2018. V. 17(5). P. 386–387. doi: 10.1038/s41563-018-0073-x
  80. DasSarma P., Negi V. D., Balakrishnan A., Kim J. M., Karan R., Chakravortty D., DasSarma S. Haloarchaeal gas vesicle nanoparticles displaying Salmonella antigens as a novel approach to vaccine development. Procedia in Vaccinology. 2015. V. 9. P. 16–23. doi: 10.1016/j.provac.2015.05.003
  81. Farhadi A., Ho G., Kunth M., Ling B., Lakshmanan A., Lu G., Bourdeau R. W., Schröder L., Shapiro M. G. Recombinantly expressed gas vesicles as nanoscale contrast agents for ultrasound and hyperpolarized MRI. AIChE Journal. 2018. V. 64(8). P. 2927–2933. doi: 10.1002/aic.16138
  82. Krishnan L., Sprott D. G. Archaeosomes as self-adjuvanting delivery systems for cancer vaccines. Journal of Drug Targeting. 2003. V. 11(8–10). P. 515–524. doi: 10.1080/10611860410001670044
  83. Akache B., Stark F. C., Jia Y., Deschatelets L., Dudani R., Harrison B. A., Agbayani G., Williams D., Jamshidi M. P., Krishnan L., McCluskie M. J. Sulfated archaeol glycolipids: comparison with other immunological adjuvants in mice. PLoS One. 2018. V. 13(12).e0208067. doi: 10.1371/journal.pone.0208067
  84. Li Z., Chen J., Sun W., Xu Y. Investigation of archaeosomes as carriers for oral delivery of peptides. Biochemical and Biophysical Research Communications. 2010. V. 394(2). P. 412–417. doi: 10.1016/j.bbrc.2010.03.041
  85. Littlechild J. A. Thermophilic archaeal enzymes and applications in biocatalysis. Biochemical Society Transactions. 2011. V. 39(1). P. 155–158. doi: 10.1042/BST0390155
  86. Martínez-Espinosa R. M. Heterologous and homologous expression of proteins from Haloarchaea: denitrification as case of study. International Journal of Molecular Sciences. 2019. V. 21(1). P. 82. doi: 10.3390/ijms21010082
  87. Alsafadi D., Al-Mashaqbeh O. A one-stage cultivation process for the production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) from olive mill wastewater by Haloferax mediterranei. New Biotechnology. 2017. V. 34. 47–53. doi: 10.1016/j.nbt.2016.05.003
  88. Karan R., Capes M. D., DasSarma P., DasSarma S. Cloning, overexpression, purification, and characterization of a polyextremophilic β-galactosidase from the Antarctic haloarchaeon Halorubrum lacusprofundi. BMC Biotechnology. 2013. V. 13. P. 3. doi: 10.1186/1472-6750-13-3
  89. Lobasso S., Vitale R., Lopalco P., Corcelli A. Haloferax volcanii, as a novel tool for producing mammalian olfactory receptors embedded in archaeal lipid bilayer. Life. 2015. V. 5(1). P. 770–782. doi: 10.3390/life5010770
  90. Fathollahzadeh H., Eksteen J. J., Kaksonen A. H., Watkin E. L. J. Role of microorganisms in bioleaching of rare earth elements from primary and secondary resources. Applied Microbiology and Biotechnology. 2019. V. 103(3). P. 1043–1057. doi: 10.1007/s00253-018-9526-z
  91. Konishi Y., Tokushige M., Asai S. Bioleaching of chalcopyrite concentrate by acidophilic thermophile Acidianus brierleyi. In: R. Amils, A. Ballester (eds). Process metallurgy, biohydrometallurgy and the environment toward the mining of the 21 century – proceedings of the International Biohydrometallurgy Symposium, Elsevier, 1999, pp. 367–376. doi: 10.1016/S1572-4409(99)80037-6
  92. Howard D., Crundwell F. K. A kinetic study of the leaching of chalcopyrite with Sulfolobus metallicus. In: R. Amils, A. Ballester (eds). Process metallurgy, biohydrometallurgy and the environment toward the mining of the 21 century – proceedings of the International Biohydrometallurgy Symposium, Elsevier, 1999, pp. 209–217. doi: 10.1016/S1572-4409(99)80020-0
  93. Auernik K. S., Kelly R. M. Impact of molecular hydrogen on chalcopyrite bioleaching by the extremely thermoacidophilic archaeon Metallosphaera sedula. Applied and Environmental Microbiology. 2010. V. 76(8). P. 2668–2672. doi: 10.1128/AEM.02016-09
  94. Blazevic A., Albu M., Mitsche S., Rittmann S. K. R., Habler G., Milojevic T. Biotransformation of scheelite CaWO4 by the extreme thermoacidophile Metallosphaera sedula: tungsten-microbial interface. Frontiers in Microbiology. 2019. V. 10. P. 1492. doi: 10.3389/fmicb.2019.01492

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Evolution of Earth’s atmosphere composition (a) and an increase of the oxygen content (б) [2, 3]

Download (165KB)
3. Fig. 2. Comparative characteristics of the cell membrane structure in archaeans, bacteria and eukaryotes [15]

Download (273KB)
4. Fig. 3. Diversity of the structure of archaean envelopes [15]

Download (176KB)
5. Fig. 4. Phylogenetic relationships within the main groups of prokaryotes, based on whole-proteome comparative studies, and the position of eukaryotes on the global tree of life [16]

Download (391KB)
6. Fig. 5. Basal divergence of eukaryotes basing on multi-protein analyses [29]

Download (191KB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies