Biodizine as a civilizational challenge of modern pharmaceuticals

Cover Page

Cite item

Full Text

Abstract

The review discusses the role of pharmaceutical and drug design methodology in the development of the high-tech segment of the development and production of original drugs for personalized and precision medicine (PPM). Topical issues of using predictively personalized tools for precision medicine in pharmaceuticals are highlighted. New opportunities and prospects for increasing the effectiveness of drugs in various fields of medicine created on the basis of pharmaceutical design are shown. Discussed are original approaches to standardization and reproducibility of the effects of new drugs at the preclinical stage using microfluidic bioconstructs – organ-on-a-chip systems. The relevance of improving university curricula for training specialists in the field of molecular drug design (drug design), harmonized with dynamically developing biotechnologies in pharmaceuticals, as well as the needs of domestic healthcare in original medicines for PPM, is shown.

About the authors

Alexander I. Tyukavin

Saint Petersburg State Chemical and Pharmaceutical University

Email: alexander.tukavin@pharminnotech.com
SPIN-code: 8476-5366

Doctor of Medicine (MD), Professor, Head of the Department to Physiology and Pathology

Russian Federation, Saint Petersburg

Nikolay А. Arseniev

Saint Petersburg State Chemical and Pharmaceutical University

Email: nikolay.arseniev@pharminnotech.com
SPIN-code: 9038-7623

Ph.D in Biology, Associate Professor of the Department to Physiology and Pathology

Russian Federation, Saint Petersburg

Maria A. Studneva

Moscow State University of Food Production; European Association for Predictive, Preventive and Personalized Medicine, EU

Email: maria.studneva@gmail.com

Assistant of the Department to Personalized Medicine, Precision Nutrition and Biodesign

Russian Federation, Moscow; Brussels

Veronika S. Medvedeva

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: med_nika2000@mail.ru

Student

Russian Federation, Moscow

Sergey V. Suchkov

Moscow State University of Food Production; A. I. Yevdokimov Moscow State University of Medicine and Dentistry; European Association for Predictive, Preventive and Personalized Medicine, EU

Author for correspondence.
Email: ssuchkov57@gmail.com
SPIN-code: 7052-7335

Doctor of Medicine (MD), Professor, Head of the Department to Personalized Medicine, Professor of the Department of Clinical Allergology and Immunology

Russian Federation, Moscow; Moscow; Brussels

References

  1. Suchkova S. V., ed. Osnovy personalizirovannoj i precizionnoj mediciny. Uchebnik dlja medicinskih vuzov i fakul’tetov Kazan: ID MedDok; 2021. 628 p. (In Russ.).
  2. Tyukavin A. I., ed. Patologija: uchebnik. Moscow: INFRA-M; 2021. 844 p. (In Russ.).
  3. Chaplenko A. A., Vlasov V. V., Gildeeva G. N. Innovative medicines on the Russian pharmaceutical market: key players and main directions of development. Remedium. 2020;(10):4–9. https://doi.org/10.21518/1561-5936-2020-10-4-9 (In Russ.).
  4. The Pharma Media: BioMedTracker and Cortellis databases.
  5. Okminyan G. F., Latyshev O. Yu., Kiseleva E. V., et al. Basal insulin evolution: from simple to more complex. Endokrinologiya: novosti, mneniya, obuchenie = Endocrinology: News, Opinions, Training. 2021;10(1):18–25. https://doi.org/10.33029/2304-9529-2021-10-1-18-25 (In Russ.).
  6. Dedov I. I., Peterkova V. A., Kuraeva T. L., et al. Insulinovaja pompa (pomoshh’ vrachu dlja jeffektivnogo upravlenija diabetom. Moscow; 2014. 126 p.
  7. Green A., Silver P., Collins J., et al. Toehold Switches: De-Novo-Designed Regulators of Gene Expression. Cell. 2014;159(4):925–939. http://dx.doi.org/10.1016/j.cell.2014.10.002
  8. Belousov K. I., Evtrapov A. A., Kuhtevich I. V., et al. Osnovy nanotehnologij. Chast’ 2. Kapel’naja mikrofljuidika. Uchebnoe posobie. Saint Petersburg: ITMO University; 2015. 56 p.
  9. Afonicheva P. K., Bulyanitsa A. L., Evstrapov A. A. «Organ-on-a-chip» – materials and methods of creation. Nauchnoe priborostroenie = Scientific Instrumentation. 2019;29(4):3–18.
  10. Gijzen L., Marescotti D., Raineri E., et. al. An Intestine-on-a-Chip Model of Plug-and-Play Modularity to Study Inflammatory Processe. SLAS TECHNOLOGY: Translating Life Sciences Innovation. 2020;25(6):585–597. https://doi.org/10.1177/2472630320924999

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Various concepts at the intersection of sciences

Download (1MB)
3. Fig. 2. The share of original drugs in the total number of drugs registered in the Russian Federation in the period from 2010 to 2019 [3]

Download (1MB)
4. Fig. 3. The number of drugs with a new active ingredient, registered in the Russian Federation, developed by domestic researchers [3]

Download (889KB)
5. Fig. 4. Normal physiological insulin secretion

Download (1001KB)
6. Fig. 5. Insulin pump (electronic syringe). On the left is a diagram of the insulin injector device. On the right is the location of the device on the human body. 1 – pump with reservoir; 2 – infusion system; 3 – cannula / catheter [6]

Download (1MB)
7. Fig. 6. Dynamics of the average annual growth rates of design translational developments in the bioindustry

Download (973KB)
8. Fig. 7. Scheme of the effect of the targeted effect of eToeholds. 5 – viral protein of the pathogen [7]

Download (1MB)
9. Fig. 8. «Backpacks» of nanoparticles (pink - left; purple - right) attached to the macrophage cell release a steady stream of cytokines to keep the cell activated against cancerous tumors. Source: Wyss Institute at Harvard University

Download (1MB)
10. Fig. 9. System for obtaining nanosized vesicles for transportation of biological products in the human body with parenteral and minimally invasive methods of administration. Source: Wyss Institute and John A. Paulson Harvard School of Engineering and Applied Sciences

Download (1MB)
11. Fig. 10. Microfluidic drug testing devices

Download (1MB)
12. Fig. 11. The Man-on-Chip Model

Download (1MB)
13. Fig. 12. Modeling of cystic fibrosis. Left - light-on-a-chip system; on the right is a cystic fibrosis-on-a-chip model. Source: Wyss Institute at Harvard University

Download (1MB)
14. Fig. 13. Diagram of the intestine-on-a-chip construction. Source: Wyss Institute at Harvard University

Download (1MB)
15. Fig. 14. Micro device for monitoring hemostasis. Source: Wyss Institute at Harvard University

Download (1MB)

Copyright (c) 2021 Tyukavin A.I., Arseniev N.А., Studneva M.A., Medvedeva V.S., Suchkov S.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).