Preliminary evaluation of patient radiation doses during radionuclide diagnostic with monoclonal antibodies labeled with 89Zr

Cover Page

Cite item

Full Text

Abstract

In connection with the constantly increasing use of monoclonal antibodies labeled with 89Zr, in clinical practice, it is urgent to study their pharmacokinetics with the determination, based on the data obtained, of absorbed doses in tumor foci, as well as intact organs and tissues, and effective doses of patients. To date, there are a limited number of studies that provide patient doses for diagnostic examinations using 89Zr-labeled monoclonal antibodies. In this regard, the purpose of this work was to assess the biodistribution of various monoclonal antibodies (ramucirumab, trastuzumab, atezolizumab) labeled with 89Zr, based on published data, with subsequent calculation of absorbed doses in radiosensitive organs and tissues and effective doses of patients.

Based on the analysis of experimental data on the biodistribution of monoclonal antibodies labeled with 89Zr for the diagnosis of oncological diseases from the available literature sources and our own assessments, it has been concluded that the results of the determination of absorbed in organs and tissues and effective doses are inconsistent. The absorbed doses in organs, according to different literature sources, vary up to an order of magnitude within one organ and reach 440 mGy per examination, the effective dose varies from 3 to 112 mSv per examination. This may be due to differences in study design, radiometry and dose assessment methods. Comparison with doses obtained on the basis of a general model of biodistribution of monoclonal antibodies demonstrates the possibility of using this model for a rough estimate of internal doses of patients. However, for a more accurate assessment, it is necessary to standardize approaches to the determination of internal radiation doses using the most effective methodological solutions and software products.

About the authors

Larisa A. Chipiga

Professor P. V. Ramzaev Saint Petersburg Research Institute of Radiation Hygiene; A. M. Granov Russian Scientific Center of Radiology and Surgical Technologies; Almazov National Medical Research Centre

Author for correspondence.
Email: larisa.chipiga@gmail.com
SPIN-code: 3920-7798

Ph. D. in Engineering Sciences, Researcher at the laboratory of radiation hygiene of medical organizations, Researcher, Associate Professor

Russian Federation, 8 st. Mira, St. Petersbur, 197101; 70 Leningradskaya str., Pesochny settlement, Saint Petersburg, 197758; Saint Petersburg

Anna E. Petrova

Professor P. V. Ramzaev Saint Petersburg Research Institute of Radiation Hygiene

Email: anyapetrova2797@gmail.com
SPIN-code: 6069-4710

junior research fellow

Russian Federation, 8 st. Mira, St. Petersbur, 197101

Artem A. Mosunov

Peter the Great Saint Petersburg Polytechnic University

Email: zawq2000@gmail.com

student

Russian Federation, 29 Polytechnicheskaya st., St. Petersburg, 195251

Laura T. Naurzbaeva

Peter the Great Saint Petersburg Polytechnic University

Email: naurzbaeva.laura@gmail.com
SPIN-code: 5942-2573

student

Russian Federation, 29 Polytechnicheskaya st., St. Petersburg, 195251

Stanislaus M. Kushnarenko

Peter the Great Saint Petersburg Polytechnic University

Email: arichikaaris@mail.ru

student

Russian Federation, 29 Polytechnicheskaya st., St. Petersburg, 195251

Dmitry D. Lavreshov

Peter the Great Saint Petersburg Polytechnic University

Email: ldd99@mail.ru

student

Russian Federation, 29 Polytechnicheskaya st., St. Petersburg, 195251

Alexander V. Vodovatov

Professor P. V. Ramzaev Saint Petersburg Research Institute of Radiation Hygiene; Saint-Petersburg State Pediatric Medical University

Email: vodovatoff@gmail.com
ORCID iD: 0000-0002-5191-7535
SPIN-code: 4560-8978

Ph. D. in Biological Sciences, Head of radiation hygiene of medical organizations, Associate Professor, Department of Hygiene

Russian Federation, 8 st. Mira, St. Petersbur, 197101; Saint Petersburg

Andrey A. Stanzhevsky

A. M. Granov Russian Scientific Center of Radiology and Surgical Technologies

Email: stanzhevsky@gmail.com
ORCID iD: 0000-0002-1630-0564
SPIN-code: 4025-4260

Doctor of Medicine (MD), Deputy Director for research

Russian Federation, 70 Leningradskaya str., Pesochny settlement, Saint Petersburg, 197758

Dmitriy N. Maistrenko

A. M. Granov Russian Scientific Center of Radiology and Surgical Technologies

Email: dn_maystrenko@rrcrst.ru
ORCID iD: 0000-0001-8174-7461
SPIN-code: 7363-4840
Scopus Author ID: 57193120885
ResearcherId: AAA-9446-2020

Doctor of Medicine (MD), Director

Russian Federation, 70 Leningradskaya str., Pesochny settlement, Saint Petersburg, 197758

References

  1. Granov A. M., Tytin L. A., eds. Positron emission tomography: guideline for doctors. Saint Petersburg: Foliant; 2008. 368 p. (In Russ.).
  2. Granov A. M., Tyutin L. A., Stanzhevskiy A. A., et al. Development and introduction into the clinical practice of new tumorotropic radiopharmaceuticals – a key aspect of the use of nuclear medicine in oncology. Luchevaya diagnostika i terapiya = Diagnostic radiology and radiotherapy. 2012;(4):11–21. (In Russ.).
  3. Granov A., Tyutin L., Schwarz Th., eds. Positron emission tomography. Heildelberg: Springer; 2013. 384 p.
  4. Vallabhajosula S. Molecular Imaging. Radiopharmaceuticals for PET and SPECT. Berlin; New York: Springer-Verlag; 2009. 371 p.
  5. Heskamp S., Raavé R., Boerman O., et al. 89Zr-Immuno-Positron Emission Tomography in Oncology: State-of-the-Art 89Zr Radiochemistry. Bioconjug. Chem. 2017;28(9):2211–2223. https://doi.org/10.1021/acs.bioconjchem.7b00325.
  6. Chernov V. I., Bragina O. D., Sinilkin I. G., et al. Radioimmunotherapy: Current state of the problem. Voprosy onkologii = Problems in oncology. 2016;62(1):24-30. (In Russ.)
  7. Kendi A. T., Moncayo V. M., Nye J. A., et al. Radionuclide Therapies in Molecular Imaging and Precision Medicine. PET Clin. 2017;12(1):93–103. https://doi.org/10.1016/j.cpet.2016.08.006.
  8. Dijkers E. C., Kosterink J. G., Rademaker A. P., et al. Development and Characterization of Clinical-Grade 89Zr-Trastuzumab for HER2/neu ImmunoPET Imaging. J Nucl Med. 2009;50(6):974–981. https://doi.org/10.2967/jnumed.108.060392.
  9. Verel I., Visser G. W. M., Boellaard R., et al. 89Zr immuno-PET: comprehensive procedures for the production of 89Zr labeled monoclonal antibodies. J Nucl Med. 2003;44(8):1271–1281.
  10. Brandt M., Cardinale J., Aulsebrook M. L., et al. An Overview of PET Radiochemistry, Part 2: Radiometals. J. Nucl. Med. 2018;10:1500–1506. https://doi.org/10.2967/jnumed.117.190801.
  11. Moroz A. A., Chia-Yin L., Wang Y., et al. Preclinical Assessment of 89Zr-atezolizumab Identifies A Requirement For Carrier Added Formulations Not Observed With 89Zr-C4. Bioconjug Chem. 2018;29(10):3476–3482. https://doi.org/10.1021/acs.bioconjchem.8b00632.
  12. Zhukovsky M. V., Zakaly H. M. H. dose coefficients for monoclonal antibodies and antibody fragments labeled by zirconium-89. Rad. Applic. 2018;3(2):152–158. https://doi.org/10.21175 RadJ.2018.03.026.
  13. ICRP Publication 128. Radiation Dose to Patients from Radiopharmaceuticals: A Compendium of Current Information Related to Frequently Used Substances. Ann ICRP. 2015;44(2 Suppl):7–321. https://doi.org/10.1177/0146645314558019.
  14. Li М., Dawei J., Todd E., et al. Immuno-PET imaging of VEGFR-2 expression in prostate cancer with 89Zr-labeled ramucirumab. J Cancer Res. 2019;9(9):2037–2046.
  15. Holland J. P., Caldas-Lopes E., Divilov V., et al. Measuring the Pharmacodynamic Effects of a Novel Hsp90 Inhibitor on HER2/neu Expression in Mice Using 89Zr-DFO-Trastuzumab. PLoS ONE. 2010; 5(1): e8859. https://doi.org/10.1371/journal.pone.0008859.
  16. Kristensen L. K., Christensen C., Jensen M. M., et al. Site-specifically labeled 89Zr-DFO-trastuzumab improves immuno-reactivity and tumor uptake for immuno-PET in a subcutaneous HER2-positive xenograft mouse model. Theranostics. 2019; 9(15):4409–4420. https://doi.org/10.7150/thno.32883.
  17. Bensch F., van der Veen E. L., Lub-de Hooge M. N., et al. 89Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nature Medicine. 2018;24(12):1852–1858. https://doi.org/10.1038/s41591-018-0255-8.
  18. Shanehsazzadeh S., Lahooti A., Shirmardi S. P., et al. Comparison of estimated human effective dose of 67Ga-and 99mTc-labeled bombesin based on distribution data in mice. J Radioanal Nucl Chem. 2015;305:513–520. https://doi.org/10.1007/s10967-015-3995-7.
  19. Shanehsazzadeh S., Lahooti A., Yousefnia H., et al. Comparison of estimated human dose of 68Ga-MAA with 99mTc-MAA based on rat data. Ann Nucl Med. 2015;29(8):745. https://doi.org/10.1007/s12149-015-0997-z.
  20. Shanehsazzadeh S., Yousefnia H., Jalilian A. R., et al. Estimated human absorbed dose for 68Ga-ECC based on mice data: comparison with 67Ga-ECC. Ann Nucl Med. 2015;29(6): 475–481. https://doi.org/10.1007/s12149-015-0967-5.
  21. Standardized uptake value. Wikipedia. 2021. URL: https://en.wikipedia.org/wiki/Standardized_uptake_value.
  22. NCr nude. TACONIC. 2021. URL: https://www.taconic.com/mouse-model/ncr-nude.
  23. ICRP Publication 110. Adult Reference Computational Phantoms. Ann. ICRP. 2009;39(2).
  24. Trial version of Origin/Origin Pro. OriginLab. 2021. URL: https://www.originlab.com/demodownload.aspx.
  25. Erbslöh-Möller B., Dumas A., Roth D., et al. Furosemide-131I-hippuran renography after angiotensin-converting enzyme inhibition for the diagnosis of renovascular hypertension. Am J Med. 1991;90(1):23–29. https://doi.org/10.1016/0002-9343(91)90502-o.
  26. Andersson M., Johansson L., Eckerman K., et al. IDAC-Dose 2.1, an internal dosimetry program for diagnostic nuclear medicine based on the ICRP adult reference voxel phantoms. EJNMMI Research. 2017;7(1):88. https://doi.org/10.1186/s13550-017-0339-3.
  27. ICRP Publication 60. Recommendations of the International Commission on Radiological Protection. Ann ICRP. 1991;21(1–3).
  28. ICRP Publication 103. Recommendations of the International Commission on Radiological Protection (Users Edition). Ann ICRP. 2007;37(2–4).
  29. Laforest R., Lapi S. E., Oyama R., et al. [89Zr] Trastuzumab: Evaluation of Radiation Dosimetry, Safety, and Optimal Imaging Parameters in Women with HER2-Positive Breast Cancer. Mol Imaging Biol. 2016;18(6):952–959. https://doi.org/10.1007/s11307-016-0951-z.
  30. Meyer J. P., Edwards K. J., Kozlowski P., et al. Selective Imaging of VEGFR-1 and VEGFR-2 Using 89Zr-Labeled Single-Chain VEGF Mutants. J Nucl Med. 2016;57(11): 1811–1816. https://doi.org/10.2967/jnumed.116.173237.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Absorbed doses in organs and tissues of patients during a diagnostic examination with 89Zr-ramucirumab (70 MBq), obtained in different studies

Download (408KB)
3. Fig. 2. Absorbed doses in organs and tissues of patients during a diagnostic examination with 89Zr-trastazumab (70 MBq), obtained in different studies

Download (631KB)
4. Рис. 3. Поглощенные дозы в органах и тканях пациентов при проведении диагностического исследования с 89Zr-атезолизумабом (70 МБк), полученные в разных работах

Download (574KB)

Copyright (c) 2021 Chipiga L.A., Petrova A.E., Mosunov A.A., Naurzbaeva L.T., Kushnarenko S.M., Lavreshov D.D., Vodovatov A.V., Stanzhevsky A.A., Maistrenko D.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies