Foreign experience in veterinaryapplication of scintigraphy
- Authors: Lunegova I.V.1, Tyts V.V.1, Lunegov A.M.2
-
Affiliations:
- Saint Petersburg State Chemical and Pharmaceutical University of the Ministry of Health of the Russian Federation
- Saint Petersburg State University of Veterinary Medicine of the Ministry of Agriculture of the Russian Federation
- Issue: Vol 3, No 2 (2021)
- Pages: 36-39
- Section: Pharmaceutical Sciences
- URL: https://journals.rcsi.science/PharmForm/article/view/71488
- DOI: https://doi.org/10.17816/phf71488
- ID: 71488
Cite item
Full Text
Abstract
Foreign experience in the use of radiopharmaceuticals has provedthe diagnostic accuracy in identifying kidney, heart, lungs, soft tissues and blood vessels disease. Scintigraphy could beused to detect morphofunctional changes inorgans ororgan systems, as well as metabolic disorders by means of radiation dose rate received afterthe radiopharmaceutical administration. For example, Technetium-99 (99m Tc) is appliedto identifyincomplete bone fractures in unproductive animals and sports horses; hypothyroidism and malignant neoplasms affecting the thyroid gland in dogs; hyperthyroidism in cats. To date, scintigraphy is rarely used in domestic veterinary practice due to a number of reasons. High cost of radionuclides; the need to comply with safety requirements, in accordance with the Guideline 2.6.1.1892-04 dated March 04, 2004; the lack of additional veterinary specialist training. The most significant point is that animals injected with a radioactive compound or implanted with radioactive sources can be returnedto the owner only after the activity of radionuclides in the body (GBq) reducedenough to meet the requirements of Sanitary Regulations and Norms2.6.2523-09 “Radiation Safety Standards (NRB-99/2009)” dated July 07, 2009.
It should be noted that radiopharmaceutical drugs have not been approved for use in productive animals in the USA to date. As additional financial and human resources are required to control the number of residual nuclides in livestock products, resulting in production costs increase.
Full Text
##article.viewOnOriginalSite##About the authors
Irina V. Lunegova
Saint Petersburg State Chemical and Pharmaceutical University of the Ministry of Health of the Russian Federation
Author for correspondence.
Email: irina.lunegova@pharminnotech.com
ORCID iD: 0000-0001-9181-3987
SPIN-code: 9818-2422
Ph.D. in Veterinary Sciences, Associate Professor of the Department of Industrial Ecology
Russian Federation, Saint PetersburgValery V. Tyts
Saint Petersburg State Chemical and Pharmaceutical University of the Ministry of Health of the Russian Federation
Email: valerij.tyc@pharminnotech.com
SPIN-code: 3801-7087
Ph.D. in Medical Sciences, Associate Professor of the Department of Industrial Ecology
Russian Federation, Saint PetersburgAlexander M. Lunegov
Saint Petersburg State University of Veterinary Medicine of the Ministry of Agriculture of the Russian Federation
Email: a.m.lunegov@spbguvm.ru
ORCID iD: 0000-0003-4480-9488
SPIN-code: 5022-2987
Ph.D. in Veterinary Sciences, Associate Professor, Head of the Department of Pharmacology and Toxicology
Russian Federation, Saint PetersburgReferences
- Сазонова, С.И. Радиофармпрепараты для сцинтиграфической визуализации очагов воспаления / С.И. Сазонова, Ю.Б. Лишманов // Медицинская радиология и радиационная безопасность. – 2007. – 52 (4). – C. 73–82.
- Peterson МЕ, Guterl JN, Rishniw M, et al. Evaluation of quantitative thyroid scintigraphy for diagnosis and staging of disease severity in cats with hyperthyroidism: comparison of the percent thyroidal uptake of pertechnetate to thyroid-to-salivary ratio and thyroid-to-background ratios. Vet Radiol Ultrasound. 2016; 57 (4): 427–40.
- Quiney L. A valuable modality: skeletal scintigraphy imaging. Equine Health. 2020; 51:17–9. doi: 10.12968/eqhe. 2020.51.17.
- Castelo Branco PS, Schlesinger GG, Sena P, et al. Detection of mammary adenocarcinoma metastases in a cat through 99mTc-thymine scintigraphy. Veterinaria México OA. 2020; 7(2). doi: 10.22201/fmvz.24486760e.2020.2.718.
- Gahlawat SK, Maan S, editors. Advances in Animal Disease Diagnosis. 1st Ed.Boca Raton, FL: CRC Press; 2021. doi: 10.1201/9781003080282.
- Peterson МЕ. Hyperthyroidism in Cats: Considering the Impact of Treatment Modality on Quality of Life for Cats and Their Owners. Vet Clin North Am Small Anim Pract.2020 Sep; 50(5): 1065–84.
- Harvey АМ, Hibbert A, Barrett EL, et al. Scintigraphic findings in 120 hyperthyroid cats. J Feline Med Surg. 2009 Feb; 11 (2): 96–106. doi: 10.1016/j.jfms. 2008.05.007.
- Fischman AJ, Pike MC, Kroon D, et al. Imaging focal sites of bacterial infection in rats with indium-111-labeled chemotactic peptid analogs. Journal of Nuclear Medicine. 1991; 32 (3): 483–91.
- Bartholoma D, Louie AS, Valliant JF, et al. Technetium and Gallium Derived Radiopharmaceuticals: Comparing and Contrasting the Chemistry of Two Important Radiometals for the Molecular Imaging Era. Chem. Rev. 2010; 110: 2903–20. doi: 10.1021/cr1000755.
- Bernstein LR. Mechanisms of therapeutic activity for gallium. Pharmacol. Rev. 1998 Dec; 50 (4): 665–82.
- Van den Berg MF, Daminet S, Stock E, et al. Planar and single-photon emission computed tomography imaging in dogs with thyroid tumors: 68 cases. J Vet Intern Med. 2020 Nov; 34(6): 2651–9. doi: 10.1111/jvim.15908.
- Balogh L, Andocs G, Thuroczy J, et al. Veterinary Nuclear medicine. Scintigraphical examinations – a review. Acta Vet Brno.1999; 68: 231–9.
- Rennen HJJ, Boerman OC, Oyen WJG, et al. Scintigraphic Imaging of Inflammatory Processes. Curr. Med. Chem. 2002; 1 (1): 63–75. doi: 10.2174/1568014024606548.
- LeBlanc AM, Peremans K. PET and SPECT imaging in veterinary medicine. Semin Nucl Med.2014 Jan; 44 (1): 47–56. doi: 10.1053/j.semnuclmed.2013.08.004.
- Lattimer JC. Nuclear Medicine Imaging in Animals. Nuclear Scintigraphy, Positron Emission Tomography. MSD Veterinary Manual [Internet]; 2019 [cited 2021 Jun 10]. Available from: https://www.msdvetmanual.com/clinical-pathology-and-procedures/diagnostic-imaging/nuclear-medicine-imaging-in-animals.
- Dams ETM, Oyen WJG, Boerman OC, et al. 99mTc-PEG liposomes for the scintigraphic detection of infection and inflammation: clinical evaluation. J. Nucl. Med. 2000; 41 (4): 622–30.
- Dams ETM, Corstens FHM. Lessons for medicine and nuclear medicine research. Eur. J. Nucl. Med. 1999; 26: 311–3. doi: 10.1007/s002590050391.
- СанПин 2.6.2523-09 от 07.07.2009 «Нормы радиационной безопасности НРБ-99/2009» // Справочно-правовая система «ГАРАНТ»: сайт. – URL: http://https://base.garant.ru/4188851/53f89421bbdaf741eb2d1ecc4ddb4c33/ (дата обращения: 16.06.2021).
- Методические указания МУ 2.6.1.1892-04 «2.6.1. Ионизирующее излучение, радиационная безопасность. Гигиенические требования по обеспечению радиационной безопасности при проведении радионуклидной диагностики с помощью радиофармпрепаратов» (утв. Главным государственным санитарным врачом РФ 04.03.2004) // Электронный фонда правовой и нормативно-технической документации АО «Кодекс». – URL: https://docs.cntd.ru/document/1200037397 (дата обращения: 16.06.2021).
Supplementary files
