Foreign experience in veterinaryapplication of scintigraphy

Cover Page

Cite item

Full Text

Abstract

Foreign experience in the use of radiopharmaceuticals has provedthe diagnostic accuracy in identifying kidney, heart, lungs, soft tissues and blood vessels disease. Scintigraphy could beused to detect morphofunctional changes inorgans ororgan systems, as well as metabolic disorders by means of radiation dose rate received afterthe radiopharmaceutical administration. For example, Technetium-99 (99m Tc) is appliedto identifyincomplete bone fractures in unproductive animals and sports horses; hypothyroidism and malignant neoplasms affecting the thyroid gland in dogs; hyperthyroidism in cats. To date, scintigraphy is rarely used in domestic veterinary practice due to a number of reasons. High cost of radionuclides; the need to comply with safety requirements, in accordance with the Guideline 2.6.1.1892-04 dated March 04, 2004; the lack of additional veterinary specialist training. The most significant point is that animals injected with a radioactive compound or implanted with radioactive sources can be returnedto the owner only after the activity of radionuclides in the body (GBq) reducedenough to meet the requirements of Sanitary Regulations and Norms2.6.2523-09 “Radiation Safety Standards (NRB-99/2009)” dated July 07, 2009.

It should be noted that radiopharmaceutical drugs have not been approved for use in productive animals in the USA to date. As additional financial and human resources are required to control the number of residual nuclides in livestock products, resulting in production costs increase.

About the authors

Irina V. Lunegova

Saint Petersburg State Chemical and Pharmaceutical University of the Ministry of Health of the Russian Federation

Author for correspondence.
Email: irina.lunegova@pharminnotech.com
ORCID iD: 0000-0001-9181-3987
SPIN-code: 9818-2422

Ph.D. in Veterinary Sciences, Associate Professor of the Department of Industrial Ecology

Russian Federation, Saint Petersburg

Valery V. Tyts

Saint Petersburg State Chemical and Pharmaceutical University of the Ministry of Health of the Russian Federation

Email: valerij.tyc@pharminnotech.com
SPIN-code: 3801-7087

Ph.D. in Medical Sciences, Associate Professor of the Department of Industrial Ecology

Russian Federation, Saint Petersburg

Alexander M. Lunegov

Saint Petersburg State University of Veterinary Medicine of the Ministry of Agriculture of the Russian Federation

Email: a.m.lunegov@spbguvm.ru
ORCID iD: 0000-0003-4480-9488
SPIN-code: 5022-2987

Ph.D. in Veterinary Sciences, Associate Professor, Head of the Department of Pharmacology and Toxicology

Russian Federation, Saint Petersburg

References

  1. Сазонова, С.И. Радиофармпрепараты для сцинтиграфической визуализации очагов воспаления / С.И. Сазонова, Ю.Б. Лишманов // Медицинская радиология и радиационная безопасность. – 2007. – 52 (4). – C. 73–82.
  2. Peterson МЕ, Guterl JN, Rishniw M, et al. Evaluation of quantitative thyroid scintigraphy for diagnosis and staging of disease severity in cats with hyperthyroidism: comparison of the percent thyroidal uptake of pertechnetate to thyroid-to-salivary ratio and thyroid-to-background ratios. Vet Radiol Ultrasound. 2016; 57 (4): 427–40.
  3. Quiney L. A valuable modality: skeletal scintigraphy imaging. Equine Health. 2020; 51:17–9. doi: 10.12968/eqhe. 2020.51.17.
  4. Castelo Branco PS, Schlesinger GG, Sena P, et al. Detection of mammary adenocarcinoma metastases in a cat through 99mTc-thymine scintigraphy. Veterinaria México OA. 2020; 7(2). doi: 10.22201/fmvz.24486760e.2020.2.718.
  5. Gahlawat SK, Maan S, editors. Advances in Animal Disease Diagnosis. 1st Ed.Boca Raton, FL: CRC Press; 2021. doi: 10.1201/9781003080282.
  6. Peterson МЕ. Hyperthyroidism in Cats: Considering the Impact of Treatment Modality on Quality of Life for Cats and Their Owners. Vet Clin North Am Small Anim Pract.2020 Sep; 50(5): 1065–84.
  7. Harvey АМ, Hibbert A, Barrett EL, et al. Scintigraphic findings in 120 hyperthyroid cats. J Feline Med Surg. 2009 Feb; 11 (2): 96–106. doi: 10.1016/j.jfms. 2008.05.007.
  8. Fischman AJ, Pike MC, Kroon D, et al. Imaging focal sites of bacterial infection in rats with indium-111-labeled chemotactic peptid analogs. Journal of Nuclear Medicine. 1991; 32 (3): 483–91.
  9. Bartholoma D, Louie AS, Valliant JF, et al. Technetium and Gallium Derived Radiopharmaceuticals: Comparing and Contrasting the Chemistry of Two Important Radiometals for the Molecular Imaging Era. Chem. Rev. 2010; 110: 2903–20. doi: 10.1021/cr1000755.
  10. Bernstein LR. Mechanisms of therapeutic activity for gallium. Pharmacol. Rev. 1998 Dec; 50 (4): 665–82.
  11. Van den Berg MF, Daminet S, Stock E, et al. Planar and single-photon emission computed tomography imaging in dogs with thyroid tumors: 68 cases. J Vet Intern Med. 2020 Nov; 34(6): 2651–9. doi: 10.1111/jvim.15908.
  12. Balogh L, Andocs G, Thuroczy J, et al. Veterinary Nuclear medicine. Scintigraphical examinations – a review. Acta Vet Brno.1999; 68: 231–9.
  13. Rennen HJJ, Boerman OC, Oyen WJG, et al. Scintigraphic Imaging of Inflammatory Processes. Curr. Med. Chem. 2002; 1 (1): 63–75. doi: 10.2174/1568014024606548.
  14. LeBlanc AM, Peremans K. PET and SPECT imaging in veterinary medicine. Semin Nucl Med.2014 Jan; 44 (1): 47–56. doi: 10.1053/j.semnuclmed.2013.08.004.
  15. Lattimer JC. Nuclear Medicine Imaging in Animals. Nuclear Scintigraphy, Positron Emission Tomography. MSD Veterinary Manual [Internet]; 2019 [cited 2021 Jun 10]. Available from: https://www.msdvetmanual.com/clinical-pathology-and-procedures/diagnostic-imaging/nuclear-medicine-imaging-in-animals.
  16. Dams ETM, Oyen WJG, Boerman OC, et al. 99mTc-PEG liposomes for the scintigraphic detection of infection and inflammation: clinical evaluation. J. Nucl. Med. 2000; 41 (4): 622–30.
  17. Dams ETM, Corstens FHM. Lessons for medicine and nuclear medicine research. Eur. J. Nucl. Med. 1999; 26: 311–3. doi: 10.1007/s002590050391.
  18. СанПин 2.6.2523-09 от 07.07.2009 «Нормы радиационной безопасности НРБ-99/2009» // Справочно-правовая система «ГАРАНТ»: сайт. – URL: http://https://base.garant.ru/4188851/53f89421bbdaf741eb2d1ecc4ddb4c33/ (дата обращения: 16.06.2021).
  19. Методические указания МУ 2.6.1.1892-04 «2.6.1. Ионизирующее излучение, радиационная безопасность. Гигиенические требования по обеспечению радиационной безопасности при проведении радионуклидной диагностики с помощью радиофармпрепаратов» (утв. Главным государственным санитарным врачом РФ 04.03.2004) // Электронный фонда правовой и нормативно-технической документации АО «Кодекс». – URL: https://docs.cntd.ru/document/1200037397 (дата обращения: 16.06.2021).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Lunegova I.V., Tyts V.V., Lunegov A.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».