Antimicrobial activity of probiotic strain Enterococcus faecium 1-35

Cover Page

Cite item

Full Text

Abstract

The study examines the search for alternative solutions to replace feed antibiotics for poultry farming. During the study of the probiotic strain Enterococcus faecium 1-35, its antimicrobial properties against some pathogenic microorganisms were established. Using a bioinformatics approach, genes for non-ribosomal peptide synthetases were discovered in the genome of Enterococcus faecium 1-35. A synthesis product of which is believed to have biological activity. Enterococcus faecium strain 1-35, capable of synthesizing active peptide products, can be regarded as an alternative solution when replacing feed antibiotics. The results obtained require additional studies of practical application to confirm the expected effect.

About the authors

Evgenii A. Brazhnik

Volgograd State Agrarian University; BIOTROPH Ltd

Author for correspondence.
Email: bea@biotrof.ru
SPIN-code: 3776-1982

graduate student of the department “Feeding and breeding of agricultural animals, quality controller of BIOTROPH Ltd

Russian Federation, Volgograd; Saint Petersburg, Pushkin

Svetlana N. Bikonia

Volgograd State Agrarian University; BIOTROPH Ltd

Email: svetlana@biotrof.ru
SPIN-code: 9451-8405

graduate student of the department “Feeding and breeding of agricultural animals”, deputy chief technologist of BIOTROPH Ltd

Russian Federation, Volgograd; Saint Petersburg, Pushkin

Georgii Yu. Laptev

BIOTROPH Ltd; Saint Petersburg State Agrarian University

Email: laptev@biotrof.ru
SPIN-code: 3600-5295

Doctor of Biological Science, head of department “Biotechnology of feed”, Director of BIOTROPH Ltd

Russian Federation, Saint Petersburg, Pushkin; Saint Petersburg, Pushkin

References

  1. Fischbach M. A, Walsh C. T. Antibiotics for emerging pathogens. Science (New York, N.Y.). 2009 Aug;325(5944):1089–1093. doi: 10.1126/science.1176667.
  2. Okolelova T. M., Egorova T. V. and others. Guidelines for the use of biological products and feed additives to ensure the health and increase the productivity of broilers. Methodological recommendations // Sergiev Posad. 2013. (In Russ).
  3. Prjibelski A., Antipov D., Meleshko D., Lapidus A., & Korobeynikov A. (2020). Using SPAdes de novo assembler. Current Protocols in Bioinformatics, 70, e102. doi: 10.1002/cpbi.102.
  4. Blin K. [et al.]. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline // Nucleic Acids Res. – 2019. – Vol. 47, № W1. – P. W81–W87. doi: 10.1093/nar/gkz310.
  5. Flissi A, Dufresne Y, Michalik J, Tonon L, Janot S, Noé L, Jacques P, Leclère V, Pupin M. Norine, the knowledgebase dedicated to non-ribosomal peptides, is now open to crowdsourcing. Nucleic Acids Res. 2016 Jan 4;44(D1):D1113–8. doi: 10.1093/nar/gkv1143.
  6. Orlova T. I., Bulgakova V. G., Polin A. N. Biologically active non-ribosomal peptides. III. The mechanism of biosynthesis of non-ribosomal peptides // Antibiotics and chemotherapy. 2012, no. 7–8 (57). pp. 43–54. (In Russ).
  7. Kirstein J, Hoffmann A, Lilie H, Schmidt R, Rübsamen-Waigmann H, Brötz-Oesterhelt H, Mogk A, Turgay K. The antibiotic ADEP reprogrammes ClpP, switching it from a regulated to an uncontrolled protease. EMBO Mol Med. 2009 Apr;1(1):37–49. doi: 10.1002/emmm.200900002.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).