Biotesting methods for the detection of drugs in the aquatic environment
- Authors: Kryazhevskikh A.A.1,2, Bardina V.I.3, Sklyarova N.A.4
-
Affiliations:
- State Scientific Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation
- Saint Petersburg State Chemical and Pharmaceutical University
- St. Petersburg Research Center for Environmental Safety (SRCES)
- Saint Petersburg State Chemical Pharmaceutical University of the Ministry of Health of the Russian Federation
- Issue: Vol 4, No 1 (2022)
- Pages: 61-69
- Section: Biological sciences
- URL: https://journals.rcsi.science/PharmForm/article/view/108995
- DOI: https://doi.org/10.17816/phf108995
- ID: 108995
Cite item
Full Text
Abstract
The article presents experimental data on the use of the biotesting method for the toxicological evaluation of tap water containing the antibiotic amoxicillin solution and the hormone 17β-estradiol solution. Different test organisms differ in their sensitivity to toxicants. Therefore, a series of biotests using different test organisms from different systematic groups: daphnia (Daphnia magna Straus), infusoria (Paramecium caudatum), and algae (Chlorella vulgaris Beijer) were used to increase the accuracy of toxicity assessment of solutions. It was found that of the selected test cultures infusoria were the most sensitive to the solution with antibiotic and hormone. The effect of amoxicillin in the dose range from 0.000078 mg/L to 0.000000078 mg/L contributed to the toxic effect of the test cultures in the following sequence in descending order: infusoria > daphnia = chlorella. In a toxicity study of water containing the hormone 17β-estradiol in the dose range from 0.00001mg/L to 0.00000001 mg/L, the sensitivity of the test objects developed in the following chronology: infusoria > chlorella. Daphnia (Daphnia magna Straus) were not at all susceptible to this class of drugs. Therefore, the proposed biotesting methods for the detection of drugs in the aquatic environment are a promising direction in assessing the toxicity of pharmpollutants in wastewater.
Full Text
##article.viewOnOriginalSite##About the authors
Anastasiya A. Kryazhevskikh
State Scientific Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation;Saint Petersburg State Chemical and Pharmaceutical University
Author for correspondence.
Email: gniiivm_15@mil.ru
Research Assistantat the Research Department, Master Student
Russian Federation, Saint PetersburgVictoria I. Bardina
St. Petersburg Research Center for Environmental Safety (SRCES)
Email: vicula128@mail.ru
Researcher
Russian Federation, Санкт-ПетербургNataliya A. Sklyarova
Saint Petersburg State Chemical Pharmaceutical University of the Ministry of Health of the Russian Federation
Email: natalia.sklyarova@pharminnotech.com
SPIN-code: 9473-6506
Ph.D. in Engineering Sciences, Associate Professor at the Industrial Ecology Department
Russian Federation, Saint PetersburgReferences
- Barenboym G. M., Chiganova M. A., eds. Zagryaznenie prirodnykh vod lekarstvami. Moscow: Nauka, 2015. 283 p. (In Russ.).
- Patel М., Kumar R., Kishor K., et al. Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods. Chemical Reviews. 2019;119(6):3510-3673. https://doi.org/10.1021/acs.chemrev.8b00299.
- Gutierrez-Macias T., Mijaylova Nacheva P., Esquivel-Sotelo A., et al. Batch Kinetic Studies of Pharmaceutical Compounds Removal Using Activated Sludge Obtained from a Membrane Bioreactor. Water Air Soil Pollut. 2022;233(36). https://doi.org/10.1007/s11270-022-05508-w.
- Chiganova M. A. Normativno-pravovoe regulirovanie lekarstvennogo zagryazneniya okruzhayushchey sredy. Kontrol' kachestva produktsii = Production Quality Control. 2017;(1):56-63. (In Russ.).
- Elham E. A., Romanova T. A. Impact of pharmaceutical waste on the environment and problems of its management. Mezhdunarodnyy nauchno-issledovatel'skiy zhurnal = International Research Journal. 2021;108(6,Pt.2):15-17. https://doi.org/10.23670/IRJ.2021.108.6.034. (In Russ.).
- Ting Y. F., Praveena S. M. Sources, mechanisms, and fate of steroid estrogens in wastewater treatment plants: a mini review. Environ Monit Assess. 2017;189(4):178. https://doi.org/10.1007/s10661-017-5890-x.
- Zhang Q. Q., Ying G. G., Pan С.G., et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol. 2015;49:6772-6782.
- Karnoukh K. I., Lazareva N. B. Analysis of the antibiotic consumption on the backdrop of the COVID-19 pandemic: hospital level. Meditsinskiy sovet = Medical Council. 2021;16:118-128. https://doi.org/10.21518/2079-701X-2021-16-118-128. (In Russ.).
- Wang L., Chen Y., Zhao Y., et al. Toxicity of two tetracycline antibiotics on Stentor coeruleus and Stylonychia lemnae: potential use as toxicity indicator. Chemosphere. 2020;255. https://doi.org/10.1016/j.chemosphere.2020.127011.
- Qiulian Y., Yuan G., Jian K., et al. Antibiotics: an overview on the environmental occurrence, toxicity, degradation, and removal methods. Bioengineered. 2021;12(1):7376-7416. https://doi.org/10.1080/21655979.2021.1974657.
- Scaria J., Anupama K. V., Nidheesh P. V. Tetracyclines in the environment: an overview on the occurrence, fate, toxicity, detection, removal methods, and sludge management. Sci Total Environ. 2021;771:145291. https://doi.org/10.1016/j.scitotenv.2021.145291.
- Kasimov A. O., Esirkepova A. Zh., Khizirova M. A., et al. Sistema monitoringa dlya opredeleniya lekarstvennykh preparatov v stochnykh vodakh. Innovatsionnye, informatsionnye i kommunikatsionnye tekhnologii. 2017;1:688-693. (In Russ.).
- Sanderson H., Laird B., Pope L., et al. Assessment of the environmental fate and effects of ivermectin in aquatic mesocosms. Aquat. Toxicol. 2007;85:229-240.
- Postanovlenie Glavnogo gosudarstvennogo sanitarnogo vracha RF ot 28 yanvarya 2021 g. N 2 "Ob utverzhdenii sanitarnykh pravil i norm SanPiN 1.2.3685-21 "Gigienicheskie normativy i trebovaniya k obespecheniyu bezopasnosti i (ili) bezvrednosti dlya cheloveka faktorov sredy obitaniya". (In Russ.).
- Bilal M., Barcelo D., Iqbal H. M. Occurrence, environmental fate, ecological issues, and redefining of endocrine disruptive estrogens in water resources. Sci Total Environ. 2021;800. https://doi.org/10.1016/j.scitotenv.2021.149635.
- Mashchenko Z. E., Maslova E. V., Mizina P. G., et al. Study of ampicillin toxicity to Daphnia magna crustaceans and activated silt community. Toksikologicheskiy vestnik = Toxicological Review. 2018;1(148):30-34. https://doi.org/10.36946/0869-7922-2018-1-30-34. (In Russ.).
- Zaritskaya E.V., Polozova E.V., Bogacheva A.S. Modern alternative toxicological research methods and prospects of their use in practical activities. Gigiena i sanitariya = Hygiene and Sanitation. 2017;96(7):671-674. https://doi.org/10.18821/0016-9900-2017-96-7-671-674. (In Russ.).
- Terekhova V. A., Kirit W., Fedoseeva E. V., et al. Bioassay standardization issues in freshwater ecosystem assessment:test cultures and test conditions. Knowledge and Management of Aquatic Ecosystems, EDP Sciences (France). 2018;419(32):14. https://doi.org/10.1051/kmae/2018015.
- Bardina T. V., Chugunova M. V., Kulibaba V. V., et al. Applying Bioassay Methods for Ecological Assessment of the Soils from the Brownfield Sites. Water, Air, & Soil Pollution. 2017:228-351. https://doi.org/10.1007/s11270-017-3521-3.
- Pukalchik М. А., Terekhova V. А., Karpukhin М. М., et al. Comparison of Eluate and Direct Soil Bioassay Methods of Soil Assessment in the Case of Contamination with Heavy Metals. Eurasian soil science. 2019;52(4):464-470. https://doi.org/10.1134/S1064229319040112.
- Chesnokova S. M., Savelev O. V. Assessing the antibiotic resistance of various groups in water environment through biotesting. Mezhdunarodnyy nauchno-issledovatel'skiy zhurnal = International Research Journal. 2020;99(9,Pt.1):101-109. https://doi.org/10.23670/IRJ.2020.99.9.018. (In Russ.).
- Guler U. A., Solmaz B. Biosorption of Tetracycline and Cephalexin onto Surfactant-Modified Waste Biomass Using Response Surface Methodology and Ecotoxicological Assessment: Phytotoxicity and Biotoxicity Studies. Water Air Soil Pollut. 2022;233(4):117. https://doi.org/10.1007/s11270-022-05590-0.
- PND FT 14.1:2:3:4.12-06 T 16.1:2:2.3:3.9-06. Metodika izmereniy kolichestva Daphnia magna Straus dlya opredeleniya toksichnosti pit'evykh, presnykh, prirodnykh i stochnykh vod, vodnykh vytyazhek iz gruntov, pochv, osadkov stochnykh vod, otkhodov proizvodstva i potrebleniya metodom pryamogo scheta. Moscow; 2014. 39 p. (In Russ.).
- Zaritskaya E. V., Shilov V. V., Polozova E. V. Alternative investigation methods in toxicologic hygienic evaluation of industrial and environmental objects. Meditsina truda i promyshlennaya ekologiya = Russian Journal of Occupational Health and Industrial Ecology. 2016;6:17-19. (In Russ.).
- ;(6):17-19. (In Russ.) PND FT 14.:2:3:4.2-98 FR 1.39.2015.19242. Opredelenie toksichnosti prob prirodnykh, pit'evykh, khozyaystvenno-pit'evykh, khozyaystvenno-bytovykh stochnykh, ochishchennykh stochnykh, stochnykh, talykh, tekhnologicheskikh vod ekspress-metodom s primeneniem pribora serii «Biotester». Saint Petersburg; 2015. 21 p. (In Russ.).
- Wang W., Freemark K. The use of plants for environmental monitoring and assessment. Ecotoxicology and Environmental Safety. 1995;30. https://doi.org/10.1006/eesa.1995.1033.
- PND FT 14.1:2:3:4.10-04 T.16,1:2:2.3:3.7-04 FR.1.39.2015.20001. Metodika izmereniy opticheskoy plotnosti kul'tury vodorosli khlorella (Chlorella vulgaris Beijer) dlya opredeleniya toksichnosti pit'evykh, presnykh prirodnykh i stochnykh vod, vodnykh vytyazhek iz gruntov, pochv, osadkov stochnykh vod, otkhodov proizvodstva i potrebleniya. Moscow; 2014. 38 p. (In Russ.).
Supplementary files
