Environmental risks of the tetracycline micro pollution

Cover Page

Cite item

Full Text

Abstract

Review of environmental risks related to the use of tetracycline. Microcontamination with tetracycline has both medical risks associated with the manifestation of antibiotic resistance in bacterial communities, and environmental risks associated with changes in the transformation of the substance in ecosystems and the impact on biodiversity by inhibiting certain species of plants, animals and microorganisms.

Microcontamination with tetracycline antibiotics entails a number of environmental risks. Due to their widespread use, the spread of tetracycline antibiotics in the environment is global. The influence of tetracycline is observed in many objects. The distribution of tetracycline is facilitated by veterinary use, both directly and through the use of animal waste as fertilizer for crops and pastures.

As a result of the study, the following possible environmental consequences of tetracycline micropollution of the environment were revealed:

  1. violation of the work of bacteria included in the bacterial complex of activated sludge at treatment facilities using this technology, as well as during composting and affecting denitrification processes;
  2. impact on soil microbial communities by suppressing a number of biodegradation processes of the substance and changing the biodiversity of microorganisms;
  3. the risks of micropollution of plant communities with tetracycline supplied with organic fertilizers were associated with the inhibition of a number of root nutrition processes, species-specific for different crops;
  4. micro-pollution of marine communities with tetracycline is associated primarily with the effect on producers – algae and cyanobacteria, inhibiting their growth, secondly, to subsequent food chains through bioaccumulation in vertebrate tissues;
  5. the toxic effect of small doses of tetracycline from the soil on certain types of invertebrates was shown.

About the authors

Sergey Paramonov

Saint Petersburg State Chemical and Pharmaceutical University

Author for correspondence.
Email: sergei.paramonov@pharminnotech.com
SPIN-code: 1302-0720

Ph.D of Biological Sciences, Associate Professor at the In-dustrial  Ecology  Department

Russian Federation, Санкт-Петербург

Daria D. Zelikova

Санкт-Петербургский государственный химико-фармацевтический университет Министерства здравоохранения Российской Федерации

Email: darya.zelikova@spcpu.ru

Student

Russian Federation, Санкт-Петербург

Lyudmila V. Sklyarova

Saint Petersburg State Chemical and Pharmaceutical University

Email: sklyarova.lyudmila@spcpu.ru

Master Student

Russian Federation, Saint Petersburg

Inna M. Alkhutova

Saint Petersburg State Chemical and Pharmaceutical University

Email: inna.drachkova@spcpu.ru

Master Student

Russian Federation, Санкт-Петербург

References

  1. Vengerovich N. G., Perelygin V. V. Steroid hormones and their metabolites in water of centralized drinking water supply systems as ecopolutants. Formuly Farmatsii = Pharmacy Formulas. 2021;3(2):66-71. https://doi.org/10.17816/phf71495. (In Russ.).
  2. World Health Organization (WHO). Media center. WHO’s the first global report on antibiotic resistance reveals serious, worldwide threat to public health. Geneva: WHO; 2014. URL: https://www.who.int/mediacentre/news/releases/2014/amr-report/en/.
  3. Polianciuc S. I., Gurzau A. E., Kiss B., et al. Antibiotics in the environment: causes and consequences. Med Pharm Rep. 2020;93:231–240.
  4. Andreev V. A., Popov V. A., Hripunov A. K., et al. Antibacterial activity traditional and nanoantiseptics, prospect of their absorption on wound coatings. Vestnik Rossiiskoi Voenno-meditsinskoi akademii = Bulletin of the Russian Military Medical Academy. 2012;(39):173-177. (In Russ.).
  5. Chepur S. V., Tyunin M. A., Kuzmin A. A., et al. Use of nanotechnology in the creation of modern medicines-governmental funds and their targeting systems (literature review). Voenno-meditsinskiy zhurnal = Russian Military Medical Journal. 2017;338(3):59-67. (In Russ.).
  6. Vengerovich N. G., Antonenkova E.V., Andreev V. A., et al. Application of bioactive nanomaterials in wound process. Bulletin of the Russian Military Medical Academy. 2011. № 1 (33). 162-167.
  7. Tran N. H., Chen H., Reinhard M, et al. Occurrence and removal of multiple classes of antibiotics and antimicrobial agents in biological wastewater treatment processes. Water Res. 2016;104:461-472.
  8. Chopra I., et al. Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiol. Mol. Biol. Rev. 2001;2:232-260.
  9. Daghrir R., Drogui P. Tetracycline antibiotics in the environment: a review. Environ Chem Lett. 2013;11:209-227.
  10. Federal'naya sluzhba po nadzoru v sfere zashchity prav potrebiteley. O Vsemirnoy nedele pravil'nogo ispol'zovaniya protivomikrobnykh preparatov // Rospotrebnadzor: sayt. – URL: https://www.rospotrebnadzor.ru/about/info/news/news_details.php?ELEMENT_ID=16020. (In Russ.).
  11. Barroso J. M. Commission regulation (EU) № 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Off. J. Eur. Union. 2010;1(15):1-72.
  12. Kollegiya EEK. Reshenie kollegii EEK ot 13 fevralya 2018 goda № 28 «O maksimal'no dopustimykh urovnyakh ostatkov veterinarnykh lekarstvennykh sredstv (farmakologicheski aktivnykh veshchestv), kotorye mogut soderzhat'sya v nepererabotannoy pishchevoy produktsii zhivotnogo proiskhozhdeniya, v tom chisle v syr'e, i metodikakh ikh opredeleniya» // Elektronnyy fond pravovoy i normativno-tekhnicheskoy dokumentatsii AO «Kodeks»: sayt. – URL: https://docs.cntd.ru/document/556522984. (In Russ.).
  13. SanPiN 1.2.3685-21 «Sanitarno-epidemiologicheskie trebovaniya k soderzhaniyu territoriy gorodskikh i sel'skikh poseleniy, k vodnym ob"ektam, pit'evoy vode i pit'evomu vodosnabzheniyu, atmosfernomu vozdukhu, pochvam, zhilym pomeshcheniyam, ekspluatatsii proizvodstvennykh, obshchestvennykh pomeshcheniy, organizatsii i provedeniyu sanitarno-protivoepidemicheskikh (profilakticheskikh) meropriyatiy» // Elektronnyy fond pravovoy i normativno-tekhnicheskoy dokumentatsii AO «Kodeks»: sayt. – URL: https://docs.cntd.ru/document/573500115. (In Russ.).
  14. Rynok protivobakterial'nykh veterinarnykh preparatov v Rossii v 2017–2019 godakh // Sel'skokhozyaystvennoe obozrenie Tsenovik: sayt. – URL: https://www.tsenovik.ru/articles/veterinariya/rynok-protivobakterialnykh-veterinarnykh-preparatov-v-rossii-v-2017-2019-godakh/. (In Russ.).
  15. Llor C., Bjerrum L. Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem. Ther Adv Drug Saf. 2014;5(6):229-241. https://doi.org/10.1177/2042098614554919
  16. Timofeeva S. S., Gudilova О. S. Antibiotics in the Environment: Status and Problems. XXI vek. Tekhnosfernaya bezopasnost' = XXI century. Technosphere Safety. 2021;6(3):251-265. https:// doi.org/10.21285/2500-1582-2021-3-251-265. (In Russ.).
  17. Zhang H., Zhou Y., Huang Y., et al. Residues and risks of veterinary antibiotics in protected vegetable soils following application of different manures. Chemosphere. 2016;152:229-237. https://doi.org/10.1016/j.chemosphere.2016.02.111.
  18. Solliec M., Roy-Lachapelle A., Gasser M. O., et al. Fractionation and analysis of veterinary antibiotics and their related degradation products in agricultural soils and drainage waters following swine manure amendment. Sci Total Environ. 2016;543(PtA):524-535. https://doi.org/10.1016/j.scitotenv.2015.11.061.
  19. Yang Q., Gao Y., Ke J., et al. Antibiotics: An overview on the environmental occurrence, toxicity, degradation, and removal methods, Bioengineered. 2021;12(1):7376-7416. https://doi.org/10.1080/21655979.2021.1974657.
  20. Zhang M., He L. Y., Liu Y. S., et al. Fate of veterinary antibiotics during animal manure composting. Sci Total Environ. 2019;650(Pt1):1363-1370. https://doi.org/10.1016/j.scitotenv.2018.09.147.
  21. Syrova E., Kohoutova L., Dolejska M., et al. Antibiotic resistance and virulence factors in mesophilic Aeromonas spp. from Czech carp fisheries. J Appl Microbiol. 2018;25:1702-1713. https://doi.org/10.1111/jam.14075.
  22. Muziasari W. I., Pitkänen L. K., Sørum H., et al. The resistome of farmed fish feces contributes to the enrichment of antibiotic resistance genes in sediments below Baltic sea fish farms. Frontiers in Microbiology. 2017;7(Jan):2137. doi: 10.3389/fmicb.2016.02137.
  23. Chen C. Q., Zheng L., Zhou J. L., et al. Persistence and risk of antibiotic residues and antibiotic resistance genes in major mariculture sites in Southeast China. Sci Total Environ. 2017;580:1175-1184. https://doi.org/10.1016/j.scitotenv.2016.12.075.
  24. Gao Q., Li Y., Qi Z., et al. Diverse and abundant antibiotic resistance genes from mariculture sites of China's coastline. Sci Total Environ. 2018;630:117-125. https://doi.org/10.1016/j.scitotenv.2018.02.122.
  25. Zhang Y., Niu Z., Zhang Y., et al. Occurrence of intracellular and extracellular antibiotic resistance genes in coastal areas of Bohai Bay (China) and the factors affecting them. Environ Pollut. 2018;236:126-136. https://doi.org/10.1016/j.envpol.2018.01.033.
  26. Kumar K., Gupta S. C., Baidoo S. K., et al. Antibiotic Uptake by Plants from Soil Fertilized with Animal Manure. J. Environ. Qual. 2005;34:2082-2085. https://doi.org/10.2134/jeq2005.0026.
  27. Zhang Y., Pei M., Zhang B., et al. Changes of antibiotic resistance genes and bacterial communities in the advanced biological wastewater treatment system under low selective pressure of tetracycline. Water Res. 2021;207:117834. https://doi.org/10.1016/j.watres.2021.117834.
  28. Amarasiri M., Sano D., Suzuki S. Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: Current knowledge and questions to be answered. Critical Reviews in Environmental Science and Technology. 2020;50(19):2016-2059. https://doi.org/10.1080/10643389.2019.1692611.
  29. Hsu C., Hsu B., Ji W., et al. Antibiotic resistance pattern and gene expression of non-typhoid Salmonella in riversheds. Environ. Sci. Pollut. Res. 2015;22:7843-7850.
  30. Sekyere J. O., Asante J. Emerging mechanisms of antimicrobial resistance in bacteria and fungi: advances in the era of genomics. Microbiology. 2018;13(2):241-262.
  31. Roberts M. C., Schwarz S. Tetracycline and phenicol resistance genes and mechanisms: importance for agriculture, the environment and humans. J. Environ. Qual. 2016;4(2):576-592.
  32. Xiong W., Wang M., Dai J., et al. Application of manure containing tetracyclines slowed down the dissipation of tet resistance genes and caused changes in the composition of soil bacteria. Ecotoxicol. Environ. Saf. 2018;147:455-460.
  33. Zhang X. X., Zhang T., Fang H. H. Antibiotic resistance genes in water environment. Appl Microbiol Biotechnol. 2009;82(3):397-414.
  34. Cheng G. Interaction of tetracycline with aluminum and iron hydrous oxides. Environ Sci Technol. 2005;39:2660-2667.
  35. Wei Q., Zhang Q., Chen J., et al. Adsorption behavior and mechanism of tetracycline onto hematite: Effects of low-molecular-weight organic acids. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022; 641:128546. https://doi.org/10.1016/j.colsurfa.2022.128546.
  36. Carrasquillo A. J., Bruland G. L., MacKay A. A., et al. Sorption of Ciprofloxacin and Oxytetracycline Zwitterions to Soils and Soil Minerals: Influence of Compound Structure. Environmental Science & Technology. 2008;42(20):7634-7642. https://doi.org/10.1021/es801277y.
  37. Chen W. R., Huang C. H. Transformation of Tetracyclines Mediated by Mn(II) and Cu(II) Ions in the Presence of Oxygen. Environmental Science & Technology. 2009;43(2):401-407. https://doi.org/10.1021/es802295r.
  38. Gamoń F., Cema G., Ziembińska-Buczyńska A. The influence of antibiotics on the anammox process - a review. Environ Sci Pollut Res Int. 2022;29(6):8074-8090. https://doi.org/10.1007/s11356-021-17733-7.
  39. Fernández I., Mosquera-Corral A., Campos J. L., et al. Operation of an Anammox SBR in the presence of two broad-spectrum antibiotics. Process Biochem. 2009;44(4):494-498. https://doi.org/10.1016/j.procbio.2009.01.001.
  40. Zhang Q. Q., Bai Y. H., Wu J., et al. Microbial community evolution and fate of antibiotic resistance genes in anammox process under oxytetracycline and sulfamethoxazole stresses. Biores Technol. 2019;293:122096. https://doi.org/10.1016/j.biortech.2019.122096.
  41. Yang G. F., Zhang Q. Q., Jin R. C. Changes in the nitrogen removal performance and the properties of granular sludge in an Anammox system under oxytetracycline (OTC) stress. Biores Technol. 2013;129:65-71. https://doi.org/10.1016/j.biortech.2012.11.022.
  42. Shu Y., Liang D. Effect of tetracycline on nitrogen removal in Moving Bed Biofilm Reactor (MBBR) System. PLoS One. 2022;17(1):e0261306. https://doi.org/10.1371/journal.pone.0261306.
  43. Zhang Y., Geng J., Ma H., et al. Characterization of microbial community and antibiotic resistance genes in activated sludge under tetracycline and sulfamethoxazole selection pressure. Sci Total Environ. 2016;571:479-486. https://doi.org/10.1016/j.scitotenv.2016.07.014.
  44. Wei X., Wu S. C., Nie X. P., et al. The effects of residual tetracycline on soil enzymatic activities and plant growth. J Environ Sci Health B. 2009;44(5):461-71. https://doi.org/10.1080/03601230902935139.
  45. Cui H., Ou Y., Wang L., et al. Tetracycline hydrochloride-stressed succession in microbial communities during aerobic composting: Insights into bacterial and fungal structures. Chemosphere. 2022;289:133159. https://doi.org/10.1016/j.chemosphere.2021.133159.
  46. Verma B., Robarts R. D., Headley J. V. Impacts of tetracycline on planktonic bacterial production in prairie aquatic systems. Microb Ecol. 2007;54(1):52-55. https://doi.org/10.1007/s00248-006-9170-5.
  47. Hou G., Hao X., Zhang R., Wang J., et al. Tetracycline removal and effect on the formation and degradation of extracellular polymeric substances and volatile fatty acids in the process of hydrogen fermentation. Bioresour Technol. 2016;212:20-25. https://doi.org/10.1016/j.biortech.2016.03.156.
  48. Srinivasan V., Nam H. M., Sawant A. A., et al. Distribution of tetracycline and streptomycin resistance genes and class 1 integrons in Enterobacteriaceae isolated from dairy and nondairy farm soils. Microb Ecol. 2008;55(2):184-193. https://doi.org/10.1007/s00248-007-9266-6.
  49. Schmitt H., Stoob K., Hamscher G., et al. Tetracyclines and tetracycline resistance in agricultural soils: microcosm and field studies. Microb Ecol. 2006;51(3):267-276. https://doi.org/10.1007/s00248-006-9035-y.
  50. Nejidat A., Diaz-Reck D., Gelfand I., et al. Persistence and spread of tetracycline resistance genes and microbial community variations in the soil of animal corrals in a semi-arid planted forest. FEMS Microbiol Ecol. 2021;97(8):fiab106. https://doi.org/10.1093/femsec/fiab106.
  51. Halling-Sørensen B. Algal toxicity of antibacterial agents used in intensive farming. Chemosphere. 2000;40(7):731-739.
  52. Minden V., Deloy A., Volkert A. M., et al. Antibiotics impact plant traits, even at small concentrations. AoB PLANTS. 2017;9(2):plx010. https://doi.org/10.1093/aobpla/plx010.
  53. Pan M., Chu L. M. Phytotoxicity of veterinary antibiotics to seed germination and root elongation of crops. Ecotoxicol Environ Saf. 2016;126:228-237. https://doi.org/10.1016/j.ecoenv.2015.12.027.
  54. Zhang M., Cai Z., Zhang G., et al. Abiotic mechanism changing tetracycline resistance in root mucus layer of floating plant: The role of antibiotic-exudate complexation. J Hazard Mater. 2021;416:125728. https://doi.org/10.1016/j.jhazmat.2021.125728.
  55. Liu J. Q., Zhuge Y. P., Cui L. N. Effects of exogenous tetracycline on rape soil enzyme activity and rape quality. Ying Yong Sheng Tai Xue Bao. 2009;20(4):943-948.
  56. Xie X., Zhou Q., Lin D., et al. Toxic effect of tetracycline exposure on growth, antioxidative and genetic indices of wheat (Triticum aestivum L.). Environ Sci Pollut Res. 2011;18:566-575. https://doi.org/10.1007/s11356-010-0398-8.
  57. He J., Yang C., Deng Y., et al. Mechanistic insights into the environmental fate of tetracycline affected by ferrihydrite: Adsorption versus degradation. Science of The Total Environment. 2022;811:152283. https://doi.org/10.1016/j.scitotenv.2021.152283.
  58. Han Y., Wang J., Zhao Z., et al. Combined impact of fishmeal and tetracycline on resistomes in mariculture sediment. Environ Pollut. 2018;242(PtB):1711-1719. https://doi.org/10.1016/j.envpol.2018.07.101.
  59. Yang C., Song G., Lim W. A review of the toxicity in fish exposed to antibiotics. Comp Biochem Physiol C Toxicol Pharmacol. 2020;237:108840. https://doi.org/10.1016/j.cbpc.2020.108840.
  60. Kim H. Y., Asselman J., Jeong T. Y., et al. Multigenerational Effects of the Antibiotic Tetracycline on Transcriptional Responses of Daphnia magna and Its Relationship to Higher Levels of Biological Organizations. Environ Sci Technol. 2017;51(21):12898-12907. https://doi.org/10.1021/acs.est.7b05050.
  61. Zeh J. A., Bonilla M. M., Adrian A. J., et al. From father to son: transgenerational effect of tetracycline on sperm viability. Sci Rep. 2012;2:375. https://doi.org/10.1038/srep00375.
  62. Chao H., Sun M., Ye M., et al. World within world: Intestinal bacteria combining physiological parameters to investigate the response of Metaphire guillelmi to tetracycline stress. Environ Pollut. 2020;261:114174. https://doi.org/10.1016/j.envpol.2020.114174.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Geographical representation of tetracycline resistance genes in the aquatic environment [33]

Download (105KB)

Copyright (c) 2022 Парамонов С.Г., Зеликова Д.Д., Склярова Л.В., Алхутова И.М.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies