Problems of solid radioactive waste management on the example of the radioactive isotope 14C

Cover Page

Cite item

Full Text

Abstract

The management of irradiated graphite waste continues to attract the attention of specialists from a number of related industries, in connection with the technical and economic component, along with the fact that solid radioactive waste entering the environment in the process of disposal acquires biogenic character. The environmental safety of solid radioactive waste management is associated with the possibility of biologically significant 14C to enter the human body.

Resulting from the development of the nuclear industry, 14C has become one of the causes of global and local pollution.  The consequences of thermonuclear explosions, operation of nuclear power plants, as well as nuclear fuel cycle enterprises, isotope production for the production of drugs labeled with 14C, research institutions are considered as sources of 14C.

The world output of accumulated reactor graphite is estimated at 250,000 tons. In the Russian Federation, the total volume is approximately 60,000 tons of graphite. The share of accumulated irradiated graphite in Russia comprises 24% of the total volume of accumulated graphite.

Having studied and analyzed the statistical data of scientific research, using the methods of generalized data processing, systematization and comparative analysis, we have taken the liberty to make a general conclusion about modern approaches and the relevance of solving the problem of SRW management on the example of the 14C radioactive isotope.

About the authors

Vladimir V. Perelygin

Saint Petersburg State Chemical and Pharmaceutical University

Email: vladimir.pereligin@pharminnotech.com
ORCID iD: 0000-0002-0999-5644
SPIN-code: 3128-7451
Scopus Author ID: 13105602000
ResearcherId: AAV-6556-2020

Doctor of Medicine (MD), Professor, Head of the Industrial Ecology Department

Russian Federation, Saint Petersburg

Peter K. Kotenko

Institute of additional professional education «Extreme medicine», Nikiforov Russian Center of Emergency and Radiation Medicine of EMERCOM of Russia

Email: mil.med.kot@gmail.com

Doctor of Medicine (MD), Professor, Head of the Department of Life Safety, Extreme and Radiation Medicine

Russian Federation, Санкт-Петербург

Alexandra G. Podboronova

Saint Petersburg State Chemical and Pharmaceutical University; V.G. Khlopin Radium Institute

Email: podboronova.aleksandra@pharminnotech.com

Master Student, Engineer of the 2nd category, Laboratory of Complex Technologies for the Separation of Isotopes and Fission Products

Russian Federation, Saint Petersburg; Saint Petersburg

Mikhail V. Zharikov

Saint Petersburg State Chemical and Pharmaceutical University

Author for correspondence.
Email: zharikov.mihail@pharminnotech.com
ORCID iD: 0000-0003-0720-501X
SPIN-code: 7818-7228
ResearcherId: AAS-9156-2021

Master Student

Russian Federation, Saint Petersburg

Lyudmila V. Sklyarova

Saint Petersburg State Chemical and Pharmaceutical University

Email: sklyarova.lyudmila@spcpu.ru

Master Student

Russian Federation, Saint Petersburg

References

  1. Bylkin B. K., Davydova G.B., Zhurbenko E.A. Radioaktivnye otkhody pri demontazhe reaktornykh ustanovok AES. Atomnaya energiya = Atomic Energy. 2011;110(3):171–172. (In Russ.).
  2. Programma deyatel’nosti Gosudarstvennoy korporatsii po atomnoy energii «Rosatom» na dolgosrochnyy period (2009–2015 gody). Utverzhdena postanovleniem Pravitel’stva RF ot 20 sentyabrya 2008 g. № 705. (In Russ.).
  3. Dorofeev A. N., Komarov Е. A., Zakharova E. V., et al. On Reactor Graphite Disposal. Radioaktivnye otkhody = Radioactive Waste. 2019;2(7):18–30. https://doi.org/10.25283/2587-9707-2019-2-18-30 (In Russ.).
  4. Bodrov O. V., Kuznecov V. N., Muratov O. Ye., et al. Sovremennye vyzovy i vozmozhnye resheniya po obrashheniyu s reaktornym grafitom pri vyvode iz ekspluatacii reaktorov RBMK. Saint Petersburg, Chelyabinsk, Visaginas; 2019. 35 p. (In Russ.).
  5. Chebotina M. Ya., Ponomareva R. P. Peculiarities of radiocarbon accumulation in environmental components. Ural’skij geofizicheskij vestnik = Ural Geophysical Bulletin. 2007;4(13):86–95. (In Russ.).
  6. Kriterij vybora tehnologii utilizacii reaktornogo grafita. Advertising and news agency PRoAtom. URL: http://www.proatom.ru/modules.php?name=News&file=article&sid=9435 (In Russ.).
  7. Vergil’ev Yu. S., Seleznev A. N., Sviridov A. A., et al. Reaktornyy grafit: razrabotka, proizvodstvo i svoystva. Rossiyskiy khimicheskiy zhurnal=Russian Journal of General Chemistry. 2006;1:4–12. (In Russ.).
  8. Tuktarov M. A, Andreeva L. A., Romenkov A. A. Konditsionirovanie reaktornogo grafita vyvodimykh iz ekspluatatsii uran-grafitovykh reaktorov dlya tseley zakhoroneniya. Atomnaya energiya=Atomic Energy. URL: http://www.atomic-energy.ru/articles/2016/06/08/66585 (In Russ.).
  9. Girke N. A., Bushuev A. V., Kozhin A. F., et al. 14C v otrabotavshem grafite uran-grafitovykh reaktorov Sibirskogo khimicheskogo kombinata. Atomnaya energiya=Atomic Energy. 2012;112(1):51–53. (In Russ.).
  10. Semenov S. G., Chesnokov A. V. Problemy obrashcheniya s radioaktivnym grafitom pri vyvode iz ekspluatatsii yadernykh reaktorov. Atomnaya energiya=Atomic Energy. 2018;124(5):286–291. (In Russ.).
  11. Aktsionernoe obshchestvo «Opytno-demonstratsionnyy tsentr vyvoda iz ekspluatatsii uran-grafitovykh yadernykh reaktorov» Tekhnicheskie resheniya i opyt AO «ODTs UGR» po obrashcheniyu s obluchennym grafitom pri vyvode iz ekspluatatsii. Besplatnaya elektronnaya biblioteka – sobranie publikatsiy. URL: http://librus.dobrota.biz/40tehnicheskie/87659-1-akcionernoe-obschestvo-opitno-demonstracionniy-centr-vivoda-ekspluatacii-uran-grafitovih-yadernih-reakt.php (In Russ.).
  12. Postanovlenie Pravitel’stva RF ot 19 oktyabrya 2012 goda № 1069 “O kriteriyakh otneseniya tverdykh, zhidkikh i gazoobraznykh otkhodov k radioaktivnym otkhodam, kriteriyakh otneseniya radioaktivnykh otkhodov k osobym radioaktivnym otkhodam i k udalyaemym radioaktivnym otkhodam i kriteriyakh klassifikatsii udalyaemykh radioaktivnykh otkhodov (s izmeneniyami na 4 fevralya 2015 goda)”. “Kodeks” Electronic Collection of Legal and Regulatory and Technical Documentation. URL: https://docs.cntd.ru/document/902376375 (In Russ.).
  13. Federal’nyy zakon ot 11.07.2011 № 190-FZ “Ob obrashchenii s radioaktivnymi otkhodami i o vnesenii izmeneniy v otdel’nye zakonodatel’nye akty Rossiyskoy Federatsii” (s izmeneniyami na 21 dekabrya 2021 goda). “Kodeks” Electronic Collection of Legal and Regulatory and Technical Documentation. URL: https://docs.cntd.ru/document/902288595 (In Russ.).
  14. Volkov V. G., Safronova N. N., Morozov F. T., et al. On the Challenge Associated with the Final Stage of Irradiated Graphite Management from Water-Graphite NPP Reactor Units. Radioaktivnye otkhody=Radioactive Waste. 2021;2(15):10–20. https://doi.org/10.25283/2587-9707-2021-2-10-20 (In Russ.).
  15. Sorokin V. T., Pavlov D. I. The cost of Radwaste Disposal: a Foreign Assessment. Radioaktivnye otkhody=Radioactive Waste. 2021;2(15):46–55. (In Russ.).
  16. Podzemnaya issledovatel’skaya laboratoriya v Nizhnekanskom massive // NORWM ROSATOM. URL: https://www.norao.ru/about/underground/ (In Russ.).
  17. Prikaz Federal’noy sluzhby po ekologicheskomu, tekhnologicheskomu i atomnomu nadzoru ot 25.06. 2015 № 243 “Ob utverzhdenii federal’nykh norm i pravil v oblasti ispol’zovaniya atomnoy energii “Sbor, pererabotka, khranenie i konditsionirovanie tverdykh radioaktivnykh otkhodov. Trebovaniya bezopasnosti”. “Kodeks” Electronic Collection of Legal and Regulatory and Technical Documentation. URL: https://docs.cntd.ru/document/420285869 (In Russ.).
  18. Pavlyuk A. O., Kotlyarevskiy S. G., et al. Analysis of capability of reducing potential hazard of radioactive waste under thermal treatment. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov=Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering. 2017;328(8):24–32. (In Russ.).
  19. LaBrier D., Dounzik-Gougar M. L. Identification and location of 14C bearing species in thermally treated neutron irradiated graphite NBG-18 and NBG-25: pre and post thermal treatment. Journal of Nuclear Materials. 2015;460:174–183.
  20. Smith T. E., McCrory S., Dunzik-Gougar M. L. Limited oxidation of irradiated graphite waste to remove surface carbon-14. Nuclear Engineering and Technology. 2013;45(2):211–218.
  21. Dunzik-Gougar, M. L., Smith T. E. Removal of carbon-14 from irradiated graphite. Journal of Nuclear Materials. 2014;451:328–335.
  22. Chartier A., Brutzel L. V., Pannier B. Atomic scale mechanism for the amorphisation of irradiated graphite. Carbon. 2015;91:95–407.
  23. Kane J. J., Karthik C., Ubic R., et al. An oxygen transfer model for high purity graphite oxidation. Carbon. 2013;59:49–64.
  24. Vulpius D., Baginski K., Kraus B., et al. Thermal treatment of neutron-irradiated nuclear graphite. Nuclear Engineering and Design. 2013;265:294–309.
  25. LaBrier D., Dunzik-Gougar, M. L. Characterization of 14C in neutron irradiated NBG-25 nuclear graphite. Journal of Nuclear Materials. 2014;448:113–120.
  26. Chi S.-H., Kim G. C. Effects of air flow rate on the oxidation of NBG-18 and NBG-25 nuclear graphite. Journal of Nuclear Materials. 2017;491:37–42.
  27. Theodosiou A., Jones A. N., Marsden B.J. Thermal oxidation of nuclear graphite: A large scale waste treatment option. PLoS ONE. 2017;12(8):1–19.
  28. Lo I-H., Yeh T.-K., Patterson E. A., et al. Comparison of oxidation behaviour of nuclear graphite grades at very high temperatures. J. of Nuclear Materials. 2020;532:152054. https://doi.org/10.1016/j.jnucmat.2020.152054
  29. Lee J. J., Ghosh T. K., Loyalka S. K. Comparison of NBG-18, NBG-17, IG-110 and IG-11 oxidation kinetics in air. Journal of Nuclear Materials. 2018;500:64–71. https://doi.org/10.1016/j.jnucmat.2017.11.053
  30. Frolov V. V., A. V. Kryuchkov, Yu. N. Kuznetsov, et al. Vozmozhnost’ szhiganiya obluchennogo grafita vyvodimykh iz ekspluatatsii yadernykh energoblokov. Atomnaya energiya=Atomic Energy. 2004;97(5):372–374.
  31. Bredberi D, Meyson D. B. Radioactive graphite treatment process.1 RU Patent No. 2239899. 2004.
  32. Romenkov A. A., Tuktarov M. A., Karlina O. A., Yurchenko A. Yu. Method of treating irradiated reactor graphite. RU Patent No. 2546981, 2015.
  33. Dubourg M. Solution to Level 3 Dismantling of Gas-Cooled Reactors: the Graphite Incineration. Nuclear Eng. and Design. 1995;154(2):47–54.
  34. Gay RL. Method for disposing of radioactive graphite and silicon carbide in graphite fuel elements. US Patent № 544950, 1995.
  35. Romenkov A. A., Tuktarov M. A., Sinel’nikov L. P., Men’kin L. I. Method of radioactive carbon-containing waste treatment with catalytic combustion. 2008.
  36. Romenkov A. A., Tuktarov M. A. Method for treating by flameless combustion of radioactive carbon containing substances. RU patent No. 2390862, 2010.
  37. Oziashvili E. D., Egiazarov A. S. Razdelenie stabil’nykh izotopov ugleroda. Uspekhi khimii = Russian Chemical Reviews. 1989;58(4):545–565. (In Russ.).
  38. Pigul’skiy S. V. Metod i apparatura dlya krupnomasshtabnogo protsessa lazernogo razdeleniya izotopov ugleroda: spetsial’nost’ 01.04.01 – pribory i metody eksperimental’noy fiziki: avtoreferat dissertatsii na soiskanie uchenoy stepeni doktora tekhnicheskikh nauk. Pigul’skiy Sergey Viktorovich; Troitskiy institut innovatsionnykh i termoyadernykh issledovaniy. Troitsk, 2008. 36 p. (In Russ.).
  39. Astakhov A. V., Barabanshchikov A. A., Baranov G. A., et al. Method for production high-concentration 13c isotope (options). RU patent No. 2144421, 2006.
  40. Letokhov V. S. Lazernoe razdelenie izotopov. Atomnaya energiya=Atomic Energy. 1987;62(4):252–263. (In Russ.).
  41. Aray S., Sugita K., Isomura S., Kaetsu H. Method of enriching the isotope carbon 13 by means of laser irradiation. US Patent No. 4941956, 1990.
  42. Yamasaki M., Horita Y., Otsubo T., et al. Process for Enriching Carbon 13. US Patent No. 5085748, 1992.
  43. Linge I. I., Kryshev I. I. Radioekologicheskaya obstanovka v regionakh raspolozheniya predpriyatiĭ Gosudarstvennoy korporatsii po atomnoy energii «Rosatom». 2nd ed. Moscow, 2021. 555 p. (In Russ.).
  44. UGLEROD-14: RAZRYADITE BOMBU! “Eternal Youth” Popular Science Portal. URL: https://vechnayamolodost.ru/articles/drugienaukiozhizni/uglerazbom9c (In Russ.).
  45. Demin S. N. Problema ugleroda-14 v Rayone PO ”Mayak”. Voprosy radiatsionnoy bezopasnosti=General problems of radiation safety. 2000;(1):61–66.
  46. Germanskiy A. M. Kriteriy vybora tekhnologii utilizatsii reaktornogo grafita. Advertising and news agency PRoAtom. URL: http://www.proatom.ru/modules.php?name=News&file=article&sid=9435 (In Russ.).
  47. Federal’naya tselevaya programma «Mediko-sanitarnoe obespechenie sovremennogo etapa razvitiya yaderno-energeticheskogo kompleksa i drugikh osobo opasnykh proizvodstv v usloviyakh raketnogo, yadernogo i khimicheskogo razoruzheniya, a takzhe konversii i razrabotki novykh tekhnologiy v 1997-1998 godakh» (utv. postanovleniem Pravitel’stva RF ot 22 fevralya 1997 g. № 191). “Kodeks” Electronic Collection of Legal and Regulatory and Technical Documentation. URL: https://docs.cntd.ru/document/9038930 (In Russ.).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The share of Russia and foreign countries in the world accumulated irradiated graphite output

Download (922KB)
3. Fig. 2. Carbon-14 decay curve

Download (91KB)
4. Fig. 3. Formation of radiocarbon and its distribution in the environment

Download (149KB)

Copyright (c) 2021 Perelygin V.V., Kotenko P.K., Podboronova A.G., zharikov M., Sklyarova L.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies