Markers of halogenating stress and netosis in patients with type 2 diabetes mellitus
- Authors: Ivanov V.A.1, Sokolov A.V.1,2, Gorbunov N.P.2, Mikhalchik E.V.1, Basyreva L.Y.1, Galkina N.V.1, Galkina A.P.1, Khoroshilova Y.B.1, Rusakova T.A.1, Gusev S.A.1, Panasenko O.M.1
-
Affiliations:
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
- Institute of Experimental Medicine
- Issue: Vol 25, No 2 (2025)
- Pages: 68-75
- Section: Original research
- URL: https://journals.rcsi.science/MAJ/article/view/319496
- DOI: https://doi.org/10.17816/MAJ642420
- EDN: https://elibrary.ru/MYJHQX
- ID: 319496
Cite item
Abstract
BACKGROUND: Leukocyte myeloperoxidase catalyzes the formation of reactive halogen species, which oxidize and chlorinate biomolecules, thereby contributing to the development of halogenating stress. Myeloperoxidase is a key enzyme in neutrophil extracellular traps (NETs) during NETosis. There is reason to believe that under hyperglycemic conditions in patients with type 2 diabetes mellitus, halogenating stress and NETosis develop, which contribute to disease progression and complications.
AIM: The work aimed to assess the levels of blood markers of halogenating stress (myeloperoxidase, chlorinated albumin) and NETosis (neutrophil extracellular traps) in patients with type 2 diabetes mellitus.
METHODS: The study included patients with a previously established diagnosis of type 2 diabetes mellitus. Myeloperoxidase and chlorinated albumin in plasma were measured by enzyme-linked immunosorbent assay. The number of neutrophil extracellular traps was determined using light microscopy on standardized whole-blood smears stained according to Romanowsky.
RESULTS: In patients with type 2 diabetes mellitus, blood levels of myeloperoxidase and chlorinated albumin were significantly higher than in the group of healthy volunteers, indicating the development of halogenating stress. At the same time, in the blood of patients with type 2 diabetes mellitus, a significant increase in the concentration of neutrophil extracellular traps was recorded compared to the control group of healthy volunteers, both in the absence of the activator—phorbol 12-myristate 13-acetate—and after its addition to the blood, indicating activation of NETosis in type 2 diabetes mellitus.
CONCLUSION: The findings support the hypothesis that halogenating stress, caused by an excessive increase in blood myeloperoxidase concentration/activity, accompanies the development of type 2 diabetes mellitus and contributes to its progression and complications.
Full Text
##article.viewOnOriginalSite##About the authors
Viktor A. Ivanov
Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
Email: Vanov.va@inbox.ru
ORCID iD: 0000-0003-4766-1386
SPIN-code: 7531-5950
Russian Federation, Moscow
Alexey V. Sokolov
Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency; Institute of Experimental Medicine
Email: biochemsokolov@gmail.com
ORCID iD: 0000-0001-9033-0537
SPIN-code: 7427-7395
Dr. Sci. (Biology)
Russian Federation, Moscow; Saint PetersburgNikolay P. Gorbunov
Institute of Experimental Medicine
Email: niko_laygo@mail.ru
ORCID iD: 0000-0003-4636-0565
SPIN-code: 6289-7281
Russian Federation, Saint Petersburg
Elena V. Mikhalchik
Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
Email: lemik2007@yandex.ru
ORCID iD: 0000-0002-6431-125X
SPIN-code: 8896-4697
Dr. Sci. (Biology)
Russian Federation, MoscowLiliya Yu. Basyreva
Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
Email: basyreva@mail.ru
ORCID iD: 0000-0002-5170-9824
SPIN-code: 9680-9712
Cand. Sci. (Chemistry)
Russian Federation, MoscowNatalia V. Galkina
Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
Email: Nataliazv.gorod@mail.ru
ORCID iD: 0009-0006-5800-8015
MD, Cand. Sci. (Medicine)
Russian Federation, MoscowAnna P. Galkina
Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
Email: Anyagalkina01@mail.ru
ORCID iD: 0009-0004-9076-4799
Russian Federation, Moscow
Yana B. Khoroshilova
Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
Email: Yanka2603@yandex.ru
ORCID iD: 0009-0002-5595-2415
MD
Russian Federation, MoscowTatiana A. Rusakova
Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
Email: Tanyarusakova93@mail.ru
ORCID iD: 0009-0006-9451-1291
MD
Russian Federation, MoscowSergey A. Gusev
Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
Email: ser_gus@mail.ru
ORCID iD: 0000-0003-0383-2649
MD, Dr. Sci. (Medicine), Professor
Russian Federation, MoscowOleg M. Panasenko
Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
Author for correspondence.
Email: o-panas@mail.ru
ORCID iD: 0000-0001-5245-2285
SPIN-code: 3035-6808
Dr. Sci. (Biology), Professor, Corresponding Member of the RAS
Russian Federation, MoscowReferences
- Panasenko OM, Sergienko VI. Halogenizing stress and its biomarkers. Vestn Ross Akad Med Nauk. 2010;(1):27–39. EDN: MBCLFX
- Panasenko OM, Gorudko IV, Sokolov AV. Hypochlorous acid as a precursor of free radicals in living systems. Biochemistry (Moscow). 2013;78(13):1466–1489. EDN: UEQLNF doi: 10.1134/S0006297913130075
- Panasenko OM, Torkhovskaya TI, Gorudko IV, Sokolov AV. The role of halogenative stress in atherogenic modification of low-density lipoproteins. Biochemistry (Moscow). 2020;85(Suppl. 1):34–55. EDN: EZKLSR doi: 10.1134/S0006297920140035
- Panasenko OM, Vladimirov YuA, Sergienko VI. Free radical lipid peroxidation induced by reactive halogen species. Biochemistry (Moscow). 2024;89(S1):S148–S179. EDN: NLFRAV doi: 10.1134/S0006297924140098
- Meeuwisse-Pasterkamp SH, van der Klauw MM, Wolffenbuttel BH. Type 2 diabetes mellitus: prevention of macrovascular complications. Expert Rev Cardiovasc Ther. 2008;6(3):323–341. doi: 10.1586/14779072.6.3.323
- John WG, Lamb EJ. The Maillard or browning reaction in diabetes. Eye (Lond). 1993;7:230–237. doi: 10.1038/eye.1993.55
- Singh К, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review. Diabetologia. 2001;44(2):129–146. doi: 10.1007/s001250051591
- Twarda-Clapa A, Olczak A, Białkowska AM, Koziołkiewicz M. Advanced glycation end-products (AGEs): formation, chemistry, classification, receptors, and diseases related to AGEs. Cells. 2022;11(8):1312. doi: 10.3390/cells11081312
- Anderson MM, Hazen SL, Hsu FF, Heinecke JW. Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hydroxy-amino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein. A mechanism for the generation of highly reactive alpha-hydroxy and alpha, beta-unsaturated aldehydes by phagocytes at sites of inflammation. J Clin Invest. 1997;99(3):424–432. doi: 10.1172/JCI119176
- Anderson MM, Requena JR, Crowley JR, et al. The myeloperoxidase system of human phagocytes generates Nepsilon-(carboxymethyl)lysine on proteins: a mechanism for producing advanced glycation end products at sites of inflammation. J Clin Invest. 1999;104(1):103–113. doi: 10.1172/JCI3042
- Piwowar A. Advanced oxidation protein products. Part I. Mechanism of the formation, characteristics and property. Pol Merkur Lekarski. 2010;28(164):166–169.
- Klebanoff SJ. Myeloperoxidase: friend and foe. J Leukoc Biol. 2005;77(5):598–625. doi: 10.1189/jlb.1204697
- Thiam HR, Wong SL, Wagner DD, Waterman CM. Cellular mechanisms of NETosis. Annu Rev Cell Dev Biol. 2020;36(1):191–218. doi: 10.1146/annurev-cellbio-020520-111016
- Metzler KD. Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood. 2011;117(3):953–959. doi: 10.1182/blood-2010-06-290171
- Gorudko IV, Grigorieva DV, Shamova EV, et al. Hypohalous acid-modified human serum albumin induces neutrophil NADPH oxidase activation, degranulation, and shape change. Free Radic Biol Med. 2014;68:326–334. doi: 10.1016/j.freeradbiomed.2013.12.023
- Basyreva LYu, Shmeleva EV, Vakhrusheva TV, et al. Hypochlorous acid-modified serum albumin causes NETosis in whole blood ex vivo and isolated neutrophils. Bull Exp Biol Med. 2024;177(2):197–202. doi: 10.1007/s10517-024-06155-3
- Mikhalchik EV, Maximov DI, Ostrovsky EM, et al. Neutrophils as a source of factors increasing duration of the inflammatory phase of wound healing in patients with type 2 diabetes mellitus. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry. 2019;13(1):68–73. EDN: AZQLZP doi: 10.1134/S1990750819010098
- Giovenzana A, Carnovale D, Phillips B, et al. Neutrophils and their role in the aetiopathogenesis of type 1 and type 2 diabetes. Diabetes Metab Res Rev. 2022;38(1):e3483. doi: 10.1002/dmrr.3483
- Basyreva LY, Vakhrusheva TV, Letkeman ZV, et al. Effect of vitamin D3 in combination with omega-3 polyunsaturated fatty acids on NETosis in type 2 diabetes mellitus patients. Oxid Med Cell Longev. 2021;2021:8089696. doi: 10.1155/2021/8089696
- Ghoshal K, Das S, Aich K, et al. A novel sensor to estimate the prevalence of hypochlorous (HOCl) toxicity in individuals with type 2 diabetes and dyslipidemia. Clin Chim Acta. 2016;458:144–153. doi: 10.1016/j.cca.2016.05.006
- Rovira-Llopis S, Rocha M, Falcon R, et al. Is myeloperoxidase a key component in the ROS-induced vascular damage related to nephropathy in type 2 diabetes? Antioxid Redox Signal. 2013;19(13):1452–1458. doi: 10.1089/ars.2013.5307
- Wiersma JJ, Meuwese MC, van Miert JN, et al. Diabetes mellitus type 2 is associated with higher levels of myeloperoxidase. Med Sci Monit. 2008;14(8):CR406–410.
- Gorudko IV, Kostevich AV, Sokolov AV, et al. Increased myelopepoxidase activity is a risk factor for ishemic heart disease in patients with diabetes mellitus. Biochemistry (Moscow). Supplement Series B: Biomedical Chemistry. 2011;5(3):307–312. EDN: PEDJOJ doi: 10.1134/S199075081103005X
- Moldoveanu E, Tanaseanu C, Tanaseanu S, et al. Plasma markers of endothelial dysfunction in type 2 diabetics. Eur J Intern Med. 2006;17(1):38–42. doi: 10.1016/j.ejim.2005.09.015
- Gómez-García A, Rodríguez MR, Gómez-Alonso C, et al. Myeloperoxidase is associated with insulin resistance and inflammation in overweight subjects with first-degree relatives with type 2 diabetes mellitus. Diabetes Metab J. 2015;39(1):59–65. doi: 10.4093/dmj.2015.39.1.59
- Sato N, Shimizu H, Suwa K, et al. MPO activity and generation of active O2 species in leukocytes from poorly controlled diabetic patients. Diabetes Care. 1992;15(8):1050–1052. doi: 10.2337/diacare.15.8.1050
- Uchimura K, Nagasaka A, Hayashi R, et al. Changes in superoxide dismutase activities and concentrations and myeloperoxidase activities in leukocytes from patients with diabetes mellitus. J Diabetes Complications. 1999;13(5–6):264–270. doi: 10.1016/s1056-8727(99)00053-7
- de Souza Ferreira C, Araújo TH, Ângelo ML, et al. Neutrophil dysfunction induced by hyperglycemia: modulation of myeloperoxidase activity. Cell Biochem Funct. 2012;30(7):604–610. doi: 10.1002/cbf.2840
- Sokolov AV, Kostevich VA, Gorbunov NP, et al. A link between active myeloperoxidase and chlorinated ceruloplasmin in blood plasma of patients with cardiovascular diseases. Medical Immunology (Russia). 2018;(20):699–710. EDN: YLTKTR doi: 10.15789/1563-0625-2018-5-699-710
- Lutsenko VE, Grigorieva DV, Gorudko IV, et al. Celestine blue B as a sensor for hypochlorous acid and HOCl-modified proteins registration. Medical Academic Journal. 2019;19(2):63–71. EDN: IFDQNE doi: 10.17816/MAJ19263-71
- Churashova IA, Sokolov AV, Kostevich VA, et al. Myeloperoxidase/high-density lipoprotein cholesterol ratio in patients with arterial hypertension and chronic coronary heart disease. Medical Academic Journal. 2021;21(2):75–86. EDN: PLCEQJ doi: 10.17816/MAJ71486
- Hu ML. Measurement of protein thiol groups and glutathione in plasma. Methods Enzymol. 1994;233:380–385. doi: 10.1016/s0076-6879(94)33044-1
- Gavrilova AR, Khmara NF. Determination of glutathione peroxidase activity in erythrocytes in saturated concentrations of the substrate. Lab Delo. 1986;(12):721–724. (In Russ.)
- Karpishchenko AI, editor. Medical laboratory technologies. In 2 Vol. Saint Petersburg: Intermedika; 1999. Vol. 2. P. 23–24. (In Russ.)
- Samygina VR, Sokolov AV, Bourenkov G, et al. Ceruloplasmin: macromolecular assemblies with iron-containing acute phase proteins. PLoS One. 2013;8(7):e67145. doi: 10.1371/journal.pone.0067145
- Panasenko OM, Chekanov AV, Vlasova II, et al. Influence of ceruloplasmin and lactoferrin on the chlorination activity of leukocyte myeloperoxidase assayed by chemiluminescence. Biophysics. 2008;53(4):268–272. EDN: LLIDID doi: 10.1134/S0006350908040052
- Sokolov AV, Ageeva KV, Pulina MO, et al. Ceruloplasmin and myeloperoxidase in complex affect the enzymatic properties of each other. Free Radic Res. 2008;42(11–12):221–227. doi: 10.1080/10715760802566574
- Akkuş I, Kalak S, Vural H, et al. Leukocyte lipid peroxidation, superoxide dismutase, glutathione peroxidase and serum and leukocyte vitamin C levels of patients with type II diabetes mellitus. Clin Chim Acta. 1996;244(2):221–227. doi: 10.1016/0009-8981(96)83566-2
- Ergin M, Aydin C, Yurt EF, et al. The variation of disulfides in the progression of type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes. 2020;128(2):77–81. doi: 10.1055/s-0044-100376
Supplementary files
