Markers of halogenating stress and netosis in patients with type 2 diabetes mellitus

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Leukocyte myeloperoxidase catalyzes the formation of reactive halogen species, which oxidize and chlorinate biomolecules, thereby contributing to the development of halogenating stress. Myeloperoxidase is a key enzyme in neutrophil extracellular traps (NETs) during NETosis. There is reason to believe that under hyperglycemic conditions in patients with type 2 diabetes mellitus, halogenating stress and NETosis develop, which contribute to disease progression and complications.

AIM: The work aimed to assess the levels of blood markers of halogenating stress (myeloperoxidase, chlorinated albumin) and NETosis (neutrophil extracellular traps) in patients with type 2 diabetes mellitus.

METHODS: The study included patients with a previously established diagnosis of type 2 diabetes mellitus. Myeloperoxidase and chlorinated albumin in plasma were measured by enzyme-linked immunosorbent assay. The number of neutrophil extracellular traps was determined using light microscopy on standardized whole-blood smears stained according to Romanowsky.

RESULTS: In patients with type 2 diabetes mellitus, blood levels of myeloperoxidase and chlorinated albumin were significantly higher than in the group of healthy volunteers, indicating the development of halogenating stress. At the same time, in the blood of patients with type 2 diabetes mellitus, a significant increase in the concentration of neutrophil extracellular traps was recorded compared to the control group of healthy volunteers, both in the absence of the activator—phorbol 12-myristate 13-acetate—and after its addition to the blood, indicating activation of NETosis in type 2 diabetes mellitus.

CONCLUSION: The findings support the hypothesis that halogenating stress, caused by an excessive increase in blood myeloperoxidase concentration/activity, accompanies the development of type 2 diabetes mellitus and contributes to its progression and complications.

About the authors

Viktor A. Ivanov

Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency

Email: Vanov.va@inbox.ru
ORCID iD: 0000-0003-4766-1386
SPIN-code: 7531-5950
Russian Federation, Moscow

Alexey V. Sokolov

Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency; Institute of Experimental Medicine

Email: biochemsokolov@gmail.com
ORCID iD: 0000-0001-9033-0537
SPIN-code: 7427-7395

Dr. Sci. (Biology)

Russian Federation, Moscow; Saint Petersburg

Nikolay P. Gorbunov

Institute of Experimental Medicine

Email: niko_laygo@mail.ru
ORCID iD: 0000-0003-4636-0565
SPIN-code: 6289-7281
Russian Federation, Saint Petersburg

Elena V. Mikhalchik

Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency

Email: lemik2007@yandex.ru
ORCID iD: 0000-0002-6431-125X
SPIN-code: 8896-4697

Dr. Sci. (Biology)

Russian Federation, Moscow

Liliya Yu. Basyreva

Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency

Email: basyreva@mail.ru
ORCID iD: 0000-0002-5170-9824
SPIN-code: 9680-9712

Cand. Sci. (Chemistry)

Russian Federation, Moscow

Natalia V. Galkina

Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency

Email: Nataliazv.gorod@mail.ru
ORCID iD: 0009-0006-5800-8015

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Anna P. Galkina

Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency

Email: Anyagalkina01@mail.ru
ORCID iD: 0009-0004-9076-4799
Russian Federation, Moscow

Yana B. Khoroshilova

Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency

Email: Yanka2603@yandex.ru
ORCID iD: 0009-0002-5595-2415

MD

Russian Federation, Moscow

Tatiana A. Rusakova

Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency

Email: Tanyarusakova93@mail.ru
ORCID iD: 0009-0006-9451-1291

MD

Russian Federation, Moscow

Sergey A. Gusev

Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency

Email: ser_gus@mail.ru
ORCID iD: 0000-0003-0383-2649

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Oleg M. Panasenko

Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency

Author for correspondence.
Email: o-panas@mail.ru
ORCID iD: 0000-0001-5245-2285
SPIN-code: 3035-6808

Dr. Sci. (Biology), Professor, Corresponding Member of the RAS

Russian Federation, Moscow

References

  1. Panasenko OM, Sergienko VI. Halogenizing stress and its biomarkers. Vestn Ross Akad Med Nauk. 2010;(1):27–39. EDN: MBCLFX
  2. Panasenko OM, Gorudko IV, Sokolov AV. Hypochlorous acid as a precursor of free radicals in living systems. Biochemistry (Moscow). 2013;78(13):1466–1489. EDN: UEQLNF doi: 10.1134/S0006297913130075
  3. Panasenko OM, Torkhovskaya TI, Gorudko IV, Sokolov AV. The role of halogenative stress in atherogenic modification of low-density lipoproteins. Biochemistry (Moscow). 2020;85(Suppl. 1):34–55. EDN: EZKLSR doi: 10.1134/S0006297920140035
  4. Panasenko OM, Vladimirov YuA, Sergienko VI. Free radical lipid peroxidation induced by reactive halogen species. Biochemistry (Moscow). 2024;89(S1):S148–S179. EDN: NLFRAV doi: 10.1134/S0006297924140098
  5. Meeuwisse-Pasterkamp SH, van der Klauw MM, Wolffenbuttel BH. Type 2 diabetes mellitus: prevention of macrovascular complications. Expert Rev Cardiovasc Ther. 2008;6(3):323–341. doi: 10.1586/14779072.6.3.323
  6. John WG, Lamb EJ. The Maillard or browning reaction in diabetes. Eye (Lond). 1993;7:230–237. doi: 10.1038/eye.1993.55
  7. Singh К, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review. Diabetologia. 2001;44(2):129–146. doi: 10.1007/s001250051591
  8. Twarda-Clapa A, Olczak A, Białkowska AM, Koziołkiewicz M. Advanced glycation end-products (AGEs): formation, chemistry, classification, receptors, and diseases related to AGEs. Cells. 2022;11(8):1312. doi: 10.3390/cells11081312
  9. Anderson MM, Hazen SL, Hsu FF, Heinecke JW. Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hydroxy-amino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein. A mechanism for the generation of highly reactive alpha-hydroxy and alpha, beta-unsaturated aldehydes by phagocytes at sites of inflammation. J Clin Invest. 1997;99(3):424–432. doi: 10.1172/JCI119176
  10. Anderson MM, Requena JR, Crowley JR, et al. The myeloperoxidase system of human phagocytes generates Nepsilon-(carboxymethyl)lysine on proteins: a mechanism for producing advanced glycation end products at sites of inflammation. J Clin Invest. 1999;104(1):103–113. doi: 10.1172/JCI3042
  11. Piwowar A. Advanced oxidation protein products. Part I. Mechanism of the formation, characteristics and property. Pol Merkur Lekarski. 2010;28(164):166–169.
  12. Klebanoff SJ. Myeloperoxidase: friend and foe. J Leukoc Biol. 2005;77(5):598–625. doi: 10.1189/jlb.1204697
  13. Thiam HR, Wong SL, Wagner DD, Waterman CM. Cellular mechanisms of NETosis. Annu Rev Cell Dev Biol. 2020;36(1):191–218. doi: 10.1146/annurev-cellbio-020520-111016
  14. Metzler KD. Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood. 2011;117(3):953–959. doi: 10.1182/blood-2010-06-290171
  15. Gorudko IV, Grigorieva DV, Shamova EV, et al. Hypohalous acid-modified human serum albumin induces neutrophil NADPH oxidase activation, degranulation, and shape change. Free Radic Biol Med. 2014;68:326–334. doi: 10.1016/j.freeradbiomed.2013.12.023
  16. Basyreva LYu, Shmeleva EV, Vakhrusheva TV, et al. Hypochlorous acid-modified serum albumin causes NETosis in whole blood ex vivo and isolated neutrophils. Bull Exp Biol Med. 2024;177(2):197–202. doi: 10.1007/s10517-024-06155-3
  17. Mikhalchik EV, Maximov DI, Ostrovsky EM, et al. Neutrophils as a source of factors increasing duration of the inflammatory phase of wound healing in patients with type 2 diabetes mellitus. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry. 2019;13(1):68–73. EDN: AZQLZP doi: 10.1134/S1990750819010098
  18. Giovenzana A, Carnovale D, Phillips B, et al. Neutrophils and their role in the aetiopathogenesis of type 1 and type 2 diabetes. Diabetes Metab Res Rev. 2022;38(1):e3483. doi: 10.1002/dmrr.3483
  19. Basyreva LY, Vakhrusheva TV, Letkeman ZV, et al. Effect of vitamin D3 in combination with omega-3 polyunsaturated fatty acids on NETosis in type 2 diabetes mellitus patients. Oxid Med Cell Longev. 2021;2021:8089696. doi: 10.1155/2021/8089696
  20. Ghoshal K, Das S, Aich K, et al. A novel sensor to estimate the prevalence of hypochlorous (HOCl) toxicity in individuals with type 2 diabetes and dyslipidemia. Clin Chim Acta. 2016;458:144–153. doi: 10.1016/j.cca.2016.05.006
  21. Rovira-Llopis S, Rocha M, Falcon R, et al. Is myeloperoxidase a key component in the ROS-induced vascular damage related to nephropathy in type 2 diabetes? Antioxid Redox Signal. 2013;19(13):1452–1458. doi: 10.1089/ars.2013.5307
  22. Wiersma JJ, Meuwese MC, van Miert JN, et al. Diabetes mellitus type 2 is associated with higher levels of myeloperoxidase. Med Sci Monit. 2008;14(8):CR406–410.
  23. Gorudko IV, Kostevich AV, Sokolov AV, et al. Increased myelopepoxidase activity is a risk factor for ishemic heart disease in patients with diabetes mellitus. Biochemistry (Moscow). Supplement Series B: Biomedical Chemistry. 2011;5(3):307–312. EDN: PEDJOJ doi: 10.1134/S199075081103005X
  24. Moldoveanu E, Tanaseanu C, Tanaseanu S, et al. Plasma markers of endothelial dysfunction in type 2 diabetics. Eur J Intern Med. 2006;17(1):38–42. doi: 10.1016/j.ejim.2005.09.015
  25. Gómez-García A, Rodríguez MR, Gómez-Alonso C, et al. Myeloperoxidase is associated with insulin resistance and inflammation in overweight subjects with first-degree relatives with type 2 diabetes mellitus. Diabetes Metab J. 2015;39(1):59–65. doi: 10.4093/dmj.2015.39.1.59
  26. Sato N, Shimizu H, Suwa K, et al. MPO activity and generation of active O2 species in leukocytes from poorly controlled diabetic patients. Diabetes Care. 1992;15(8):1050–1052. doi: 10.2337/diacare.15.8.1050
  27. Uchimura K, Nagasaka A, Hayashi R, et al. Changes in superoxide dismutase activities and concentrations and myeloperoxidase activities in leukocytes from patients with diabetes mellitus. J Diabetes Complications. 1999;13(5–6):264–270. doi: 10.1016/s1056-8727(99)00053-7
  28. de Souza Ferreira C, Araújo TH, Ângelo ML, et al. Neutrophil dysfunction induced by hyperglycemia: modulation of myeloperoxidase activity. Cell Biochem Funct. 2012;30(7):604–610. doi: 10.1002/cbf.2840
  29. Sokolov AV, Kostevich VA, Gorbunov NP, et al. A link between active myeloperoxidase and chlorinated ceruloplasmin in blood plasma of patients with cardiovascular diseases. Medical Immunology (Russia). 2018;(20):699–710. EDN: YLTKTR doi: 10.15789/1563-0625-2018-5-699-710
  30. Lutsenko VE, Grigorieva DV, Gorudko IV, et al. Celestine blue B as a sensor for hypochlorous acid and HOCl-modified proteins registration. Medical Academic Journal. 2019;19(2):63–71. EDN: IFDQNE doi: 10.17816/MAJ19263-71
  31. Churashova IA, Sokolov AV, Kostevich VA, et al. Myeloperoxidase/high-density lipoprotein cholesterol ratio in patients with arterial hypertension and chronic coronary heart disease. Medical Academic Journal. 2021;21(2):75–86. EDN: PLCEQJ doi: 10.17816/MAJ71486
  32. Hu ML. Measurement of protein thiol groups and glutathione in plasma. Methods Enzymol. 1994;233:380–385. doi: 10.1016/s0076-6879(94)33044-1
  33. Gavrilova AR, Khmara NF. Determination of glutathione peroxidase activity in erythrocytes in saturated concentrations of the substrate. Lab Delo. 1986;(12):721–724. (In Russ.)
  34. Karpishchenko AI, editor. Medical laboratory technologies. In 2 Vol. Saint Petersburg: Intermedika; 1999. Vol. 2. P. 23–24. (In Russ.)
  35. Samygina VR, Sokolov AV, Bourenkov G, et al. Ceruloplasmin: macromolecular assemblies with iron-containing acute phase proteins. PLoS One. 2013;8(7):e67145. doi: 10.1371/journal.pone.0067145
  36. Panasenko OM, Chekanov AV, Vlasova II, et al. Influence of ceruloplasmin and lactoferrin on the chlorination activity of leukocyte myeloperoxidase assayed by chemiluminescence. Biophysics. 2008;53(4):268–272. EDN: LLIDID doi: 10.1134/S0006350908040052
  37. Sokolov AV, Ageeva KV, Pulina MO, et al. Ceruloplasmin and myeloperoxidase in complex affect the enzymatic properties of each other. Free Radic Res. 2008;42(11–12):221–227. doi: 10.1080/10715760802566574
  38. Akkuş I, Kalak S, Vural H, et al. Leukocyte lipid peroxidation, superoxide dismutase, glutathione peroxidase and serum and leukocyte vitamin C levels of patients with type II diabetes mellitus. Clin Chim Acta. 1996;244(2):221–227. doi: 10.1016/0009-8981(96)83566-2
  39. Ergin M, Aydin C, Yurt EF, et al. The variation of disulfides in the progression of type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes. 2020;128(2):77–81. doi: 10.1055/s-0044-100376

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Concentrations of myeloperoxidase (MPO) (a), chlorinated serum albumin (CSA-Cl) (b), and MPO–ceruloplasmin complexes (MPO–CP) (c) in the plasma of healthy volunteers and patients with type 2 diabetes mellitus. *p < 0.05 compared with samples from healthy volunteers.

Download (118KB)
3. Fig. 2. Correlation between blood glucose concentration and glutathione peroxidase (GSH-Px) activity in erythrocytes of patients with type 2 diabetes mellitus. r = –0.65; p < 0.05.

Download (55KB)
4. Fig. 3. Role of halogenating stress and NETosis in the progression of type 2 diabetes mellitus and its complications. See text for details.

Download (175KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».