Modern understanding of the consequences of lack of sleep

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Sleep deficit disrupts the normal function of systems and organs in humans and becomes ”epidemic” in nature. Knowledge of the physiology of sleep and the impact of sleep deprivation on the body has expanded in recent years and allows a new assessment of the scale and depth of the problem. In the review summarizes current ideas about the effect of lack of sleep on chronic diseases and pathological processes, taking into account various body systems. Different reviews and studies over the past years have been analyzed, related to lack of sleep which contributes to the development of various diseases, have been analyzed. The use of new information about the impact of sleep on human health and the consequences of its lack opens up additional perspectives in understanding experimental and clinical work. This information can be actively used in diagnostics and therapy within the framework of integrative medicine.

About the authors

Yury V. Gavrilov

Institute of Experimental Medicine

Author for correspondence.
Email: yury-doctor@mail.ru
ORCID iD: 0000-0003-1409-7686
SPIN-code: 7358-2649
Scopus Author ID: 36870403200

MD, Cand. Sci. (Med.), Leading Researcher

Russian Federation, Saint Petersburg

References

  1. Aminoff MJ, Boller F, Swaab DF. We spend about one-third of our life either sleeping or attempting to do so. Handb Clin Neurol. 2011;98:vii. doi: 10.1016/B978-0-444-52006-7.00047-2
  2. Rechtschaffen A. Current perspectives on the function of sleep. Perspect Biol Med. Spring. 1998;41(3):360. doi: 10.1353/pbm.1998.0051
  3. McGinty D, Szymusiak R. Neural control of sleep in mammals. In: Principles and practice of sleep medicine. 6th ed. Philadelphia: Elsevier; 2017. P. 62–77.
  4. Kushida C. Encyclopedia of Sleep. Amsterdam: Elsevier; 2013.
  5. Bellesi M, Bushey D, Chini M, et al. Contribution of sleep to the repair of neuronal DNA double-strand breaks: evidence from flies and mice. Sci Rep. 2016;6:36804. doi: 10.1038/srep36804
  6. Datta S. Cellular and chemical neuroscience of mammalian sleep. Sleep Med. 2010;11(5):431–440. doi: 10.1016/j.sleep.2010.02.002
  7. Besedovsky L, Lange T, Born J. Sleep and immune function. Pflugers Arch. 2012;463(1):121–137. doi: 10.1007/s00424-011-1044-0
  8. Huang W, Ramsey KM, Marcheva B, Bass J. Circadian rhythms, sleep, and metabolism. J Clin Invest. 2011;121(6):2133–2141. doi: 10.1172/JCI46043
  9. Humer E, Pieh C, Brandmayr G. Metabolomics in sleep, insomnia and sleep apnea. Int J Mol Sci. 2020;21(19):7244. doi: 10.3390/ijms21197244
  10. Rasch B, Born J. About sleep’s role in memory. Physiol. Rev. 2013;93(2):681–766. doi: 10.1152/physrev.00032.2012
  11. Kocevska D, Lysen TS, Dotinga A, et al. Sleep characteristics across the lifespan in 1.1 million people from the Netherlands, United Kingdom and United States: a systematic review and meta-analysis. Nat Hum Behav. 2021;5(1):113–122. doi: 10.1038/s41562-020-00965-x
  12. Walker M. Why We Sleep: The New Science of Sleep and Dreams. New York: Scribner; 2017.
  13. National Center for Health Statistics. Quick Stats: Percentage of adults who reported an average of 66h of sleep per 24-h period, by sex and age group-United States, 1985 and 2004. Morbidity and Mortality Weekly Report. 2005.
  14. Ohayon MM, Lemoine P. Sommeil et principaux indicateurs d’insomnie dans la population générale française [Sleep and insomnia markers in the general population]. Encephale. 2004;30(2):135–140. doi: 10.1016/s0013-7006(04)95423-1
  15. LeBlanc M, Merette C, Savard J, et al. Incidence and risk factors of insomnia in a population-based sample. Sleep. 2009;32(8):1027–1037. doi: 10.1093/sleep/32.8.1027
  16. Imbach LL, Valko PO, Li T, et al. Increased sleep need and daytime sleepiness 6 months after traumatic brain injury: a prospective controlled clinical trial. Brain. 2015;138(Pt 3):726–735. doi: 10.1093/brain/awu391
  17. De Manacéïne M. Le surmenade mentale dans la civilization modern. Effects causesremudes. Paris; 1890.
  18. Everson CA, Bergmann BM, Rechtschaffen A. Sleep deprivation in the rat: III. Total sleep deprivation. Sleep. 1989;12(1):13–21. doi: 10.1093/sleep/12.1.13
  19. Riemann D, Berger M, Voderholzer U. Sleep and depression–results from psychobiological studies: an overview. Biol Psychol. 2001;57(1):67–103. doi: 10.1016/s0301-0511(01)00090-4
  20. Wulff K, Gatti S, Wettstein JG, Foster RG. Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat Rev Neurosci. 2010;11(8):589–599. doi: 10.1038/nrn2868
  21. Kozak MJ, Cuthbert BN. The NIMH Research Domain Criteria initiative: background, issues, and pragmatics. Psychophysiology. 2016;53(3):286–297. doi: 10.1111/psyp.12518
  22. Cote KA, McCormick CM, Geniole SN, et al. Sleep deprivation lowers reactive aggression and testosterone in men. Biol Psychol. 2013;92(2):249–256. doi: 10.1016/j.biopsycho.2012.09.011
  23. Hertenstein E, Feige B, Gmeiner T, et al. Insomnia as a predictor of mental disorders: a systematic review and meta-analysis. Sleep Med Rev. 2019;43:96–105. doi: 10.1016/j.smrv.2018.10.006
  24. Bishop T, Walsh P, Ashrafioun L, et al. Sleep, suicide behaviors, and the protective role of sleep medicine. Sleep Med. 2020;66:264–270. doi: 10.1016/j.sleep.2019.07.016
  25. Hombali A, Seow E, Yuan Q, et al. Prevalence and correlates of sleep disorder symptoms in psychiatric disorders. Psychiatry Res. 2019;279:116–122. doi: 10.1016/j.psychres.2018.07.009
  26. Emert SE, Tutek J, Lichstein KL. Associations between sleep disturbances, personality, and trait emotional intelligence. Pers Individ Dif. 2017;107:195–200. doi: 10.1016/j.paid.2016.11.050
  27. Wehr TA, Sack DA, Rosenthal NE. Sleep reduction as a final common pathway in the genesis of mania. Am J Psychiatry. 1987;144(2):201–204. doi: 10.1176/ajp.144.2.201
  28. Lewis KS, Gordon-Smith K, Forty L, et al. Sleep loss as a trigger of mood episodes in bipolar disorder: individual differences based on diagnostic subtype and gender. Br J Psychiatry. 2017;211(3):169–174. doi: 10.1192/bjp.bp.117.202259
  29. Baglioni C, Nanovska S, Regen W, et al. Sleep and mental disorders: a meta-analysis of polysomnographic research. Psychol Bull. 2016;142(9):969–990. doi: 10.1037/bul0000053
  30. Petrovsky N, Ettinger U, Hill A, et al. Sleep deprivation disrupts prepulse inhibition and induces psychosis-like symptoms in healthy humans. J Neurosci. 2014;34(27):9134–9140. doi: 10.1523/JNEUROSCI.0904-14.2014
  31. Freeman D, Sheaves B, Goodwin GM, et al. The effects of improving sleep on mental health (OASIS): a randomised controlled trial with mediation analysis. Lancet Psychiatry. 2017;4(10):749–758. doi: 10.1016/S2215-0366(17)30328-0
  32. Koyanagi A, Stickley A. The Association between sleep problems and psychotic symptoms in the general population: a global perspective. Sleep. 2015;38(12):1875–1885. doi: 10.5665/sleep.5232
  33. Benard V, Etain B, Vaiva G, et al. Sleep and circadian rhythms as possible trait markers of suicide attempt in bipolar disorders: An actigraphy study. J Affect Disord. 2019;244:1–8. doi: 10.1016/j.jad.2018.09.054
  34. Reeve S, Sheaves B, Freeman D. Sleep disorders in early psychosis: incidence, severity, and association with clinical symptoms. Schizophr Bull. 2019;45(2):287–295. doi: 10.1093/schbul/sby129
  35. Freeman D, Morrison A, Bird JC, et al. The weeks before 100 persecutory delusions: the presence of many potential contributory causal factors. BJPsych Open. 2019;5(5):e83. doi: 10.1192/bjo.2019.67
  36. Reed ZE, Jones HJ, Hemani G, et al. Schizophrenia liability shares common molecular genetic risk factors with sleep duration and nightmares in childhood. Wellcome Open Res. 2019;4:15. doi: 10.12688/wellcomeopenres.15060.2
  37. Li L, Wu C, Gan Y, et al. Insomnia and the risk of depression: a meta-analysis of prospective cohort studies. BMC Psychiatry. 2016;16(1):375. doi: 10.1186/s12888-016-1075-3
  38. Freeman D, Sheaves B, Waite F, et al. Sleep disturbance and psychiatric disorders. Lancet Psychiatry. 2020;7(7):628–637. doi: 10.1016/S2215-0366(20)30136-X
  39. Gica Ş, Selvı Y. Sleep interventions in the treatment of schizophrenia and bipolar disorder. Noro Psikiyatr Ars. 2021;58(Suppl 1):S53–S60. doi: 10.29399/npa.27467
  40. Dong H, Wang J, Yang YF, et al. Dorsal striatum dopamine levels fluctuate across the sleep-wake cycle and respond to salient stimuli in mice. Front Neurosci. 2019;13:242. doi: 10.3389/fnins.2019.00242
  41. Bishir M, Bhat A, Essa MM, et al. Sleep deprivation and neurological disorders. Biomed Res Int. 2020;2020:5764017. doi: 10.1155/2020/5764017
  42. Lim AS, Yu L, Kowgier M, et al. Modification of the relationship of the apolipoprotein E ε4 allele to the risk of Alzheimer disease and neurofibrillary tangle density by sleep. JAMA Neurol. 2013;70(12):1544–1551. doi: 10.1001/jamaneurol.2013.4215
  43. Osorio RS, Pirraglia E, Agüera-Ortiz LF, et al. Greater risk of Alzheimer’s disease in older adults with insomnia. J Am Geriatr Soc. 2011;59(3):559–562. doi: 10.1111/j.1532-5415.2010.03288
  44. Romanella SM, Roe D, Tatti E, et al. The sleep side of aging and Alzheimer’s disease. Sleep Med. 2021;77:209–225. doi: 10.1016/j.sleep.2020.05.029
  45. Xie L, Kang H, Xu Q, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):373–377. doi: 10.1126/science.1241224
  46. Christensen J, Yamakawa GR, Shultz SR, et al. Is the glymphatic system the missing link between sleep impairments and neurological disorders? Examining the implications and uncertainties. Prog Neurobiol. 2021;198:101917. doi: 10.1016/j.pneurobio.2020.101917
  47. Mishima K, Tozawa T, Satoh K, et al. Melatonin secretion rhythm disorders in patients with senile dementia of Alzheimer’s type with disturbed sleepwaking. Biol Psychiatry. 1999;45(4):417–421. doi: 10.1016/s0006-3223(97)00510-6
  48. Bedrosian TA, Nelson RJ. Pro: Alzheimer’s disease and circadian dysfunction: chicken or egg? Alzheimers Res Ther. 2012;4(4):25. doi: 10.1186/alzrt128
  49. Kang JE, Lim MM, Bateman RJ, et al. Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle. Science. 2009;326(5955):1005–1007. doi: 10.1126/science.1180962
  50. Lim AS, Ellison BA, Wang JL, et al. Sleep is related to neuron numbers in the ventrolateral preoptic/intermediate nucleus in older adults with and without Alzheimer’s disease. Brain. 2014;137(Pt 10):2847–2861. doi: 10.1093/brain/awu222
  51. Holth J, Patel, Holtzman DM. Sleep in Alzheimer’s disease – beyond amyloid. Neurobiol Sleep Circadian Rhythms. 2017;2:4–14. doi: 10.1016/j.nbscr.2016.08.002
  52. Mander BA, Winer JR, Jagust WJ, et al. Sleep: a novel mechanistic pathway, biomarker, and treatment target in the pathology of Alzheimer’s disease? Trends Neurosci. 2016;39(8):552–566. doi: 10.1016/j.tins.2016.05.002
  53. Mallon L, Broman JE, Hetta J. Sleep complaints predict coronary artery disease mortality in males: a 12-year follow-up study of a middle-aged Swedish population. J Intern Med. 2002;251(3):207–216. doi: 10.1046/j.1365-2796.2002.00941.x
  54. Ayas NT, White DP, Manson JE, et al. A prospective study of sleep duration and coronary heart disease in women. Arch Intern Med. 2003;163(2):205–209. doi: 10.1001/archinte.163.2.205
  55. Hoevenaar-Blom MP, Spijkerman AM, Kromhout D, et al. Sleep duration and sleep quality in relation to 12-year cardiovascular disease incidence: the MORGEN study. Sleep. 2011;34(11):1487–1492. doi: 10.5665/sleep.1382
  56. Cote KA, McCormick CM, Geniole SN, et al. Sleep deprivation lowers reactive aggression and testosterone in men. Biol Psychol. 2013;92(2):249–256. doi: 10.1016/j.biopsycho.2012.09.011
  57. Hombali A, Seow E, Yuan Q, et al. Prevalence and correlates of sleep disorder symptoms in psychiatric disorders. Psychiatry Res. 2019;279:116–122. doi: 10.1016/j.psychres.2018.07.009
  58. Wang Q, Xi B, Liu M, et al. Short sleep duration is associated with hypertension risk among adults: a systematic review and meta-analysis. Hypertens Res. 2012;35(10):1012–1018. doi: 10.1038/hr.2012.91
  59. Grandner MA, Perlis ML. Short sleep duration and insomnia associated with hypertension incidence. Hypertens Res. 2013;36(11):932–933. doi: 10.1038/hr.2013.83
  60. Cappuccio FP, Cooper D, D’Elia L, et al. Sleep duration predicts cardiovascular outcomes: a systematic review and meta-analysis of prospective studies. Eur Heart J. 2011;32(12):1484–1492. doi: 10.1093/eurheartj/ehr007
  61. Heslop P, Smith GD, Metcalfe C, et al. Sleep duration and mortality: the effect of short or long sleep duration on cardiovascular and all-cause mortality in working men and women. Sleep Med. 2002;3(3):305–314. doi: 10.1016/s1389-9457(02)00016-3
  62. Chien KL, Chen PC, Hsu HC, et al. Habitual sleep duration and insomnia and the risk of cardiovascular events and all-cause death: report from a community-based cohort. Sleep. 2010;33(2):177–184. doi: 10.1093/sleep/33.2.177
  63. Sabanayagam C, Shankar A, Buchwald D, Goins RT. Insomnia symptoms and cardiovascular disease among older American Indians: the Native Elder Care Study. J Environ Public Health. 2011;2011:964617. doi: 10.1155/2011/964617
  64. Vgontzas AN, Fernandez-Mendoza J, Liao D, Bixler EO. Insomnia with objective short sleep duration: the most biologically severe phenotype of the disorder. Sleep Med Rev. 2013;17(4):241–254. doi: 10.1016/j.smrv.2012.09.005
  65. Irwin MR. Why sleep is important for health: a psychoneuroimmunology perspective. Annu Rev Psychol. 2015;66:143–172. doi: 10.1146/annurev-psych-010213-115205
  66. Irwin MR, Cole SW. Reciprocal regulation of the neural and innate immune systems. Nat Rev Immunol. 2011;11(9):625–632. doi: 10.1038/nri3042
  67. Slavich GM, Irwin MR. From stress to inflammation and major depressive disorder: a social signal transduction theory of depression. Psychol Bull. 2014;140(3):774–815. doi: 10.1037/a0035302
  68. Irwin M, Mascovich A, Gillin JC, et al. Partial sleep deprivation reduces natural killer cell activity in humans. Psychosom Med. 1994;56(6):493–498. doi: 10.1097/00006842-199411000-00004
  69. Frey DJ, Fleshner M, Wright KPJr. The effects of 40 hours of total sleep deprivation on inflammatory markers in healthy young adults. Brain Behav Immun. 2007;21(8):1050–1057. doi: 10.1016/j.bbi.2007.04.003
  70. Haus EL, Smolensky MH. Shift work and cancer risk: potential mechanistic roles of circadian disruption, light at night, and sleep deprivation. Sleep Med Rev. 2013;17(4):273–284. doi: 10.1016/j.smrv.2012.08.003
  71. Toth LA. Sleep, sleep deprivation and infectious disease: studies in animals. Adv Neuroimmunol. 1995;5(1):79–92. doi: 10.1016/0960-5428(94)00045-p
  72. Patel SR, Malhotra A, Gao X, et al. A prospective study of sleep duration and pneumonia risk in women. Sleep. 2012;35(1):97–101. doi: 10.5665/sleep.1594
  73. Cohen S, Doyle WJ, Alper CM, et al. Sleep habits and susceptibility to the common cold. Arch Intern Med. 2009;169(1):62–67. doi: 10.1001/archinternmed.2008.505
  74. Reid S, Dwyer J. Insomnia in HIV infection: a systematic review of prevalence, correlates, and management. Psychosom Med. 2005;67(2):260–269. doi: 10.1097/01.psy.0000151771.46127.df
  75. Lange T, Perras B, Fehm HL, Born J. Sleep enhances the human antibody response to hepatitis A vaccination. Psychosom Med. 2003;65(5):831–835. doi: 10.1097/01.psy.0000091382.61178.f1
  76. Prather AA, Hall M, Fury JM, et al. Sleep and antibody response to hepatitis B vaccination. Sleep. 2012;35(8):1063–1069. doi: 10.5665/sleep.1990
  77. Spiegel K, Sheridan JF, Van Cauter E. Effect of sleep deprivation on response to immunization. JAMA. 2002;288(12):1471–1472. doi: 10.1001/jama.288.12.1471-a
  78. Irwin MR, Levin MJ, Laudenslager ML, et al. Varicella zoster virus-specific immune responses to a herpes zoster vaccine in elderly recipients with major depression and the impact of antidepressant medications. Clin Infect Dis. 2013;56(8):1085–1093. doi: 10.1093/cid/cis1208
  79. Besedovsky L, Lange T, Haack M. The sleep-immune crosstalk in health and disease. Physiol Rev. 2019;99(3):1325–1380. doi: 10.1152/physrev.00010.2018
  80. Garbarino S, Lanteri P, Bragazzi NL, et al. Role of sleep deprivation in immune-related disease risk and outcomes. Commun Biol. 2021;4(1):1304. doi: 10.1038/s42003-021-02825-4
  81. IARC Monographs on the Identification of Carcinogenic Hazards to Humans Volume 124 [Internet]. Available from: https://publications.iarc.fr/593. Accessed: May 24, 2021.
  82. Kubo T, Ozasa K, Mikami K, et al. Prospective cohort study of the risk of prostate cancer among rotating-shift workers: findings from the Japan collaborative cohort study. Am J Epidemiol. 2006;164(6):549–55. doi: 10.1093/aje/kwj232
  83. Kubo T, Oyama I, Nakamura T, et al. Retrospective cohort study of the risk of obesity among shift workers: findings from the industry-based Shift Workers’ Health study, Japan. Occup Environ Med. 2011;68(5):327–331. doi: 10.1136/oem.2009.054445
  84. Parent ME, El-Zein M, Rousseau MC, et al. Night work and the risk of cancer among men. Am J Epidemiol. 2012;176(9):751–759. doi: 10.1093/aje/kws318
  85. Conlon M, Lightfoot N, Kreiger N. Rotating shift work and risk of prostate cancer. Epidemiology. 2007;18(1):182–183. doi: 10.1097/01.ede.0000249519.33978.31
  86. Sigurdardottir LG, Valdimarsdottir UA, Mucci LA, et al. Sleep disruption among older men and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev. 2013;22(5):872–879. doi: 10.1158/1055-9965.EPI-12-1227-T
  87. International Agency for Research on Cancer IARC Monographs Meeting 124: Night Shift Work (4–11 June 2019); [Internet]. https://www.iarc.fr/wp-content/uploads/2019/07/QA_Monographs_Volume124.pdf. Accessed: May 24, 2021.
  88. von Ruesten A, Weikert C, Fietze I, Boeing H. Association of sleep duration with chronic diseases in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study. PLoS One. 2012;7(1):e30972. doi: 10.1371/journal.pone.0030972
  89. Huang W, Ramsey KM, Marcheva B, Bass J. Circadian rhythms, sleep, and metabolism. J Clin Invest. 2011;121(6):2133–2141. doi: 10.1172/JCI46043
  90. Ogilvie RP, Patel SR. The epidemiology of sleep and obesity. Sleep Health. 2017;3(5):383–388. doi: 10.1016/j.sleh.2017.07.013
  91. Leproult R, Van Cauter E. Effect of 1 week of sleep restriction on testosterone levels in young healthy men. JAMA. 2011;305(21):2173–2174. doi: 10.1001/jama.2011.710
  92. Lateef OM, Akintubosun MO. Sleep and Reproductive Health. J Circadian Rhythms. 2020;18:1. doi: 10.5334/jcr.190
  93. Antunes IB, Andersen ML, Baracat EC, Tufik S. The effects of paradoxical sleep deprivation on estrous cycles of the female rats. Horm Behav. 2006;49:433–440. doi: 10.1016/j.yhbeh.2005.09.005
  94. Pereira JCJr, Andersen ML. The role of thyroid hormone in sleep deprivation. Med Hypotheses. 2014;82(3):350–355. doi: 10.1016/j.mehy.2014.01.003
  95. Tsutsumi R, Webster NJ. GnRH pulsatility, the pituitary response and reproductive dysfunction. Endocr J. 2009;56(6):729–737. doi: 10.1507/endocrj.k09e-185
  96. Kalmbach DA, Arnedt JT, Pillai V, Ciesla JA. The impact of sleep on female sexual response and behavior: a pilot study. J Sex Med. 2015;12(5):1221–1232. doi: 10.1111/jsm.12858
  97. Veldhuis JD, Iranmanesh A, Godschalk M, Mulligan T. Older men manifest multifold synchrony disruption of reproductive neurohormone outflow. J Clin Endocrinol Metab. 2000;85(4):1477–1486. doi: 10.1210/jcem.85.4.6546
  98. Andersen ML, Alvarenga TA, Mazaro-Costa R, et al. The association of testosterone, sleep, and sexual function in men and women. Brain Res. 2011;1416:80–104. doi: 10.1016/j.brainres.2011.07.060
  99. O’Byrne NA, Yuen F, Niaz W, Liu PY. Sleep and the testis. Curr Opin Endocr Metab Res. 2021;18:83–93. doi: 10.1016/j.coemr.2021.03.002
  100. Jensen TK, Andersson AM, Skakkebæk NE, et al. Association of sleep disturbances with reduced semen quality: a cross-sectional study among 953 healthy young Danish men. Am J Epidemiol. 2013;177(10):1027–1037. doi: 10.1093/aje/kws420
  101. Liu MM, Liu L, Chen L, et al. Sleep deprivation and late bedtime impair sperm health through increasing antisperm antibody production: a prospective study of 981 healthy men. Med Sci Monit. 2017;23:1842–1848. doi: 10.12659/msm.900101
  102. Labyak S, Lava S, Turek F, Zee P. Effects of shiftwork on sleep and menstrual function in nurses. Health Care Women Int. 2002;23(6–7):703–714. doi: 10.1080/07399330290107449
  103. Baumgartner A, Dietzel M, Saletu B, et al. Influence of partial sleep deprivation on the secretion of thyrotropin, thyroid hormones, growth hormone, prolactin, luteinizing hormone, follicle stimulating hormone, and estradiol in healthy young women. Psychiatry Res. 1993;48(2):153–178. doi: 10.1016/0165-1781(93)90039-J
  104. Ahn RS, Choi JH, Choi BC, et al. Cortisol, estradiol-17β, and progesterone secretion within the first hour after awakening in women with regular menstrual cycles. J Endocrinol. 2011;211(3):285–295. doi: 10.1530/JOE-11-0247
  105. Alvarenga TA, Hirotsu C, Mazaro-Costa R, et al. Impairment of male reproductive function after sleep deprivation. Fertil Steril. 2015;103(5):1355–1362.e. doi: 10.1016/j.fertnstert.2015.02.002
  106. Barclay JL, Husse J, Bode B, et al. Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork. PLoS One. 2012;7(5):e37150. doi: 10.1371/journal.pone.0037150
  107. Maret S, Dorsaz S, Gurcel L, et al. Homer1a is a core brain molecular correlate of sleep loss. Proc Natl Acad Sci USA. 2007;104(50):20090–20095. doi: 10.1073/pnas.0710131104
  108. Archer SN, Oster H. How sleep and wakefulness influence circadian rhythmicity: effects of insufficient and mistimed sleep on the animal and human transcriptome. J Sleep Res. 2015;24(5):476–493. doi: 10.1111/jsr.12307
  109. Möller-Levet CS, Archer SN, Bucca G, et al. Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. Proc Natl Acad Sci USA. 2013;110(12):E1132–1141. doi: 10.1073/pnas.1217154110
  110. Kuna ST, Maislin G, Pack FM, et al. Heritability of performance deficit accumulation during acute sleep deprivation in twins. Sleep. 2012;35(9):1223–1233. doi: 10.5665/sleep.2074
  111. Cirelli C, Tononi G. Differences in brain gene expression between sleep and waking as revealed by mRNA differential display and cDNA microarray technology. J Sleep Res. 1999;8 Suppl 1:44–52. doi: 10.1046/j.1365-2869.1999.00008.x
  112. Cirelli C, Gutierrez CM, Tononi G. Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron. 2004;41(1):35–43. doi: 10.1016/s0896-6273(03)00814-6
  113. Vecsey CG, Peixoto L, Choi H, et al. Genomic analysis of sleep deprivation reveals translational regulation in the hippocampus. Physiol Genomics. 2012;44(20):981–991. doi: 10.1152/physiolgenomics.00084.2012
  114. Arnardottir ES, Nikonova EV, Shockley KR, et al. Blood-gene expression reveals reduced circadian rhythmicity in individuals resistant to sleep deprivation. Sleep. 2014;37(10):1589–1600. doi: 10.5665/sleep.4064
  115. Wynchank D, Bijlenga D, Penninx BW, et al. Delayed sleep-onset and biological age: late sleep-onset is associated with shorter telomere length. Sleep. 2019;42(10):zsz139. doi: 10.1093/sleep/zsz139
  116. Prather AA, Gurfein B, Moran P, et al. Tired telomeres: Poor global sleep quality, perceived stress, and telomere length in immune cell subsets in obese men and women. Brain Behav Immun. 2015;47:155–162. doi: 10.1016/j.bbi.2014.12.011
  117. Prather AA, Puterman E, Lin J, et al. Shorter leukocyte telomere length in midlife women with poor sleep quality. J Aging Res. 2011;2011:721390. doi: 10.4061/2011/721390
  118. James S, McLanahan S, Brooks-Gunn J, et al. Sleep duration and telomere length in children. J Pediatr. 2017;187:247–252.e1. doi: 10.1016/j.jpeds.2017.05.014

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Gavrilov Y.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».