Influence of new antimicrobial peptides of the medicinal leech Hirudo medicinalis on the functional activity of neutrophil granule proteins

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Resistance of microorganisms caused dangerous to human health infections to traditional antibiotics is a serious problem for healthcare. In this regard, the development of new effective antimicrobial drugs and therapeutic approaches is an urgent task. Antimicrobial peptides (AMPs) are considered a promising alternative to traditional antibiotic in the fight against resistant microorganisms.

AIM: The aim of this work is to study the effect of new synthesized AMPs of the medicinal leech Hirudo medicinalis (including under conditions of development of oxidative/halogenative stress) on the functional activity of neutrophils granular proteins — the main effector cells of the immune system.

MATERIALS AND METHODS: Myeloperoxidase peroxidase activity was assessed by the rate of o-dianisidine oxidation. Neutrophil elastase activity was determined by the fluorescence method using a specific substrate MeOSuc-AAPV-AMC. Lactoferrin iron-binding activity was assessed spectrophotometrically by the change in absorption of protein solution after addition of Fe3+ salt. Lysozyme activity was determined by the rate of M. lysodeikticus bacterial cells lysis.

RESULTS: Native AMPs 536_1 and 19347_2 inhibited and 12530 increased myeloperoxidase peroxidase activity, this tendency persisted after these AMPs modification by hypochlorous acid (HOCl). In contrast to the native AMP halogenated AMP 3967_1 acquired the ability to enhance myeloperoxidase enzymatic activity. In the presence of AMP 3967_1 neutrophil elastase amidolytic activity increased insignificantly, while AMP 19347_2 inhibited neutrophil elastase activity. After HOCl modification these AMPs retained their ability to regulate neutrophil elastase activity. Synergistic effects (~20%) against gram-positive bacteria M. lysodeikticus were revealed for combination of lysozyme with AMPs 12530 and 3967_1. Inhibition lysozyme antimicrobial activity was observed in the presence of AMPs 19347_2 and 536_1, however the severity of this effect decreased after AMPs modification by HOCl. After HOCl modification AMP 3967_1 increased, while AMP 12530 on the contrary acquired the ability to inhibit lysozyme mucolytic activity.

CONCLUSIONS: The use of drugs based on studied AMPs of medicinal leech will have a beneficial effect on the body’s fight against infectious agents due to the antimicrobial action of AMPs themselves. But in addition studied AMPs are capable to modulate the biological activity of own endogenous antimicrobial proteins and peptides: to enhance it, if it is necessary to eliminate pathogen and to inhibit — if it necessary to protect against damage to the body’s own tissues.

About the authors

Daria V. Grigorieva

Belarusian State University

Author for correspondence.
Email: dargr@tut.by
ORCID iD: 0000-0003-0210-5474
SPIN-code: 2479-7785

PhD (Biology), Associate Professor of the Department of Biophysics, Physics Faculty

Belarus, Minsk

Irina V. Gorudko

Belarusian State University

Email: irinagorudko@gmail.com
ORCID iD: 0000-0002-4737-470X
SPIN-code: 8968-3125

PhD (Biology), Associate Professor, Associate Professor of the Department of Biophysics, Physics Faculty

Belarus, Minsk

Ekaterina N. Grafskaia

Federal Research and Clinical Center of Physical-Chemical Medicine

Email: grafskayacath@gmail.com
ORCID iD: 0000-0001-8957-6142
SPIN-code: 1821-2746

Laboratory Assistant, Genetic Engineering Laboratory

Russian Federation, Moscow

Ivan A. Latsis

Federal Research and Clinical Center of Physical-Chemical Medicine

Email: lacis.ivan@gmail.com
ORCID iD: 0000-0002-8292-0737
SPIN-code: 6775-1702

Junior Researcher Fellow, Laboratory of Genetic Engineering

Russian Federation, Moscow

Alexey V. Sokolov

Federal Research and Clinical Center of Physical-Chemical Medicine; Institute of Experimental Medicine; Saint Petersburg State University

Email: biochemsokolov@gmail.com
ORCID iD: 0000-0001-9033-0537
SPIN-code: 7427-7395

Dr. Sci. (Biology), Head of the Laboratory of Biochemical Genetics of the Department of Molecular Genetics, Senior Researcher of Department of Biophysics, Professor of the Department of Fundamental Problems of Medicine and Medical Technology

Russian Federation, Moscow; Saint Petersburg

Oleg M. Panasenko

Federal Research and Clinical Center of Physical-Chemical Medicine; Pirogov Russian National Research Medical University

Email: o-panas@mail.ru
ORCID iD: 0000-0001-5245-2285
SPIN-code: 3035-6808

Dr. Sci. (Biology), Professor, Head of Department of Biophysics; Senior Researcher of Department of Medical Physics

Russian Federation, Moscow

Vasily N. Lazarev

Federal Research and Clinical Center of Physical-Chemical Medicine

Email: lazar0@mail.ru
ORCID iD: 0000-0003-0042-966X
SPIN-code: 1578-8932

Dr. Sci. (Biology), Associate Professor, Head of Department of Cell Biology

Russian Federation, Moscow

References

  1. Musin KG. Antimicrobial peptides — a potential peplacement for traditional antibiotics. Russian Journal of Infection and Immunity. 2018;8(3):295–308. (In Russ.) doi: 10.15789/2220-7619-2018-3-295-308
  2. Zharkova MS, Orlov DS, Kokryakov VN, Shamova OV. Mammalian antimicrobial peptides: classification, biological role, perspectives of practicale use. Biological Communications. 2014;(1):98–114. (In Russ.)
  3. Lei J, Sun L, Huang S, et al. The antimicrobial peptides and their potential clinical applications. Am J Transl Res. 2019;11(7):3919–3931.
  4. Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol. 2016;6:194. doi: 10.3389/fcimb.2016.00194
  5. Huerta-Cantillo J, Navarro-García F. Properties and design of antimicrobial peptides as potential tools against pathogens and malignant cells. Investigación en Discapacidad. 2016;5(2):96–115.
  6. Pavlova IB, Yudina TG, Baskova IP, et al. Studying of prospects of use of the secret of salivary cages of the medical bloodsucker of Hirudo medicinalis and preparation “Piyavit” as the antimicrobic complexes which aren’t causing resistance in microorganisms. Modern Problems of Science and Education. 2015;(2–3):252. (In Russ.)
  7. Baskova IP, Kharitonova OV, Zavalova LL. Lysozyme activity of the salivary gland secretion of the medicinal leeches H. verbana, H. medicinalis, and H. orientalis. Biomed Khim. 2011;57(5):511–518. (In Russ.) doi: 10.18097/pbmc20115705511
  8. Grafskaia EN, Nadezhdin KD, Talyzina IA, et al. Medicinal leech antimicrobial peptides lacking toxicity represent a promising alternative strategy to combat antibiotic-resistant pathogens. Eur J Med Chem. 2019;180:143–153. doi: 10.1016/j.ejmech.2019.06.080
  9. Shamova OV, Sakuta GA, Orlov DS, et al. Effects of antimicrobial peptides of neutrophils on tumor and normal cells in culture. Tsitologija. 2007;49(12):1000–1010. (In Russ.)
  10. Nesterova IV, Kolesnikova NV, Chudilova GA, et al. The new look at neutrophilc granulocytes: rethinking old dogmas. Part 2. Russian Journal of Infection and Immunity. 2018;8(1): 7–18. (In Russ.) doi: 10.15789/2220-7619-2018-1-7-18
  11. Nesterova IV, Kolesnikova NV, Chudilova GA, et al. The new look at neutrophilc granulocytes: rethinking old dogmas. Part 1. Russian Journal of Infection and Immunity. 2017;7(3):219–230. (In Russ.) doi: 10.15789/2220-7619-2017-3-219-230
  12. Panyutich AV, Hiemstra PS, van Wetering S, Ganz T. Human neutrophil defensin and serpins form complexes and inactivate each other. Am J Respir Cell Mol Biol. 1995;12(3):351–357. doi: 10.1165/ajrcmb.12.3.7873202
  13. Shamova OV, Orlov DS, Yamschikova EV, et al. Investigation of the interaction of antimicrobial peptides with proteins of serine protease inhibitors family. Fundamental Research. 2011;9:344–348. (In Russ.)
  14. Vissers MC, Winterbourn CC. Myeloperoxidase-dependent oxidative inactivation of neutrophil neutral proteinases and microbicidal enzymes. Biochem J. 1987;245(1):277–280. doi: 10.1042/bj2450277
  15. Hawkins CL, Davies MJ. Inactivation of protease inhibitors and lysozyme by hypochlorous acid: role of side-chain oxidation and protein unfolding in loss of biological function. Chem Res Toxicol. 2005;18(10):1600–1610. doi: 10.1021/tx050207b
  16. Vakhrusheva TV, Grigorieva DV, Gorudko IV, et al. Enzymatic and bactericidal activity of myeloperoxidase in conditions of halogenative stress. Biochem Cell Biol. 2018;96(5):580–591. doi: 10.1139/bcb-2017-0292
  17. Terekhova MS, Gorudko IV, Grigorieva DV, et al. Iron-binding property of lactoferrin in the case of inflammation. Doklady BGUIR. 2018;(7(117)):80–84. (In Russ.)
  18. Grigorieva DV, Gorudko IV, Kostevich VA, et al. Exocytosis of myeloperoxidase from activated neutrophils in the presence of heparin. Biomed Khim. 2018;64(1):16–22. (In Russ.) doi: 10.18097/PBMC20186401016
  19. Sokolov AV, Ageeva KV, Kostevich VA, et al. Study of interaction of ceruloplasmin with serprocidins. Biochemistry (Mosc). 2010;75(11):1361–1367. doi: 10.1134/S0006297910110076
  20. Sokolov AV, Kostevich VA, Zakharova ET, et al. Interaction of ceruloplasmin with eosinophil peroxidase as compared to its interplay with myeloperoxidase: reciprocal effect on enzymatic properties. Free Radic Res. 2015;49(6):800–811. doi: 10.3109/10715762.2015.1005615
  21. Semak I, Budzevich A, Maliushkova E, et al. Development of dairy herd of transgenic goats as biofactory for large-scale production of biologically active recombinant human lactoferrin. Transgenic Res. 2019;28(5–6):465–478. doi: 10.1007/s11248-019-00165-y
  22. Lukashevich VS, Budzevich AI, Semak IV, et al. Production of recombinant human lactoferrin from the milk of goat-producers and its physiological effects. Doklady of the National Academy of Sciences of Belarus. 2016;60(1):72–81. (In Russ.)
  23. Gorudko IV, Cherkalina OS, Sokolov AV, et al. New approaches to the measurement of the concentration and peroxidase activity of myeloperoxidase in human blood plasma. Russian Journal of Bioorganic Chemistry. 2009;35(5):566–575. doi: 10.1134/s1068162009050057
  24. Grigorieva DV, Gorudko IV, Sokolov AV, et al. Myeloperoxidase stimulates neutrophil degranulation. Bulletin of Experimental Biology and Medicine. 2016;161(4):495–500. doi: 10.1007/s10517-016-3446-7
  25. Panasenko OM, Gorudko IV, Sokolov AV. Hypochlorous acid as a precursor of free radicals in living systems. Biochemistry (Mosc). 2013;78(13):1466–1489. doi: 10.1134/S0006297913130075
  26. Panasenko OM, Sergienko VI. Halogenizing stress and its biomarkers. Annals of the Russian Academy of Medical Sciences. 2010;(1):27–39. (In Russ.)
  27. Golenkina EA, Livenskyi AD, Viryasova GM, et al. Ceruloplasmin-derived peptide is the strongest regulator of oxidative stress and leukotriene synthesis in neutrophils. Biochem Cell Biol. 2017;95(3):445–449. doi: 10.1139/bcb-2016-0180
  28. Jugniot N, Voisin P, Bentaher A, Mellet P. Neutrophil elastase activity imaging: recent approaches in the design and applications of activity-based probes and substrate-based probes. Contrast Media Mol Imaging. 2019;2019:7417192. doi: 10.1155/2019/7417192
  29. Paramonova NS, Gurina LN, Volkova OA, et al. Sostoyanie elastaza-ingibitornoy sistemy u detey v norme i pri otdel’nykh patologicheskikh sostoyaniyakh. Grodno; 2017. (In Russ.)
  30. Kell DB, Heyden EL, Pretorius E. The biology of lactoferrin, an iron-binding protein that can help defend against viruses and bacteria. Front Immunol. 2020;11:1221. doi: 10.3389/fimmu.2020.01221
  31. Borzenkova NV, Balabushevich NG, Larionova NI. Lactoferrin: physical and chemical properties, biological functions, delivery systems, pharmaceutical and nutraceutical preparations (review). Russian Journal of Biopharmaceuticals. 2010;2(3):3–19. (In Russ.)
  32. Kalyuzhin OV. Antibacterial, antifungal, antiviral and immunomodulatory effects of lysozyme: from mechanisms to pharmacological application [Internet]. Effective pharmacotherapy. Pediatrics. No. 1. 2018. Available from: https://umedp.ru/articles/antibakterialnye_protivogribkovye_protivovirusnye_i_immunomoduliruyushchie_effekty_lizotsima_ot_mekh.html. Accessed: 22.08.2021.
  33. Goncharova AI, Ziamko VY, Okulich VK. Lysozyme activity determination using peptidoglycan from the cell wall of Micrococcus lysodeikticus. Immunopathology, Allergology, Infectology. 2018;(1):48–55. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Effect of native and modified by HOCl AMP 536_1 (a), 19347_2 (b), 12530 (c), and 3967_1 (d) in various concentrations on MPO (0.5 nM) peroxidase activity (PAMPO) which was recorded by the oxidation of chromogenic substrate o-dianisidine (380 μM) in the presence of Н2О2 (50 μM). PAMPO in the absence of AMP is accepted as 100%. * p < 0.05 compared with the PAMPO in the control (in the absence of AMP)

Download (361KB)
3. Fig. 2. Effect of AMP on NE enzymatic activity. Typical kinetic curves (a, b) of an increase in the fluorescence intensity of aminomethylcoumarin formed during the cleavage of a specific substrate MeOSuc-AAPV-AMC (20 μM) by purified NE (50 nM) in the absence and in the presence of AMP 3967_1 (a) and 19347_2 (b) at various concentrations. AMP concentrations are indicated on the legend to the figure. The arrow indicates the moment of NE addition. Fluorescence intensity was measured at 460 nm, excitation wavelength was 380 nm. Dependence of NE enzymatic activity on AMP concentration (c). NE activity in the absence of AMP is taken as 100%. MICmax — minimal inhibitory concentrations against three bacterial species (Escherichia coli, Chlamydia thrachomatis and Bacillus subtilis). *p < 0.05 compared to NE activity in the control (in the absence of AMP)

Download (295KB)
4. Fig. 3. Effect of AMP on LF iron-binding activity: a — typical kinetic curves of LF solution (10 mg/ml) optical density changes at a wavelength of 465 nm, corresponding to the absorption peak of LF iron-saturated form (holo-LF), in the absence and in the presence of AMP 536_1 at various concentrations after 20 successive additions of iron salt [NH4Fe(SO4)2 · 12 H2O] (16 μM each); b — effect of AMP 536_1, 12530, 3967_1 and 19347_2 at various concentrations on LF iron-binding activity. MICmax — minimal inhibitory concentrations against three bacterial species (Escherichia coli, Chlamydia thrachomatis and Bacillus subtilis). LF iron-binding activity in the control (in the absence of AMP) was taken as 100%

Download (250KB)
5. Fig. 4. Effect of AMP 536_1, 12530, 3967_1, and 19347_2 at various concentrations on lysozyme ability to lyse M. lysodeikticus bacterial cells. Lysozyme mucolytic activity in the control (in the absence of AMP) was taken as 100%. MICmax — minimal inhibitory concentrations against three bacterial species (Escherichia coli, Chlamydia thrachomatis and Bacillus subtilis). *p < 0.05 compared to lysozyme activity in the control (in the absence of AMP)

Download (158KB)

Copyright (c) 2021 Grigorieva D.V., Gorudko I.V., Grafskaia E.N., Latsis I.A., Sokolov A.V., Panasenko O.M., Lazarev V.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».