Pathogenesis of neuropsychic complications of new coronavirus infection
- Authors: Klimov N.A.1, Shamova O.V.1
-
Affiliations:
- Institute of Experimental Medicine
- Issue: Vol 23, No 4 (2023)
- Pages: 5-20
- Section: Analytical reviews
- URL: https://journals.rcsi.science/MAJ/article/view/260696
- DOI: https://doi.org/10.17816/MAJ624867
- ID: 260696
Cite item
Abstract
Infection caused by the SARS-CoV-2 coronavirus is characterized by neurological and mental complications in a significant number of patients, which are based on disruption of the permeability of the blood-brain barrier, penetration of pro-inflammatory cytokines into the brain, neuroinflammation and coagulopathy. Studies of the brains of patients who died during an acute period of the disease showed a presence of foci of perivascular inflammation containing macrophages and, in a small number, CD8+ T cells. Microglial cells, mast cells, macrophages, and endothelial cells are involved in the development of neuroinflammation. Microglial nodules were observed in brain tissue samples, indicating neurophagia and neuronal loss. Some SARS-CoV-2 proteins, in particular the S protein, have pathogenic properties towards neurons. Biochemical markers in the cerebrospinal fluid of COVID-19 patients — NfL (neurofilament light chain) and GFAp (glial fibrillary acidic protein) indicate axonal destruction and astrocyte damage. Many patients with COVID-19, develop autoantibodies to self-antigens, including some CNS receptors, and encephalitis due to immune dysfunction and molecular mimicry. In patients with Alzheimer’s disease and Parkinson’s disease, coronavirus infection increases the symptoms of these diseases. The purpose of the review is summarizing the literary data for the analysis of immunopathogenesis of neuropsychic complications of acute coronavirus infection (COVID-19) and post-COVID syndrome.
Full Text
##article.viewOnOriginalSite##About the authors
Nikolay A. Klimov
Institute of Experimental Medicine
Email: nklimov@mail.ru
ORCID iD: 0000-0002-5243-8085
Leading Research Associate of a Department оf General Pathology and Pathological Physiology
Russian Federation, 12 Academician Pavlov St., Saint Petersburg, 197022Olga V. Shamova
Institute of Experimental Medicine
Author for correspondence.
Email: oshamova@yandex.ru
ORCID iD: 0000-0002-5168-2801
SPIN-code: 2913-4726
Dr. Sci. (Biol.), Corresponding Member of RAS, Head of a Department оf General Pathology and Pathological Physiology
Russian Federation, 12 Academician Pavlov St., Saint Petersburg, 197022References
- Bordallo B, Bellas M, Cortez AF, et al. Severe COVID-19: what have we learned with the immunopathogenesis? Adv Rheumatol. 2020;60(1):50. doi: 10.1186/s42358-020-00151-7
- Batiha GE, Al-Kuraishy HM, Al-Gareeb AI, et al. Pathophysiology of post-COVID syndromes: a new perspective. Virol J. 2022;19(1):158. doi: 10.1186/s12985-022-01891-2
- Evans JP, Liu S-L. Role of host factors in SARS-CoV-2 entry. J Biol Chem. 2021:297(1):100847. doi: 10.1016/j.jbc.2021.100847
- Gusev E, Sarapultsev A, Solomatina L, et al. SARS-CoV-2-specific immune response and the pathogenesis of COVID-19. Int J Mol Sci. 2022;23(3):1716. doi: 10.3390/ijms23031716
- Cantuti-Castelvetri L, Ojha R, Pedro LD, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 2020;370(6518):856–860. doi: 10.1126/science.abd2985
- Daly JL, Simonetti B, Klein K, et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science. 2020;370(6518):861–865. doi: 10.1126/science.abd3072
- Zhao J, Yuan Q, Wang H, et al. Responses to SARS-CoV-2 in patients with novel coronavirus disease 2019. Clin Infect Dis. 2020;71(16):2027–2034. doi: 10.1093/cid/ciaa344
- Wajnberg A, Amanat F, Firpo A, et al. Robust neutralizing antibodies to SARS-CoV-2 infection persist for months. Science. 2020;370(6521):1227–1230. doi: 10.1126/science.abd7728
- Sun J, Xiao J, Sun R, et al. Prolonged persistence of SARS-CoV-2 RNA in body fluids. Emerg Infect Dis. 2020;26(8):1834–1838. doi: 10.3201/eid2608.201097
- Stein SR, Ramelli SC, Grazioli A, et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature. 2022;612(7941):758–763. doi: 10.1038/s41586-022-05542-y
- Thompson BT, Chambers RC, Liu KD. Acute respiratory distress syndrome. N Engl J Med. 2017;377(7):562–572. doi: 10.1056/NEJMra1608077
- Burnham EL, Janssen WJ, Riches DW, et al. The fibroproliferative response in acute respiratory distress syndrome: mechanisms and clinical significanc. Eur Respir J. 2014;43(1):276–285. doi: 10.1183/09031936.00196412
- Liu J, Li S, Liu J, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine. 2020;55:102763. doi: 10.1016/j.ebiom.2020.102763
- Blanco-Melo D, Nilsson-Payant BE, Liu W-C, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181(5):1036–1045.e9. doi: 10.1016/j.cell.2020.04.026
- Yang Y, Shen C, Li J, et al. Plasma IP-10 and MCP-3 levels are highly associated with disease severity and predict the progression of COVID-19. J Allergy Clin Immunol. 2020;146(1):119–127.e4. doi: 10.1016/j.jaci.2020.04.027
- Yang L, Liu S, Liu J, et al. COVID-19: immunopathogenesis and immunotherapeutics. Signal Transduct Target Ther. 2020;5(1):128. doi: 10.1038/s41392-020-00243-2
- Soriano JB, Murthy S, Marshall JC, et al. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect Dis. 2022;22(4):e102–e107. doi: 10.1016/S1473-3099(21)00703-9
- Yong SJ. Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments. Infect Dis (Lond). 2021;53(10):737–754. doi: 10.1080/23744235.2021.1924397
- Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023;21(3):133–146. doi: 10.1038/s41579-022-00846-2
- Peluso MJ, Lu S, Tang AF, et al. Markers of immune activation and inflammation in individuals with postacute sequelae of severe acute respiratory syndrome coronavirus 2 infection. J Infect Dis. 2021;224(11):1839–1848. doi: 10.1093/infdis/jiab490
- Swank Z, Senussi Y, Manickas-Hill Z, et al. Persistent circulating severe acute respiratory syndrome coronavirus 2 spike is associated with post-acute coronavirus disease 2019 sequelae. Clin Infect Dis. 2023;76(3):e487–e490. doi: 10.1093/cid/ciac722
- Stein SR, Ramelli SC, Grazioli A, et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature. 2022;612(7941):758–763. doi: 10.1038/s41586-022-05542-y
- Taquet M, Geddes JR, Husain M, et al. 6-month neurological and psychiatric outcomes in 236379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry. 2021;8(5):416–427. doi: 10.1016/S2215-0366(21)00084-5
- Davis HE, McCorkell L, Vogel JM, et al. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023;21(1):133–146. doi: 10.1038/s41579-022-00846-2
- Taquet M, Sillett R, Zhu L, et al. Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: an analysis of 2-year retrospective cohort studies including 1 284 437 patients. Lancet Psychiatry. 2022;9(10):815–827. doi: 10.1016/S2215-0366(22)00260-7
- Lee MH, Perl DP, Steiner J, et al. Neurovascular injury with complement activation and inflammation in COVID-19. Brain. 2022;145(7):2555–2568. doi: 10.1093/brain/awac151
- Matschke J, Lütgehetmann M, Hagel C, et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 2020;19(11):919–929. doi: 10.1016/S1474-4422(20)30308-2
- Solomon IH, Normandin E, Bhattacharyya S, et al. Neuropathological features of Covid-19. N Engl J Med. 2020;383(10):989–992. doi: 10.1056/NEJMc2019373
- Barrantes FJ. Central nervous system targets and routes for SARS-CoV-2: Current views and new hypotheses. ACS Chem Neurosci. 2020;11(18):2793–2803. doi: 10.1021/acschemneuro.0c00434
- Welcome MO, Mastorakis NE. Neuropathophysiology of coronavirus disease 2019: neuroinflammation and blood brain barrier disruption are critical pathophysiological processes that contribute to the clinical symptoms of SARS-CoV-2 infection. Inflammopharmacology. 2021;29(4):939–963. doi: 10.1007/s10787-021-00806-x
- Meinhardt J, Radke J, Dittmayer C, et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci. 2021;24(2):168–175. doi: 10.1038/s41593-020-00758-5
- Burks SM, Rosas-Hernandez H, Alejandro Ramirez-Lee M, et al. Can SARS-CoV-2 infect the central nervous system via the olfactory bulb or the blood-brain barrier? Brain Behav Immun. 2021;95(1):7–14. doi: 10.1016/j.bbi.2020.12.031
- Granholm AC. Long-term effects of SARS-CoV-2 in the brain: Clinical consequences and molecular mechanisms. J Clin Med. 2023;12(9):3190. doi: 10.3390/jcm12093190
- Kaplan L, Chow BW, Gu C. Neuronal regulation of the blood–brain barrier and neurovascular coupling. Nat Rev Neurosci. 2020;21(8):416–432. doi: 10.1038/s41583-020-0322-2
- Huang X, Hussain B, Chang J. Peripheral inflammation and blood-brain barrier disruption: effects and mechanisms. CNS Neurosci Ther. 2021;27(1):36–47. doi: 10.1111/cns.13569
- Wang F, Kream RM, Stefano GB. Long-term respiratory and neurological sequelae of COVID-19. Med Sci Monit. 2020;26:e928996. doi: 10.12659/MSM.928996
- Rauti R, Shahoha M, Leichtmann-Bardoogo Y. et al. Effect of SARS-CoV-2 proteins on vascular permeability. Elife. 2021;10:e69314. doi: 10.7554/eLife.69314
- Pezzini A, Padovani A: Lifting the mask on neurological manifestations of COVID-19. Nat Rev Neurol. 2020;16(11):636–644. doi: 10.1038/s41582-020-0398-3
- Zhang L, Zhou L, Bao L, et al. SARS-CoV-2 crosses the blood-brain barrier accompanied with basement membrane disruption without tight junctions alteration. Signal Transduct Target Ther. 2021;6(1):337–373. doi: 10.1038/s41392-021-00719-9
- Song E, Zhang C, Israelow B, et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med. 2021;218(3):e20202135. doi: 10.1084/jem.20202135
- Spudich S, Nath A. Nervous system consequences of COVID-19. Science. 2022;375(6578):267–269. doi: 10.1126/science.abm2052
- Brann DH, Tsukahara T, Weinreb C, et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv. 2020;6(31):eabc5801. doi: 10.1126/sciadv.abc5801
- Soung AL, Vanderheiden A, Nordvig AS, et al. COVID-19 induces CNS cytokine expression and loss of hippocampal neurogenesis. Brain. 2022;145(12):4193–4201. doi: 10.1093/brain/awac270
- Poloni TE, Moretti M, Medici V, et al. COVID-19 Pathology in the lung, kidney, heart and brain: The different roles of T-cells, macrophages, and microthrombosis. Cells. 2022;11(19):3124. doi: 10.3390/cells11193124
- Frank S. Catch me if you can: SARS-CoV-2 detection in brains of deceased patients with COVID-19. Lancet Neurol. 2020;19(11):883–884. doi: 10.1016/S1474-4422(20)30371-9
- Gafson AR, Barthélemy NR, Bomont P, et al. Neurofilaments: neurobiological foundations for biomarker applications. Brain. 2020;143(7):1975–1998. doi: 10.1093/brain/awaa098
- Zingaropoli MA, Pasculli P, Barbato C, et al. Biomarkers of neurological damage: from acute stage to post-acute sequelae of COVID-19. Cells. 2023;12(18):2270. doi: 10.3390/cells12182270
- Kanberg N, Simrén J, Edén A, et al. Neurochemical signs of astrocytic and neuronal injury in acute COVID-19 normalizes during long-term follow-up. EBioMedicine. 2021;70:103512. doi: 10.1016/j.ebiom.2021.103512
- Karnik M, Beeraka NM, Uthaiah CA, et al. A Review on SARS-CoV-2-induced neuroinflammation, neurodevelopmental complications, and recent updates on the vaccine development. Mol Neurobiol. 2021;58(9):4535–4563. doi: 10.1007/s12035-021-02399-6
- Chaumont H, Kaczorowski F, San-Galli A, et al. Cerebrospinal fluid biomarkers in SARS-CoV-2 patients with acute neurological syndromes. Rev Neurol. 2022;179(3):208–217. doi: 10.1016/j.neurol.2022.11.002
- Colonna M, Butovsky O. Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol. 2017;35:441–468. doi: 10.1146/annurev-immunol-051116-052358
- Theoharides TC, Kempuraj D. Role of SARS-CoV-2 spike-protein-induced activation of microglia and mast cells in the pathogenesis of Neuro-COVID. Cells. 2023;12(5):688. doi: 10.3390/cells12050688
- Jeong GU, Lyu J, Kim KD, et al. SARS-CoV-2 infection of microglia elicits proinflammatory activation and apoptotic cell death. Microbiol Spectr. 2022;29(3):e0109122. doi: 10.1128/spectrum.01091-22
- Clough E, Inigo J, Chandra D, et al. Mitochondrial dynamics in SARS-CoV-2 spike protein treated human microglia: implications for Neuro-COVID. J Neuroimmune Pharmacol. 2021;16(4):770–784. doi: 10.1007/s11481-021-10015-6
- Mukai K, Tsai M, Saito H, et al. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol Rev. 2018;282(1):121–150. doi: 10.1111/imr.12634
- Skaper SD, Facci L, Zusso M, et al. Neuroinflammation, mast cells, and glia: dangerous liaisons. Neuroscientist. 2017;23(5):478–498. doi: 10.1177/1073858416687249
- Lee MH, Perl DP, Nair G, et al. Microvascular injury in the brains of patients with COVID-19. N Engl J Med. 2021;384(5):481–483. doi: 10.1056/NEJMc2033369
- Zhang X, Wang Y, Dong H, et al. Induction of microglial activation by mediators released from mast cells. Cell Physiol Biochem. 2016;38(4):1520–1531. doi: 10.1159/000443093
- Blinkouskaya Y, Caçoilo A, Gollamudi T, et al. Brain aging mechanisms with mechanical manifestations. Mech Ageing Dev. 2021;200:111575. doi: 10.1016/j.mad.2021.111575
- Mattson MP, Arumugam TV. Hallmarks of brain aging: adaptive and pathological modification by metabolic states. Cell Metab. 2018;27(6):1176–1199. doi: 10.1016/j.cmet.2018.05.011
- Mavrikaki M, Lee JD, Solomon IH, et al. Severe COVID-19 induces molecular signatures of aging in the human brain. Nat Aging. 2022;2(12):1130–1137. doi: 10.1038/s43587-022-00321-w
- Idrees D, Kumar V. SARS-CoV-2 spike protein interactions with amyloidogenic proteins: Potential clues to neurodegeneration. Biochem Biophys Res Commun. 2021;554(1):94–98. doi: 10.1016/j.bbrc.2021.03.100
- Mysiris DS, Vavougios GD, Karamichali E, et al. Post-COVID-19 parkinsonism and Parkinson’s disease pathogenesis: the exosomal cargo hypothesis. Int J Mol Sci. 2022;23(17):9739. doi: 10.3390/ijms23179739
- Groh N, Buhler A, Huang C, et al. Age-dependent protein aggregation initiates amyloid-beta aggregation. Front Aging Neurosci. 2017;9(1):138. doi: 10.3389/fnagi.2017.00138
- Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71(15):762–768. doi: 10.1093/cid/ciaa248
- Cañas CA. The triggering of post-COVID-19 autoimmunity phenomena could be associated with both transient immunosuppression and an inappropriate form of immune reconstitution in susceptible individuals. Med Hypotheses. 2020;1:110345. doi: 10.1016/j.mehy.2020.110345
- Davis HE, McCorkell L, Vogel JM, et al. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023;21(3):133–146. doi: 10.1038/s41579-022-00846-2
- Kanduc D. From anti-SARS-CoV-2 immune responses to COVID-19 via molecular mimicry. Antibodies (Basel). 2020;9(4):33. doi: 10.3390/antib9030033
- Tang KT, Hsu BC, Chen DY. Autoimmune and rheumatic manifestations associated with COVID-19 in adults: an updated systematic review. Front Immunol. 2021;12:645013. doi: 10.3389/fimmu.2021.645013
- Wallukat G, Hohberger B, Wenzel K, et al. Functional autoantibodies against G-protein coupled receptors in patients with persistent Long-COVID-19 symptoms. J Transl Autoimmun. 2021;4:100100. doi: 10.1016/j.jtauto.2021.100100
- Schofield JR. Persistent antiphospholipid antibodies, mast cell activation syndrome, postural orthostatic tachycardia syndrome and post-COVID syndrome: 1 year on. Eur J Case Rep Intern Med. 2021;8(3):002378. doi: 10.12890/2021_002378
- Arthur JM, Forrest JC, Boehme KW, et al. Development of ACE2 autoantibodies after SARS-CoV-2 infection. PLoS One. 2021;16(9):e0257016. doi: 10.1371/journal.pone.0257016
- Xue H, Zeng L, He H, et al. Autoimmune encephalitis in COVID-19 patients: a systematic review of case reports and case series. Front Neurol. 2023;14:1207883. doi: 10.3389/fneur.2023.1207883
- Wang J, Saguner AM, An J, et al. Dysfunctional coagulation in COVID-19: from cell to bedside. Adv Ther. 2020;37(7):3033–3039. doi: 10.1007/s12325-020-01399-7
- O’Sullivan JM, Gonagle DM, Ward SE, et al. Endothelial cells orchestrate COVID-19 coagulopathy. Lancet Haematol. 2020;7(8):e553–e555. doi: 10.1016/S2352-3026(20)30215-5
- Barbosa LC, Gonçalves TL, de Araujo LP, et al. Endothelial cells and SARS-CoV-2: An intimate relationship. Vascul Pharmacol. 2021;137:106829. doi: 10.1016/j.vph.2021.106829
- Kumar MA, Krishnaswamy M, Arul JN. Post COVID-19 sequelae: Venous thromboembolism complicated by lower GI bleed. BMJ Case Rep. 2021;14(1):e241059. doi: 10.1136/bcr-2020-241059
- Townsend L, Fogarty H, Dyer A, et al. Prolonged elevation of D-dimer levels in convalescent COVID-19 patients is independent of the acute phase response. J Thromb Haemost. 2021;19(4):1064–1070. doi: 10.1111/jth.15267
- Xia X, Wang Y, Zheng J. COVID-19 and Alzheimer’s disease: how one crisis worsens the other. Transl Neurodegener. 2021;10(1):15. doi: 10.1186/s40035-021-00237-2
- Shankar GM, Li S, Mehta TH, et al. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med. 2008;14(8):837–842. doi: 10.1038/nm1782
- Jin M, Shepardson N, Yang T, et al. Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce tau hyperphosphorylation and neuritic degeneration. Proc Natl Acad Sci USA. 2011;108(14):5819–5824. doi: 10.1073/pnas.1017033108
- Hsu JT, Tien CF, Yu GY, et al. The effects of Aβ1-42 binding to the SARS-CoV-2 spike protein S1 subunit and angiotensin-converting enzyme 2. Int J Mol Sci. 2021;22(15):8226. doi: 10.3390/ijms22158226
- Matias-Guiu JA, Pytel V, Matias-Guiu J. Death rate due to COVID-19 in Alzheimer’s disease and frontotemporal dementia. J Alzheimers Dis. 2020;78(2):537–541. doi: 10.3233/JAD-200940
- Zhang J, Bishir M, Barbhuiya S, et al. Meta-analysis of the mechanisms underlying COVID-19 modulation of Parkinson’s disease. Int J Mol Sci. 2023;24(17):13554. doi: 10.3390/ijms241713554
- Simon DK, Tanner CM, Brundin P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin Geriatr Med. 2020;36(1):1–12. doi: 10.1016/j.cger.2019.08.002
- Balestrino R, Schapira AHV. Parkinson disease. Eur J Neurol. 2020;27(1):27–42. doi: 10.1111/ene.14108
- Baizabal-Carvallo JF, Alonso-Juarez M. The role of viruses in the pathogenesis of Parkinson’s disease. Neural Regen Res. 2021;16(6):1200–1201. doi: 10.4103/1673-5374.300437
- Jiang T, Li G, Xu J, et al. The challenge of the pathogenesis of Parkinson’s disease: is autoimmunity the culprit? Front Immunol. 2018;9:2047. doi: 10.3389/fimmu.2018.02047
- Sulzer D, Antonini A, Leta V, et al. COVID-19 and possible links with Parkinson’s disease and parkinsonism: From bench to bedside. NPJ Parkinsons Dis. 2020;6(1):18. doi: 10.1038/s41531-020-00123-0
- Leta V, Urso D, Batzu L, et al. Viruses, parkinsonism and Parkinson’s disease: The past, present and future. J Neural Transm. 2022;129(9):1119–1132. doi: 10.1007/s00702-022-02536-y
- Smadi M, Kaburis M, Schnapper Y, et al. SARS-CoV-2 susceptibility and COVID-19 illness course and outcome in people with pre-existing neurodegenerative disorders: Systematic review with frequentist and Bayesian meta-analyses. Br J Psychiatry. 2023;223(2):348–361. doi: 10.1192/bjp.2023.43
- Przytuła F, Kasprzak J, Dulski J, et al. Morbidity and severity of COVID-19 in patients with Parkinson’s disease treated with amantadine — A multicenter, retrospective, observational study. Parkinsonism Relat Disord. 2023;106:105238. doi: 10.1016/j.parkreldis.2022.105238
- Semerdzhiev SA, Fakhree MAA, Segers-Nolten I, et al. Interactions between SARS-CoV-2 N-protein and alpha-synuclein accelerate amyloid formation. ACS Chem Neurosci. 2022;13(1):143–150. doi: 10.1021/acschemneuro.1c00666
- Wang J, Dai L, Deng M, et al. SARS-CoV-2 spike protein S1 domain accelerates α-synuclein phosphorylation and aggregation in cellular models of synucleinopathy. Mol Neurobiol. 2023. doi: 10.1007/s12035-023-03726-9
- Antonini A, Leta V, Teo J, Chaudhuri KR. Outcome of Parkinson’s disease patients affected by COVID-19. Mov Disord. 2020;35(6):905–908. doi: 10.1002/mds.28104
- Brown EG, Chahine LM, Goldman SM, et al. The effect of the COVID-19 pandemic on people with Parkinson’s disease. J Parkinsons Dis. 2020;10(4):1365–1377. doi: 10.3233/JPD-202249
- Leta V, Boura I, van Wamelen DJ, et al. COVID-19 and Parkinson’s disease: Acute clinical implications, long-COVID and post-COVID-19 parkinsonism. Int Rev Neurobiol. 2022;165(1):63–89. doi: 10.1016/bs.irn.2022.04.004
- Zhang J, Bishir M, Barbhuiya S, et al. Meta-analysis of the mechanisms underlying COVID-19 modulation of Parkinson’s disease. Int J Mol Sci. 2023;24(17):13554. doi: 10.3390/ijms241713554
Supplementary files
