Патогенез нейропсихических осложнений при коронавирусной инфекции
- Авторы: Климов Н.А.1, Шамова О.В.1
-
Учреждения:
- ФГБНУ «Институт экспериментальной медицины»
- Выпуск: Том 23, № 4 (2023)
- Страницы: 5-20
- Раздел: Аналитический обзор
- URL: https://journals.rcsi.science/MAJ/article/view/260696
- DOI: https://doi.org/10.17816/MAJ624867
- ID: 260696
Цитировать
Аннотация
У значительного числа больных инфекция, вызываемая коронавирусом SARS-CoV-2, характеризуется неврологическими и психическими осложнениями, в основе которых лежат нарушение проницаемости гематоэнцефалического барьера, проникновение в головной мозг провоспалительных цитокинов, нейровоспаление и коагулопатия. Патологоанатомические исследования головного мозга пациентов, умерших в острый период заболевания, показали наличие очагов периваскулярного воспаления, содержащих макрофаги и в небольшом количестве CD8+Т-клетки. В развитии нейровоспаления участвуют клетки микроглии, тучные клетки, макрофаги, эндотелиоциты. В образцах мозговой ткани наблюдались узелки микроглии, указывающие на нейрофагию и потерю нейронов. Некоторые белки SARS-CoV-2, в частности белок S, обладают патогенными свойствами по отношению к нейронам. Биохимические маркеры в спинномозговой жидкости больных COVID-19 — NfL (легкая цепь нейрофиламентов) и GFAР (глиальный фибриллярный кислый белок) — указывают на разрушение аксонов и повреждение астроцитов. У многих больных COVID-19 вследствие иммунной дисфункции и молекулярной мимикрии обнаруживаются аутоантитела к собственным антигенам, в том числе к некоторым рецепторам центральной нервной системы, и энцефалиты. У пациентов с болезнями Альцгеймера и Паркинсона коронавирусная инфекция усиливает их симптомы. Цель обзора — обобщение имеющихся в литературе данных для анализа иммунопатогенеза нейропсихических осложнений острой коронавирусной инфекции (COVID-19) и постковидного синдрома.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Николай Анатольевич Климов
ФГБНУ «Институт экспериментальной медицины»
Email: nklimov@mail.ru
ORCID iD: 0000-0002-5243-8085
ведущий научный сотрудник отдела общей патологии и патологической физиологии
Россия, 197022, Санкт-Петербург, ул. Академика Павлова, д. 12Ольга Валерьевна Шамова
ФГБНУ «Институт экспериментальной медицины»
Автор, ответственный за переписку.
Email: oshamova@yandex.ru
ORCID iD: 0000-0002-5168-2801
SPIN-код: 2913-4726
доктор биол. наук, член-корр. РАН, заведующий отделом общей патологии и патологической физиологии
Россия, 197022, Санкт-Петербург, ул. Академика Павлова, д. 12Список литературы
- Bordallo B., Bellas M., Cortez A.F. et al. Severe COVID-19: what have we learned with the immunopathogenesis? // Adv. Rheumatol. 2020. Vol. 60, No. 1. P. 50. doi: 10.1186/s42358-020-00151-7
- Batiha G.E., Al-Kuraishy H.M., Al-Gareeb A.I. et al. Pathophysiology of post-COVID syndromes: a new perspective // Virol. J. 2022. Vol. 19, No. 1. P. 158. doi: 10.1186/s12985-022-01891-2
- Evans J.P., Liu S.-L. Role of host factors in SARS-CoV-2 entry // J. Biol. Chem. 2021. Vol. 297, No. 1. P. 100847. doi: 10.1016/j.jbc.2021.100847
- Gusev E., Sarapultsev A., Solomatina L. et al. SARS-CoV-2-specific immune response and the pathogenesis of COVID-19 // Int. J. Mol. Sci. 2022. Vol. 23, No. 3. P. 1716. doi: 10.3390/ijms23031716
- Cantuti-Castelvetri L., Ojha R., Pedro L.D. et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity // Science. 2020. Vol. 370, No. 6518. P. 856–860. doi: 10.1126/science.abd2985
- Daly J.L., Simonetti B., Klein K. et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection // Science. 2020. Vol. 370, No. 6518. P. 861–865. doi: 10.1126/science.abd3072
- Zhao J., Yuan Q., Wang H. et al. Responses to SARS-CoV-2 in patients with novel coronavirus disease 2019 // Clin. Infect. Dis. 2020. Vol. 71, No. 16. P. 2027–2034. doi: 10.1093/cid/ciaa344
- Wajnberg A., Amanat F., Firpo A. et al. Robust neutralizing antibodies to SARS-CoV-2 infection persist for months // Science. 2020. Vol. 370, No. 6521. P. 1227–1230. doi: 10.1126/science.abd7728
- Sun J., Xiao J., Sun R. et al. Prolonged persistence of SARS-CoV-2 RNA in body fluids // Emerg. Infect. Dis. 2020. Vol. 26, No. 8. P. 1834–1838. doi: 10.3201/eid2608.201097
- Stein S.R., Ramelli S.C., Grazioli A. et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy // Nature. 2022. Vol. 612, No. 7941. P. 758–763. doi: 10.1038/s41586-022-05542-y
- Thompson B.T., Chambers R.C., Liu K.D. Acute respiratory distress syndrome // N. Engl. J. Med. 2017. Vol. 377, No. 7. P. 562–572. doi: 10.1056/NEJMra1608077
- Burnham E.L., Janssen W.J., Riches D.W. et al. The fibroproliferative response in acute respiratory distress syndrome: mechanisms and clinical significance // Eur. Respir. J. 2014. Vol. 43, No. 1. P. 276–285. doi: 10.1183/09031936.00196412
- Liu J., Li S., Liu J. et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients // EBioMedicine. 2020. Vol. 55. P. 102763. doi: 10.1016/j.ebiom.2020.102763
- Blanco-Melo D., Nilsson-Payant B.E., Liu W-C. et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19 // Cell. 2020. Vol. 181, No. 5. P. 1036–1045.e9. doi: 10.1016/j.cell.2020.04.026
- Yang Y., Shen C., Li J. et al. Plasma IP-10 and MCP-3 levels are highly associated with disease severity and predict the progression of COVID-19 // J. Allergy Clin. Immunol. 2020. Vol. 146, No. 1. P. 119–127.e4. doi: 10.1016/j.jaci.2020.04.027
- Yang L., Liu S., Liu J. et al. COVID-19: immunopathogenesis and immunotherapeutics // Signal Transduct. Target. Ther. 2020. Vol. 5, No. 1. P. 128. doi: 10.1038/s41392-020-00243-2
- Soriano J.B., Murthy S., Marshall J.C. et al. A clinical case definition of post-COVID-19 condition by a Delphi consensus // Lancet Infect. Dis. 2022. Vol. 22, No. 4. P. e102–e107. doi: 10.1016/S1473-3099(21)00703-9
- Yong S.J. Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments // Infect. Dis. (Lond). 2021. Vol. 53, No. 10. P. 737–754. doi: 10.1080/23744235.2021.1924397
- Davis H.E., McCorkell L., Vogel J.M., Topol E.J. Long COVID: major findings, mechanisms and recommendations // Nat. Rev. Microbiol. 2023. Vol. 21, No. 3. P. 133–146. doi: 10.1038/s41579-022-00846-2
- Peluso M.J., Lu S., Tang A.F. et al. Markers of immune activation and inflammation in individuals with postacute sequelae of severe acute respiratory syndrome coronavirus 2 infection // J. Infect. Dis. 2021. Vol. 224, No. 11. P. 1839–1848. doi: 10.1093/infdis/jiab490
- Swank Z., Senussi Y., Manickas-Hill Z. et al. Persistent circulating severe acute respiratory syndrome coronavirus 2 spike is associated with post-acute coronavirus disease 2019 sequelae // Clin. Infect. Dis. 2023. Vol. 76, No. 3. P. e487–e490. doi: 10.1093/cid/ciac722
- Stein S.R., Ramelli S.C., Grazioli A. et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy // Nature. 2022. Vol. 612, No. 7941. P. 758–763. doi: 10.1038/s41586-022-05542-y
- Taquet M., Geddes J.R., Husain M. et al. 6-month neurological and psychiatric outcomes in 236379 survivors of COVID-19: a retrospective cohort study using electronic health records // Lancet Psychiatry. 2021. Vol. 8, No. 5. P. 416–427. doi: 10.1016/S2215-0366(21)00084-5
- Davis H.E., McCorkell L., Vogel J.M. et al. Long COVID: major findings, mechanisms and recommendations // Nat. Rev. Microbiol. 2023. Vol. 21, No. 1. P. 133–146. doi: 10.1038/s41579-022-00846-2
- Taquet M., Sillett R., Zhu L. et al. Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: an analysis of 2-year retrospective cohort studies including 1 284 437 patients // Lancet Psychiatry. 2022. Vol. 9, No. 10. P. 815–827. doi: 10.1016/S2215-0366(22)00260-7
- Lee M.H., Perl D.P., Steiner J. et al. Neurovascular injury with complement activation and inflammation in COVID-19 // Brain. 2022. Vol. 145, No. 7. P. 2555–2568. doi: 10.1093/brain/awac151
- Matschke J., Lütgehetmann M., Hagel C. et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series // Lancet Neurol. 2020. Vol. 19, No. 11. P. 919–929. doi: 10.1016/S1474-4422(20)30308-2
- Solomon I.H., Normandin E., Bhattacharyya S. et al. Neuropathological features of Covid-19 // N. Engl. J. Med. 2020. Vol. 383, No. 10. P. 989–992. doi: 10.1056/NEJMc2019373
- Barrantes F.J. Central nervous system targets and routes for SARS-CoV-2: Current views and new hypotheses // ACS Chem. Neurosci. 2020. Vol. 11, No. 18. P. 2793–2803. doi: 10.1021/acschemneuro.0c00434
- Welcome M.O., Mastorakis N.E. Neuropathophysiology of coronavirus disease 2019: neuroinflammation and blood brain barrier disruption are critical pathophysiological processes that contribute to the clinical symptoms of SARS-CoV-2 infection // Inflammopharmacology. 2021. Vol. 29, No. 4. P. 939–963. doi: 10.1007/s10787-021-00806-x
- Meinhardt J., Radke J., Dittmayer C. et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19 // Nat. Neurosci. 2021. Vol. 24, No. 2. P. 168–175. doi: 10.1038/s41593-020-00758-5
- Burks S.M., Rosas-Hernandez H., Alejandro Ramirez-Lee M. et al. Can SARS-CoV-2 infect the central nervous system via the olfactory bulb or the blood-brain barrier? // Brain Behav. Immun. 2021. Vol. 95, No. 1. P. 7–14. doi: 10.1016/j.bbi.2020.12.031
- Granholm AC. Long-term effects of SARS-CoV-2 in the brain: clinical consequences and molecular mechanisms // J. Clin. Med. 2023. Vol. 12, No. 9. P. 3190. doi: 10.3390/jcm12093190
- Kaplan L., Chow B.W., Gu C. Neuronal regulation of the blood–brain barrier and neurovascular coupling // Nat. Rev. Neurosci. 2020. Vol. 21, No. 8. P. 416–432. doi: 10.1038/s41583-020-0322-2
- Huang X., Hussain B., Chang J. Peripheral inflammation and blood-brain barrier disruption: effects and mechanisms // CNS Neurosci. Ther. 2021. Vol. 27, No. 1. P. 36–47. doi: 10.1111/cns.13569
- Wang F., Kream R.M., Stefano G.B. Long-term respiratory and neurological sequelae of COVID-19 // Med. Sci. Monit. 2020. Vol. 26. P. e928996. doi: 10.12659/MSM.928996
- Rauti R., Shahoha M., Leichtmann-Bardoogo Y. et al. Effect of SARS-CoV-2 proteins on vascular permeability // Elife. 2021. Vol. 10. P. e69314. doi: 10.7554/eLife.69314
- Pezzini A., Padovani A. Lifting the mask on neurological manifestations of COVID-19 // Nat. Rev. Neurol. 2020. Vol. 16, No. 11. P. 636–644. doi: 10.1038/s41582-020-0398-3
- Zhang L., Zhou L., Bao L. et al. SARS-CoV-2 crosses the blood-brain barrier accompanied with basement membrane disruption without tight junctions alteration // Signal Transduct. Target. Ther. 2021. Vol. 6, No. 1. P. 337–373. doi: 10.1038/s41392-021-00719-9
- Song E., Zhang C., Israelow B. et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain // J. Exp. Med. 2021. Vol. 218, No. 3. P. e20202135. doi: 10.1084/jem.20202135
- Spudich S., Nath A. Nervous system consequences of COVID-19 // Science. 2022. Vol. 375, No. 6578. P. 267–269. doi: 10.1126/science.abm2052
- Brann D.H., Tsukahara T., Weinreb C. et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia // Sci. Adv. 2020. Vol. 6, No. 31. P. eabc5801. doi: 10.1126/sciadv.abc5801
- Soung A.L., Vanderheiden A., Nordvig A.S. et al. COVID-19 induces CNS cytokine expression and loss of hippocampal neurogenesis // Brain. 2022. Vol. 145, No. 12. P. 4193–4201. doi: 10.1093/brain/awac270
- Poloni T.E., Moretti M., Medici V. et al. COVID-19 Pathology in the lung, kidney, heart and brain: The different roles of T-cells, macrophages, and microthrombosis // Cells. 2022. Vol. 11, No. 19. P. 3124. doi: 10.3390/cells11193124
- Frank S. Catch me if you can: SARS-CoV-2 detection in brains of deceased patients with COVID-19 // Lancet Neurol. 2020. Vol. 19, No. 11. P. 883–884. doi: 10.1016/S1474-4422(20)30371-9
- Gafson A.R., Barthélemy N.R., Bomont P. et al. Neurofilaments: neurobiological foundations for biomarker applications // Brain. 2020. Vol. 143, No. 7. P. 1975–1998. doi: 10.1093/brain/awaa098
- Zingaropoli M.A., Pasculli P., Barbato C. et al. Biomarkers of neurological damage: From acute stage to post-acute sequelae of COVID-19 // Cells. 2023. Vol. 12, No. 18. P. 2270. doi: 10.3390/cells12182270
- Kanberg N., Simrén J., Edén A. et al. Neurochemical signs of astrocytic and neuronal injury in acute COVID-19 normalizes during long-term follow-up // EBioMedicine. 2021 Vol. 70. Р. 103512. doi: 10.1016/j.ebiom.2021.103512
- Karnik M., Beeraka N.M., Uthaiah C.A. et al. A review on SARSCoV-2-induced neuroinflammation, neurodevelopmental complications, and recent updates on the vaccine development // Mol. Neurobiol. 2021. Vol. 58, No. 9. P. 4535–4563. doi: 10.1007/s12035-021-02399-6
- Chaumont H., Kaczorowski F., San-Galli A. et al. Cerebrospinal fluid biomarkers in SARS-CoV-2 patients with acute neurological syndromes // Rev. Neurol. 2022. Vol. 179, No. 3. P. 208–217. doi: 10.1016/j.neurol.2022.11.002
- Colonna M., Butovsky O. Microglia function in the central nervous system during health and neurodegeneration // Annu. Rev. Immunol. 2017. Vol. 35. P. 441–468. doi: 10.1146/annurev-immunol-051116-052358
- Theoharides T.C., Kempuraj D. Role of SARS-CoV-2 spike-protein-induced activation of microglia and mast cells in the pathogenesis of neuro-COVID // Cells. 2023. Vol. 12, No. 5. P. 688. doi: 10.3390/cells12050688
- Jeong G.U., Lyu J., Kim K.D. et al. SARS-CoV-2 infection of microglia elicits proinflammatory activation and apoptotic cell death // Microbiol. Spectr. 2022. Vol. 29, No. 3. P. e0109122. doi: 10.1128/spectrum.01091-22
- Clough E., Inigo J., Chandra D. et al. Mitochondrial dynamics in SARS-CoV-2 spike protein treated human microglia: implications for neuro-COVID // J. Neuroimmune Pharmacol. 2021. Vol. 16, No. 4. P. 770–784. doi: 10.1007/s11481-021-10015-6
- Mukai K., Tsai M., Saito H. et al. Mast cells as sources of cytokines, chemokines, and growth factors // Immunol. Rev. 2018. Vol. 282, No. 1. P. 121–150. doi: 10.1111/imr.12634
- Skaper S.D., Facci L., Zusso M. et al. Neuroinflammation, mast cells, and glia: dangerous liaisons // Neuroscientist. 2017. Vol. 23, No. 5. P. 478–498. doi: 10.1177/1073858416687249
- Lee M.H., Perl D.P., Nair G. et al. Microvascular injury in the brains of patients with COVID-19 // N. Engl. J. Med. 2021. Vol. 384, No. 5. P. 481–483. doi: 10.1056/NEJMc2033369
- Zhang X., Wang Y., Dong H. et al. Induction of microglial activation by mediators released from mast cells // Cell. Physiol. Biochem. 2016. Vol. 38, No. 4. P. 1520–1531. doi: 10.1159/000443093
- Blinkouskaya Y., Caçoilo A., Gollamudi T. et al. Brain aging mechanisms with mechanical manifestations // Mech. Ageing Dev. 2021. Vol. 200. P. 111575. doi: 10.1016/j.mad.2021.111575
- Mattson M.P., Arumugam T.V. Hallmarks of brain aging: Adaptive and pathological modification by metabolic states // Cell Metab. 2018. Vol. 27, No. 6. P. 1176–1199. doi: 10.1016/j.cmet.2018.05.011
- Mavrikaki M., Lee J.D., Solomon I.H. et al. Severe COVID-19 induces molecular signatures of aging in the human brain // Nat. Aging. 2022. Vol. 2, No. 12. P. 1130–1137. doi: 10.1038/s43587-022-00321-w
- Idrees D., Kumar V. SARS-CoV-2 spike protein interactions with amyloidogenic proteins: Potential clues to neurodegeneration // Biochem. Biophys. Res. Commun. 2021. Vol. 554, No. 1. P. 94–98. doi: 10.1016/j.bbrc.2021.03.100
- Mysiris D.S., Vavougios G.D., Karamichali E. et al. Post-COVID-19 parkinsonism and Parkinson’s disease pathogenesis: The exosomal cargo hypothesis // Int. J. Mol. Sci. 2022. Vol. 23, No. 17. P. 9739. doi: 10.3390/ijms23179739
- Groh N., Buhler A., Huang C. et al. Age-dependent protein aggregation initiates amyloid-beta aggregation // Front. Aging Neurosci. 2017. Vol. 9, No. 1. P. 138. doi: 10.3389/fnagi.2017.00138
- Qin C., Zhou L., Hu Z. et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China // Clin. Infect. Dis. 2020. Vol. 71, No. 15. P. 762–768. doi: 10.1093/cid/ciaa248
- Cañas C.A. The triggering of post-COVID-19 autoimmunity phenomena could be associated with both transient immunosuppression and an inappropriate form of immune reconstitution in susceptible individuals // Med. Hypotheses. 2020. Vol. 1. P. 110345. doi: 10.1016/j.mehy.2020.110345
- Davis H.E., McCorkell L., Vogel J.M. et al. Long COVID: major findings, mechanisms and recommendations // Nat. Rev. Microbiol. 2023. Vol. 21, No. 3. P. 133–146. doi: 10.1038/s41579-022-00846-2
- Kanduc D. From anti-SARS-CoV-2 immune responses to COVID-19 via molecular mimicry // Antibodies (Basel). 2020. Vol. 9, No. 4. P. 33. doi: 10.3390/antib9030033
- Tang K.T., Hsu B.C., Chen D.Y. Autoimmune and rheumatic manifestations associated with COVID-19 in adults: an updated systematic review // Front. Immunol. 2021. Vol. 12. P. 645013. doi: 10.3389/fimmu.2021.645013
- Wallukat G., Hohberger B., Wenzel K. et al. Functional autoantibodies against G-protein coupled receptors in patients with persistent Long-COVID-19 symptoms // J. Transl. Autoimmun. 2021. Vol. 4. P. 100100. doi: 10.1016/j.jtauto.2021.100100
- Schofield JR. Persistent antiphospholipid antibodies, mast cell activation syndrome, postural orthostatic tachycardia syndrome and post-COVID syndrome: 1 year on // Eur. J. Case Rep. Intern. Med. 2021. Vol. 8, No. 3. P. 002378. doi: 10.12890/2021_002378
- Arthur J.M., Forrest J.C., Boehme K.W. et al. Development of ACE2 autoantibodies after SARS-CoV-2 infection // PLoS One. 2021. Vol. 16, No. 9. P. e0257016. doi: 10.1371/journal.pone.0257016
- Xue H., Zeng L., He H. et al. Autoimmune encephalitis in COVID-19 patients: a systematic review of case reports and case series // Front. Neurol. 2023. Vol. 14. P. 1207883. doi: 10.3389/fneur.2023.1207883
- Wang J., Saguner A.M., An J. et al. Dysfunctional coagulation in COVID-19: from cell to bedside // Adv. Ther. 2020. Vol. 37, No. 7. P. 3033–3039. doi: 10.1007/s12325-020-01399-7
- O’Sullivan J.M., Gonagle D.M., Ward S.E. et al. Endothelial cells orchestrate COVID-19 coagulopathy // Lancet Haematol. 2020. Vol. 7, No. 8. P. e553–e555. doi: 10.1016/S2352-3026(20)30215-5
- Barbosa L.C., Gonçalves T.L., de Araujo L.P. et al. Endothelial cells and SARS-CoV-2: an intimate relationship // Vascul. Pharmacol. 2021. Vol. 137. P. 106829. doi: 10.1016/j.vph.2021.106829
- Kumar M.A., Krishnaswamy M., Arul J.N. Post COVID-19 sequelae: Venous thromboembolism complicated by lower GI bleed // BMJ Case Rep. 2021. Vol. 14, No. 1. P. e241059. doi: 10.1136/bcr-2020-241059
- Townsend L., Fogarty H., Dyer A. et al. Prolonged elevation of D-dimer levels in convalescent COVID-19 patients is independent of the acute phase response // J. Thromb. Haemost. 2021. Vol. 19, No. 4. P. 1064–1070. doi: 10.1111/jth.15267
- Xia X., Wang Y., Zheng J. COVID-19 and Alzheimer’s disease: how one crisis worsens the other // Transl. Neurodegener. 2021. Vol. 10, No. 1. P. 15. doi: 10.1186/s40035-021-00237-2
- Shankar G.M., Li S., Mehta T.H. et al. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory // Nat. Med. 2008. Vol. 14, No. 8. P. 837–842. doi: 10.1038/nm1782
- Jin M., Shepardson N., Yang T. et al. Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce tau hyperphosphorylation and neuritic degeneration // Proc. Natl. Acad. Sci. USA. 2011. Vol. 108, No. 14. P. 5819–5824. doi: 10.1073/pnas.1017033108
- Hsu J.T., Tien C.F., Yu G.Y. et al. The effects of Aβ1-42 binding to the SARS-CoV-2 spike protein S1 subunit and angiotensin-converting enzyme 2 // Int. J. Mol. Sci. 2021. Vol. 22, No. 15. P. 8226. doi: 10.3390/ijms22158226
- Matias-Guiu J.A., Pytel V., Matias-Guiu J. Death rate due to COVID-19 in Alzheimer’s disease and frontotemporal dementia // J. Alzheimers Dis. 2020. Vol. 78, No. 2. P. 537–541. doi: 10.3233/JAD-200940
- Zhang J., Bishir M., Barbhuiya S. et al. Meta-analysis of the mechanisms underlying COVID-19 modulation of Parkinson’s disease // Int. J. Mol. Sci. 2023. Vol. 24, No. 17. P. 13554. doi: 10.3390/ijms241713554
- Simon D.K., Tanner C.M., Brundin P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology // Clin. Geriatr. Med. 2020. Vol. 36, No. 1. P. 1–12. doi: 10.1016/j.cger.2019.08.002
- Balestrino R., Schapira A.H.V. Parkinson disease // Eur. J. Neurol. 2020. Vol. 27, No. 1. P. 27–42. doi: 10.1111/ene.14108
- Baizabal-Carvallo J.F., Alonso-Juarez M. The role of viruses in the pathogenesis of Parkinson’s disease // Neural Regen. Res. 2021. Vol. 16, No. 6. P. 1200–1201. doi: 10.4103/1673-5374.300437
- Jiang T., Li G., Xu J. et al. The challenge of the pathogenesis of Parkinson’s disease: is autoimmunity the culprit? // Front. Immunol. 2018. Vol. 9. P. 2047. doi: 10.3389/fimmu.2018.02047
- Sulzer D., Antonini A., Leta V. et al. COVID-19 and possible links with Parkinson’s disease and parkinsonism: From bench to bedside // NPJ Parkinsons Dis. 2020. Vol. 6, No. 1. P. 18. doi: 10.1038/s41531-020-00123-0
- Leta V., Urso D., Batzu L. et al. Viruses, parkinsonism and Parkinson’s disease: The past, present and future // J. Neural Transm. 2022. Vol. 129, No. 9. P. 1119–1132. doi: 10.1007/s00702-022-02536-y
- Smadi M., Kaburis M., Schnapper Y. et al. SARS-CoV-2 susceptibility and COVID-19 illness course and outcome in people with pre-existing neurodegenerative disorders: Systematic review with frequentist and Bayesian meta-analyses // Br. J. Psychiatry. 2023. Vol. 223, No. 2. P. 348–361. doi: 10.1192/bjp.2023.43
- Przytuła F., Kasprzak J., Dulski J. et al. Morbidity and severity of COVID-19 in patients with Parkinson’s disease treated with amantadine — a multicenter, retrospective, observational study // Parkinsonism Relat. Disord. 2023. Vol. 106. P. 105238. doi: 10.1016/j.parkreldis.2022.105238
- Semerdzhiev S.A., Fakhree M.A.A., Segers-Nolten I. et al. Interactions between SARS-CoV-2 N-Protein and alpha-synuclein accelerate amyloid formation // ACS Chem. Neurosci. 2022. Vol. 13, No. 1. P. 143–150. doi: 10.1021/acschemneuro.1c00666
- Wang J., Dai L., Deng M. et al. SARS-CoV-2 spike protein S1 domain accelerates α-synuclein phosphorylation and aggregation in cellular models of synucleinopathy // Mol. Neurobiol. 2023. doi: 10.1007/s12035-023-03726-9
- Antonini A., Leta V., Teo J., Chaudhuri K.R. Outcome of Parkinson’s disease patients affected by COVID-19 // Mov. Disord. 2020. Vol. 35, No. 6. P. 905–908. doi: 10.1002/mds.28104
- Brown E.G., Chahine L.M., Goldman S.M. et al. The effect of the COVID-19 pandemic on people with Parkinson’s disease // J. Parkinsons Dis. 2020. Vol. 10, No. 4. P. 1365–1377. doi: 10.3233/JPD-202249
- Leta V., Boura I., van Wamelen D.J. et al. COVID-19 and Parkinson’s disease: Acute clinical implications, long-COVID and post-COVID-19 parkinsonism // Int. Rev. Neurobiol. 2022. Vol. 165, No. 1. P. 63–89. doi: 10.1016/bs.irn.2022.04.004
- Zhang J., Bishir M., Barbhuiya S. et al. Meta-analysis of the mechanisms underlying COVID-19 modulation of Parkinson’s disease // Int. J. Mol. Sci. 2023. Vol. 24, No. 17. P. 13554. doi: 10.3390/ijms241713554
Дополнительные файлы
