Early protection against influenza by pandemic live attenuated influenza vaccines
- Authors: Rekstin A.R.1, Desheva J.A.1, Kiseleva I.V.1, Isakova-Sivak I.N.1
-
Affiliations:
- Institute of Experimental Medicine
- Issue: Vol 19, No 3 (2019)
- Pages: 37-46
- Section: Original research
- URL: https://journals.rcsi.science/MAJ/article/view/18955
- DOI: https://doi.org/10.17816/MAJ19337-46
- ID: 18955
Cite item
Full Text
Abstract
Live attenuated cold-adapted (ca) influenza vaccine (LAIV) is an effective tool for the control of influenza, most likely due to their ability to induce both humoral and cellular immune responses, easy application and relatively low manufacturing costs. Attenuated cold-adapted vaccine strains that have achieved a satisfactory balance between restricted replication and high immunogenicity are desirable. The immunogenicity of live attenuated vaccines may depend upon the interplay between its ability to induce pro-inflammatory cytokine responses and the relative sensitivity of the attenuated vaccine strain to an antiviral effect of these cytokines. To better understand the relationship between attenuation and induction of innate immunity as well as contribution of the early cytokine response to the relative immunogenicity of LAIVs, we have studied early protection induced by LAIV in vivo as well as early cytokine response in human cells macrophage origin in response to infection with vaccine strains or epidemic virus.
The aim of this study was to investigate the early immune response and protective activity in female CBA mice intranasally immunized with cold-adapted influenza vaccine strains of different genome compositions of 5:3 or 6:2. For experimental infection pandemic influenza viruses A/South Africa/3626/13 (H1N1)pdm09 and A/New York/61/15 (H1N1)pdm09 were used to be administered to animals at a dose of 106 EID50 at day 3 after immunization (challenge infection). Although challenge viruses replicate at mice lungs at various, extend, on day 10 after immunization mice were protected from death from 60 up to 80%. Reassortants LAIV did not differ statistically on these levels.
Study of the expression of IFN-α and IFN-β genes in human lung macrophage line cells THP-1 in vitro have shown that macrophages stimulated with vaccine strains with the genome formula 6:2 and 5:3, had a sufficient level of expression of these genes, comparable to that, as in infection with wild virus type A/South Africa/3626/13 (H1N1)pdm09. These data may indicate that surface proteins of influenza A virus are involved in the process of stimulation of the IFN-α and IFN-β genes.
Full Text
##article.viewOnOriginalSite##About the authors
Andrey R. Rekstin
Institute of Experimental Medicine
Author for correspondence.
Email: arekstin@yandex.ru
PhD, Leader Scientist, Department of Virology
Russian Federation, Saint PetersburgJulia A. Desheva
Institute of Experimental Medicine
Email: desheva@mail.ru
Doctor of Medical Science, Associate Professor, Leader Scientist, Department of Virology
Russian Federation, Saint PetersburgIrina V. Kiseleva
Institute of Experimental Medicine
Email: irina.v.kiseleva@mail.ru
Doctor of Biological Sciences, Professor, Head of the Laboratory, Department of Virology
Russian Federation, Saint PetersburgIrina N. Isakova-Sivak
Institute of Experimental Medicine
Email: isakova.sivak@gmail.com
Doctor of Biological Sciences, Head of the Laboratory, Department of Virology
Russian Federation, Saint PetersburgReferences
- World Health Organization. Influenza Seasonal [Internet]. WHO; 2019 [cited 2018 November 6]. Available from: http://www.who.int/mediacentre/factsheets/fs211/en/index.html.
- WHO/IVB/06.13. Global influenza pandemic action plan to increase vaccine supply [Internet]. Geneva: WHO; 2006. Available from: http://whqlibdoc.who.int/hq/2006/WHO_IVB_06.13_eng.pdf.
- Julkunen I, Sareneva T, Pirhonen J, et al. Molecular pathogenesis of influenza A virus infection and virus-induced regulation of cytokine gene expression. J Cytokine Growth Factor Rev. 2001;12(2-3):171-180. https://doi.org/10.1016/S1359-6101(00)00026-5.
- Kreijtz JH, Fouchier RA, Rimmelzwaan GF. Immune responses to influenza virus infection. Virus Research. 2011;162(1-2):19-30. https://doi.org/10.1016/j.virusres.2011.09.022.
- Hopkins SJ. The pathophysiological role of cytokines. Leg Med (Tokyo). 2003;5 Suppl 1:S45-57. https://doi.org/10.1016/S1344-6223(02)00088-3.
- Feghali CA, Wright TM. Cytokines in acute and chronic inflammation. Front Biosci. 1997;2(4):d12-26. https://doi.org/10.2741/a171.
- Rudenko LG, Alexandrova GI. Current strategies for the prevention of influenza by the Russian cold-adapted live influenza vaccine among different populations. International Congress Series. 2001;1219:945-950. https://doi.org/10.1016/S0531-5131(01)00661-6.
- Nichol KL. Live attenuated influenza virus vaccines: new options for the prevention of influenza. Vaccine. 2001;19(31):4373-4377. https://doi.org/10.1016/S0264-410X(01)00143-8.
- Rudenko LG, Arden NH, Grigorieva E, et al. Immunogenicity and efficacy of Russian live attenuated and US inactivated influenza vaccines used alone and in combination in nursing home residents. Vaccine. 2000;19(2-3):308-318. https://doi.org/10.1016/S0264-410X(00)00153-5.
- Isakova-Sivak I, Rudenko L. Safety, immunogenicity and infectivity of new live attenuated influenza vaccines. Expert Rev Vaccines. 2015;14(10):1313-1329. https://doi.org/10.1586/14760584.2015.1075883.
- Isakova-Sivak I. Live attenuated Influenza vaccines against highly pathogenic H5N1 avian influenza: development and preclinical characterization. Journal of Vaccines and Vaccination. 2013;4(8):40. https://doi.org/10.4172/2157-7560.1000208.
- Klimov AI, Cox NJ, Yotov WV, et al. Sequence changes in the live attenuated, cold-adapted variants of influenza A/Leningrad/134/57 (H2N2) virus. Virology. 1992;186(2):795-797. https://doi.org/10.1016/0042-6822(92)90050-Y.
- Isakova-Sivak I, Chen LM, Matsuoka Y, et al. Genetic bases of the temperature-sensitive phenotype of a master donor virus used in live attenuated influenza vaccines: A/Leningrad/134/17/57 (H2N2). Virology. 2011;412(2):297-305. https://doi.org/10.1016/j.virol.2011.01.004.
- Kiseleva IV, Voeten JT, Teley LC, et al. PB2 and PA genes control the expression of the temperature-sensitive phenotype of cold-adapted B/USSR/60/69 influenza master donor virus. J Gen Virol. 2010;91(Pt 4):931-937. https://doi.org/10.1099/vir.0.017996-0.
- Klimov AI, Kiseleva IV, Alexandrova GI, Cox NJ. Genes coding for polymeraze proteins are essential for attenuation of the cold-adapted A/Leningrad/134/17/57 (H2N2) influenza virus. International Congress Series. 2001;1219:955-959. https://doi.org/10.1016/S0531-5131(01)00369-7.
- Rudenko LG, Kiseleva IV, Larionova NV, et al. Analysis of some factors influencing immunogenicity of live cold-adapted reassortant influenza vaccines. International Congress Series. 2004;1263:542-546. https://doi.org/10.1016/ j.ics.2004.02.046.
- Rekstin AR, Kiseleva IV, Klimov AI, et al. Interferon and other proinflamatory cytokine responses in vitro following infection with wild-type and cold-adapted reassortant influenza viruses. Vaccine. 2006;24(44-46):6581-6584. https://doi.org/10.1016.vaccine.2006.05.091.
- Conn CA, McClellan JL, Maassab HF, et al. Cytokines and the acute phase response to influenza virus in mice. Am J Physiol. 1995;268(1 Pt 2):R78-84. https://doi.org/10.1152/ajpregu.1995.268.1.R78.
- Ramakrishnan A, Althoff KN, Lopez JA, et al. Differential serum cytokine responses to inactivated and live attenuated seasonal influenza vaccines. Cytokine. 2012;60(3):661-666. https://doi.org/10.1016/j.cyto.2012.08.004.
- Tamura S. Studies on the usefulness of intranasal inactivated influenza vaccines. Vaccine. 2010;28(38):6393-6397. https://doi.org/10.1016/j.vaccine.2010.05.019.
- Lanthier PA, Huston GE, Moquin A, et al. Live attenuated influenza vaccine (LAIV) impacts innate and adaptive immune responses. Vaccine. 2011;29(44):7849-7856. https://doi.org/10.1016/j.vaccine.2011.07.093.
- Klimov AI, Cox NJ. PCR restriction analysis of genome composition and stability of cold-adapted reassortant live influenza vaccines. J Virol Methods. 1995;52(1-2):41-49. https://doi.org/10.1016/0166-0934(94)00133-2.
- Reed LJ, Muench H. A simple method of estimating fifty percent endpoints. Am J Epidemiol. 1938;27(3):493-497. https://doi.org/10.1093/oxfordjournals.aje.a118408.
- Desheva YA, Leontieva GF, Kramskaya TA, et al. Factors of early protective action of live influenza vaccine combined with recombinant bacterial polypeptides against homologous and heterologous influenza infection. Heliyon. 2019;5(2):e01154. https://doi.org/10.1016/j.heliyon.2019.e01154.
- Rodgers BC, Mims CA. Influenza virus replication in human alveolar macrophages. J Med Virol. 1982;9(3):177-184. https://doi.org/10.1002/jmv.1890090304.
- Shim JM, Kim J, Tenson T, et al. Influenza virus infection, interferon response, viral counter-response, and apoptosis. Viruses. 2017;9(8). pii: E223. https://doi.org/10.3390/v9080223.
- McNab F, Mayer-Barber K, Sher A, et al. Type I interferons in infectious disease. Nat Rev Immunol. 2015;15(2):87-103. https://doi.org/10.1038/nri3787.
- Киселева И.В., Крутикова Е.В., Рекстин А.Р., и др. Мыши как модель для изучения степени аттенуации холодоадаптированных штаммов вируса гриппа // Медицинский академический журнал. – 2017. – Т. 17. – № 2. – С. 67–75. [Kiseleva IV, Krutikova EV, Rekstin AR, et al. Mouse model for the study of attenuation of cold-adapted influenza viruses. Medical academic journal. 2017;17(2):67-75. (In Russ.)]
- Rekstin A, Isakova-Sivak I, Petukhova G, et al. Immunogenicity and cross protection in mice afforded by pandemic H1N1 live attenuated influenza vaccine containing wild-type nucleoprotein. Biomed Res Int. 2017;2017:9359276. https://doi.org/10.1155/2017/9359276.
- Jin H, Subbarao K. Live attenuated influenza vaccine. Curr Top Microbiol Immunol. 2015;386:181-204. https://doi.org/10.1007/82_2014_410.
- Cate TR, Couch RB, Parker D, Baxter B. Reactogenicity, immunogenicity, and antibody persistence in adults given inactivated influenza virus vaccines – 1978. Rev Infect Dis. 1983;5(4):737-747. https://doi.org/10.1093/clinids/5.4.737.
Supplementary files
