Metabolic precursors of nicotinamide adenine dinucleotide and the potential for their clinical use
- Authors: Sutsko I.P.1, Shlyahtun A.G.1, Semenenya I.N.1
-
Affiliations:
- Institute of Biochemistry of Biologically Active Compounds of the National Academy of Sciences of Belarus
- Issue: Vol 22, No 3 (2022)
- Pages: 15-25
- Section: Analytical reviews
- URL: https://journals.rcsi.science/MAJ/article/view/131475
- DOI: https://doi.org/10.17816/MAJ89964
- ID: 131475
Cite item
Abstract
Nicotinamide adenine dinucleotide (NAD+) is present in all living cells and is a central signaling molecule and enzyme cofactor that is involved in many fundamental biological processes, including energy production, DNA repair, gene expression, and calcium-dependent signaling. It is known that NAD+ levels decrease in many pathological conditions, as well as with age in many tissues of rodents and humans, which contributes to the development of age-related pathology. There is evidence that an increase in intracellular NAD+ levels prevents the development of various pathological conditions. The review presents an analysis of modern data on the possibility of using precursors of NAD+ biosynthesis to provide the required level in body tissues in order to correct various disorders of vital functions.
Full Text
##article.viewOnOriginalSite##About the authors
Iryna P. Sutsko
Institute of Biochemistry of Biologically Active Compounds of the National Academy of Sciences of Belarus
Author for correspondence.
Email: irynasutsko@gmail.com
ORCID iD: 0000-0001-9599-6944
SPIN-code: 3475-3276
Scopus Author ID: 55308045600
Cand. Sci. (Biol.), Senior Research Associate of the Laboratory of Biologically Active Substances
Belarus, GrodnoAlexey G. Shlyahtun
Institute of Biochemistry of Biologically Active Compounds of the National Academy of Sciences of Belarus
Email: a.shlyahtun@gmail.com
SPIN-code: 6134-9385
Head of the Laboratory of Biologically Active Substances
Belarus, GrodnoIgor N. Semenenya
Institute of Biochemistry of Biologically Active Compounds of the National Academy of Sciences of Belarus
Email: insemenenya@yandex.by
MD, Dr. Sci. (Med.), Professor, Director
Belarus, GrodnoReferences
- Nikiforov A, Kulikova V, Ziegler M. The human NAD metabolome: Functions, metabolism and compartmentalization. Crit Rev Biochem Mol Biol. 2015;50(4):284–297. doi: 10.3109/10409238.2015.1028612
- Kulikova VA, Gromyko DV, Nikiforov AA. The regulatory role of NAD in human and animal cells. Biochemistry (Moscow). 2018;83(7):800–812. doi: 10.1134/S0006297918070040
- Belenky P, Bogan KL, Brenner C. NAD+ metabolism in health and disease. Trends Biochem Sci. 2007;32(1):12–19. doi: 10.1016/j.tibs.2006.11.006
- Zhang N, Sauve AA. Regulatory effects of NAD+ metabolic pathways on sirtuin activity. Prog Mol Biol Transl Sci. 2018;154:71–104. doi: 10.1016/bs.pmbts.2017.11.012
- Fliegert R, Gasser A, Guse AH. Regulation of calcium signalling by adenine-based second messengers. Biochem Soc Trans. 2007;35(Pt 1):109–114. doi: 10.1042/BST0350109
- Cantó C, Menzies KJ, Auwerx J. NAD(+) metabolism and the control of energy homeostasis: A balancing act between mitochondria and the nucleus. Cell Metab. 2015;22(1):31–53. doi: 10.1016/j.cmet.2015.05.023
- Liu L, Su X, Quinn WJ III, et al. Quantitative analysis of NAD synthesis-breakdown fluxes. Cell Metab. 2018;27(5):1067–1080.e5. doi: 10.1016/j.cmet.2018.03.018
- Tannous C, Booz GW, Altara R, et al. Nicotinamide adenine dinucleotide: Biosynthesis, consumption and therapeutic role in cardiac diseases. Acta Physiol (Oxf). 2021;231(3):e13551. doi: 10.1111/apha.13551
- Gasperi V, Sibilano M, Savini I, Catani MV. Niacin in the central nervous system: An update of biological aspects and clinical applications. Int J Mol Sci. 2019;20(4):974. doi: 10.3390/ijms20040974
- Kulikova V, Shabalin K, Nerinovski K, et al. Generation, release, and uptake of the NAD precursor nicotinic acid riboside by human cells. J Biol Chem. 2015;290(45):27124–27137. doi: 10.1074/jbc.M115.664458
- Katsyuba E, Auwerx J. Modulating NAD+ metabolism, from bench to bedside. EMBO J. 2017;36(18):2670–2683. doi: 10.15252/embj.201797135
- Yoshino J, Mills KF, Yoon MJ, Imai S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011;14(4):528–536. doi: 10.1016/j.cmet.2011.08.014
- Gomes AP, Price NL, Ling AJ, et al. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell. 2013;155(7):1624–1638. doi: 10.1016/j.cell.2013.11.037
- Clement J, Wong M, Poljak A, et al. The plasma NAD+ metabolome is dysregulated in “normal” aging. Rejuvenation Res. 2019;22(2):121–130. doi: 10.1089/rej.2018.2077
- Covarrubias AJ, Perrone R, Grozio A, Verdin E. NAD+ metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol. 2021;22(2):119–141. doi: 10.1038/s41580-020-00313-x
- Mukherjee S, Chellappa K, Moffitt A, et al. Nicotinamide adenine dinucleotide biosynthesis promotes liver regeneration. Hepatology. 2017;65(2):616–663. doi: 10.1002/hep.28912
- Cantó C, Houtkooper RH, Pirinen E, et al. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 2012;15(6):838–847. doi: 10.1016/j.cmet.2012.04.022
- Braidy N, Berg J, Clement J, et al. Role of nicotinamide adenine dinucleotide and related precursors as therapeutic targets for age-related degenerative diseases: Rationale, biochemistry, pharmacokinetics, and outcomes. Antioxid Redox Signal. 2019;30(2):251–294. doi: 10.1089/ars.2017.7269
- Bieganowski P, Brenner C. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans. Cell. 2004;117(4):495–550. doi: 10.1016/s0092-8674(04)00416-7
- Trammell SA, Yu L, Redpath P, et al. Nicotinamide riboside is a major NAD+ precursor vitamin in cow milk. J Nutr. 2016;146(5):957–963. doi: 10.3945/jn.116.230078
- Trammell SA, Schmidt MS, Weidemann BJ, et al. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat Commun. 2016;7:12948. doi: 10.1038/ncomms12948
- Kropotov A, Kulikova V, Nerinovski K, et al. Equilibrative nucleoside transporters mediate the import of nicotinamide riboside and nicotinic acid riboside into human cells. Int J Mol Sci. 2021;22(3):1391. doi: 10.3390/ijms22031391
- Yoshino J, Baur JA, Imai SI. NAD+ Intermediates: The biology and therapeutic potential of NMN and NR. Cell Metab. 2018;27(3):513–528. doi: 10.1016/j.cmet.2017.11.002
- Gong B, Pan Y, Vempati P, et al. Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-γ coactivator 1α regulated β-secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models. Neurobiol Aging. 2013;34(6):1581–1588. doi: 10.1016/j.neurobiolaging.2012.12.005
- Schöndorf DC, Ivanyuk D, Baden P, et al. The NAD+ precursor nicotinamide riboside rescues mitochondrial defects and neuronal loss in iPSC and fly models of Parkinson’s disease. Cell Rep. 2018;23(10):2976–2988. doi: 10.1016/j.celrep.2018.05.009
- Lloret A, Beal MF. PGC-1α, sirtuins and PARPs in Huntington’s disease and other neurodegenerative conditions: NAD+ to rule them all. Neurochem Res. 2019;44(10):2423–2434. doi: 10.1007/s11064-019-02809-1
- Elhassan YS, Kluckova K, Fletcher RS, et al. Nicotinamide riboside augments the aged human skeletal muscle NAD+ metabolome and induces transcriptomic and anti-inflammatory signatures. Cell Rep. 2019;28(7):1717–1728.e6. doi: 10.1016/j.celrep.2019.07.043
- Brown KD, Maqsood S, Huang JY, et al. Activation of SIRT3 by the NAD⁺ precursor nicotinamide riboside protects from noise-induced hearing loss. Cell Metab. 2014;20(6):1059–1068. doi: 10.1016/j.cmet.2014.11.003
- Khan NA, Auranen M, Paetau I, et al. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3. EMBO Mol Med. 2014;6(6):721–731. doi: 10.1002/emmm.201403943
- Trammell SA, Weidemann BJ, Chadda A, et al. Nicotinamide riboside opposes type 2 diabetes and neuropathy in mice. Sci Rep. 2016;6:26933. doi: 10.1038/srep26933
- Zhou CC, Yang X, Hua X, et al. Hepatic NAD(+) deficiency as a therapeutic target for non-alcoholic fatty liver disease in ageing. Br J Pharmacol. 2016;173(15):2352–2368. doi: 10.1111/bph.13513
- Tummala KS, Gomes AL, Yilmaz M, et al. Inhibition of de novo NAD(+) synthesis by oncogenic URI causes liver tumorigenesis through DNA damage. Cancer Cell. 2014;26(6):826–839. doi: 10.1016/j.ccell.2014.10.002
- Diguet N, Trammell SAJ, Tannous C, et al. Nicotinamide riboside preserves cardiac function in a mouse model of dilated cardiomyopathy. Circulation. 2018;137(21):2256–2273. doi: 10.1161/CIRCULATIONAHA.116.026099
- Frederick DW, Loro E, Liu L, et al. Loss of NAD homeostasis leads to progressive and reversible degeneration of skeletal muscle. Cell Metab. 2016;24(2):269–282. doi: 10.1016/j.cmet.2016.07.005
- Martens CR, Denman BA, Mazzo MR, et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults. Nat Commun. 2018;9(1):1286. doi: 10.1038/s41467-018-03421-7
- Airhart SE, Shireman LM, Risler LJ, et al. An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers. PLoS One. 2017;12(12):e0186459. doi: 10.1371/journal.pone.0186459
- Chi Y, Sauve AA. Nicotinamide riboside, a trace nutrient in foods, is a vitamin B3 with effects on energy metabolism and neuroprotection. Curr Opin Clin Nutr Metab Care. 2013;16(6):657–666. doi: 10.1097/MCO.0b013e32836510c0
- Effects of nicotinamide riboside on the clinical outcome of Covid-19 in the elderly [Internet]. ClinicalTrials.gov Identifier: NCT04407390; 2021 Nov 5. Available from: https://clinicaltrials.gov/ct2/show/NCT04407390. Accessed: 21.09.2022.
- Poddar SK, Sifat AE, Haque S, et al. Nicotinamide mononucleotide: Exploration of diverse therapeutic applications of a potential molecule. Biomolecules. 2019;9(1):34. doi: 10.3390/biom9010034
- Mills KF, Yoshida S, Stein LR, et al. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab. 2016;24(6):795–806. doi: 10.1016/j.cmet.2016.09.013
- De Picciotto NE, Gano LB, Johnson LC, et al. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell. 2016;15(3):522–530. doi: 10.1111/acel.12461
- Guan Y, Wang SR, Huang XZ, et al. Nicotinamide mononucleotide, an NAD+ precursor, rescues age-associated susceptibility to AKI in a sirtuin 1-dependent manner. J Am Soc Nephrol. 2017;28(8):2337–2352. doi: 10.1681/ASN.2016040385
- Stromsdorfer KL, Yamaguchi S, Yoon MJ, et al. NAMPT-mediated NAD(+) biosynthesis in adipocytes regulates adipose tissue function and multi-organ insulin sensitivity in mice. Cell Rep. 2016;16(7):1851–1860. doi: 10.1016/j.celrep.2016.07.027
- Ratajczak J, Joffraud M, Trammell SA, et al. NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells. Nat Commun. 2016;7:13103. doi: 10.1038/ncomms13103
- Grozio A, Mills KF, Yoshino J, et al. Slc12a8 is a nicotinamide mononucleotide transporter. Nat Metab. 2019;1(1):47–57. doi: 10.1038/s42255-018-0009-4
- Martin AS, Abraham DM, Hershberger KA, et al. Nicotinamide mononucleotide requires SIRT3 to improve cardiac function and bioenergetics in a Friedreich’s ataxia cardiomyopathy model. JCI Insight. 2017;2(14):e93885. doi: 10.1172/jci.insight.93885
- Park JH, Long A, Owens K, Kristian T. Nicotinamide mononucleotide inhibits post-ischemic NAD(+) degradation and dramatically ameliorates brain damage following global cerebral ischemia. Neurobiol Dis. 2016;95:102–110. doi: 10.1016/j.nbd.2016.07.018
- Wang X, Hu X, Yang Y, et al. Nicotinamide mononucleotide protects against β-amyloid oligomer-induced cognitive impairment and neuronal death. Brain Res. 2016;1643:1–9. doi: 10.1016/j.brainres.2016.04.060
- Yao Z, Yang W, Gao Z, Jia P. Nicotinamide mononucleotide inhibits JNK activation to reverse Alzheimer disease. Neurosci Lett. 2017;647:133–140. doi: 10.1016/j.neulet.2017.03.027
- Assiri MA, Ali HR, Marentette JO, et al. Investigating RNA expression profiles altered by nicotinamide mononucleotide therapy in a chronic model of alcoholic liver disease. Hum Genomics. 2019;13(1):6. doi: 10.1186/s40246-019-0251-1
- Lin JB, Kubota S, Ban N, et al. NAMPT-mediated NAD(+) biosynthesis is essential for vision in mice. Cell Rep. 2016;17(1):69–85. doi: 10.1016/j.celrep.2016.08.073
- Klimova N, Long A, Kristian T. Nicotinamide mononucleotide alters mitochondrial dynamics by SIRT3-dependent mechanism in male mice. J Neurosci Res. 2019;97(8):975–990. doi: 10.1002/jnr.24397
- Hacioglu C, Kar F, Kanbak G. Reproductive effects of nicotinamide on testicular function and structure in old male rats: Oxidative, apoptotic, hormonal, and morphological analyses. Reprod Sci. 2021;28(12):3352–3360. doi: 10.1007/s43032-021-00647-7
- Kiss T, Balasubramanian P, Valcarcel-Ares MN, et al. Nicotinamide mononucleotide (NMN) treatment attenuates oxidative stress and rescues angiogenic capacity in aged cerebromicrovascular endothelial cells: a potential mechanism for the prevention of vascular cognitive impairment. Geroscience. 2019;41(5):619–630. doi: 10.1007/s11357-019-00074-2
- Liao B, Zhao Y, Wang D, et al. Nicotinamide mononucleotide supplementation enhances aerobic capacity in amateur runners: a randomized, double-blind study. J Int Soc Sports Nutr. 2021;18(1):54. doi: 10.1186/s12970-021-00442-4
- Das A, Huang GX, Bonkowski MS, et al. Impairment of an endothelial NAD+-H2S signaling network is a reversible cause of vascular aging. Cell. 2019;176(4):944–945. doi: 10.1016/j.cell.2019.01.026
- Eldridge AL. Comparison of 1989 RDAs and DRIs for water-soluble vitamins. Nutr Today. 2004;39(2):88–93. doi: 10.1097/00017285-200403000-00011
- Guyton JR. Niacin in cardiovascular prevention: mechanisms, efficacy, and safety. Curr Opin Lipidol. 2007;18(4):415–442. doi: 10.1097/MOL.0b013e3282364add
- Kamanna VS, Ganji SH, Kashyap ML. The mechanism and mitigation of niacin-induced flushing. Int J Clin Pract. 2009;63(9):1369–1377. doi: 10.1111/j.1742-1241.2009.02099.x
- Titcomb TJ, Tanumihardjo SA. Global concerns with B vitamin statuses: Biofortification, fortification, hidden hunger, interactions, and toxicity. Compr Rev Food Sci Food Saf. 2019;18(6):1968–1984. doi: 10.1111/1541-4337.12491
- Revollo JR, Grimm AA, Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem. 2004;279(49):50754–50763. doi: 10.1074/jbc.M408388200
- Stein LR, Imai S. Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging. EMBO J. 2014;33(12):1321–1340. doi: 10.1002/embj.201386917
- Hwang ES, Song SB. Possible adverse effects of high-dose nicotinamide: Mechanisms and safety assessment. Biomolecules. 2020;10(5):687. doi: 10.3390/biom10050687
- Fania L, Mazzanti C, Campione E, et al. Role of nicotinamide in genomic stability and skin cancer chemoprevention. Int J Mol Sci. 2019;20(23):5946. doi: 10.3390/ijms20235946
- Agote M, Viaggi M, Kreimann E, et al. Influence of nicotinamide on the radiosensitivity of normal and goitrous thyroid in the rat. Thyroid. 2001;11(11):1003–1007. doi: 10.1089/105072501753271671
- Malesu R, Martin AJ, Lyons JG, et al. Nicotinamide for skin cancer chemoprevention: Effects of nicotinamide on melanoma in vitro and in vivo. Photochem Photobiol Sci. 2020;19(2):171–179. doi: 10.1039/c9pp00388f
- Scatozza F, Moschella F, D’Arcangelo D, et al. Nicotinamide inhibits melanoma in vitro and in vivo. J Exp Clin Cancer Res. 2020;39(1):211. doi: 10.1186/s13046-020-01719-3
- Takahashi N, Li F, Fushima T, et al. Vitamin B3 nicotinamide: A promising candidate for treating preeclampsia and improving fetal growth. Tohoku J Exp Med. 2018;244(3):243–248. doi: 10.1620/tjem.244.243
- Forbat E, Al-Niaimi F, Ali FR. Use of nicotinamide in dermatology. Clin Exp Dermatol. 2017;42(2):137–144. doi: 10.1111/ced.13021
- Ito TK, TomohitoSato T, Hakamata A, et al. A nonrandomized study of single oral supplementation within the daily tolerable upper level of nicotinamide affects blood nicotinamide and NAD+ levels in healthy subjects. Transl Med Aging. 2020;4:45–54. doi: 10.1016/j.tma.2020.04.002
- Ranchoff RE, Tomecki KJ. Niacin or niacinamide? Nicotinic acid or nicotinamide? What is the difference? J Am Acad Dermatol. 1986;15(1):116–117. doi: 10.1016/s0190-9622(86)80149-9
- Connell NJ, Houtkooper RH, Schrauwen P. NAD+ metabolism as a target for metabolic health: Have we found the silver bullet? Diabetologia. 2019;62(6):888–899. doi: 10.1007/s00125-019-4831-3
- Roberti A, Fernández AF, Fraga MF. Nicotinamide N-methyltransferase: At the crossroads between cellular metabolism and epigenetic regulation. Mol Metab. 2021;45:101165. doi: 10.1016/j.molmet.2021.101165
Supplementary files
