Метаболические предшественники никотинамидадениндинуклеотида и возможности их клинического применения
- Авторы: Сутько И.П.1, Шляхтун А.Г.1, Семененя И.Н.1
-
Учреждения:
- Институт биохимии биологически активных соединений НАН Беларуси
- Выпуск: Том 22, № 3 (2022)
- Страницы: 15-25
- Раздел: Аналитический обзор
- URL: https://journals.rcsi.science/MAJ/article/view/131475
- DOI: https://doi.org/10.17816/MAJ89964
- ID: 131475
Цитировать
Аннотация
Никотинамидадениндинуклеотид (NAD+) присутствует во всех живых клетках и представляет собой центральную сигнальную молекулу и кофактор ферментов, который участвует во многих фундаментальных биологических процессах, включая производство энергии, репарацию ДНК, экспрессию генов, кальций-зависимую передачу сигналов. Известно, что уровни NAD+ снижаются при многих патологических изменениях, а также с возрастом в различных тканях животных и человека, что способствует развитию возрастной патологии. Некоторые данные свидетельствуют, что увеличение уровня внутриклеточного NAD+ предотвращает развитие различных патологических состояний и процессов. В обзоре представлен анализ современных сведений о возможности применения предшественников биосинтеза NAD+ для обеспечения необходимого его уровня в тканях организма с целью коррекции различных нарушений жизнедеятельности.
Полный текст
Открыть статью на сайте журналаОб авторах
Ирина Петровна Сутько
Институт биохимии биологически активных соединений НАН Беларуси
Автор, ответственный за переписку.
Email: irynasutsko@gmail.com
ORCID iD: 0000-0001-9599-6944
SPIN-код: 3475-3276
Scopus Author ID: 55308045600
канд. биол. наук, старший научный сотрудник лаборатории биологически активных веществ
Белоруссия, ГродноАлексей Генрихович Шляхтун
Институт биохимии биологически активных соединений НАН Беларуси
Email: a.shlyahtun@gmail.com
SPIN-код: 6134-9385
заведующий лабораторией биологически активных веществ
Белоруссия, ГродноИгорь Николаевич Семененя
Институт биохимии биологически активных соединений НАН Беларуси
Email: insemenenya@yandex.by
д-р мед. наук, профессор, директор
Белоруссия, ГродноСписок литературы
- Nikiforov A., Kulikova V., Ziegler M. The human NAD metabolome: Functions, metabolism and compartmentalization // Crit. Rev. Biochem. Mol. Biol. 2015. Vol. 50, No. 4. P. 284–297. doi: 10.3109/10409238.2015.1028612
- Kulikova V.A., Gromyko D.V., Nikiforov A.A. The regulatory role of NAD in human and animal cells // Biochemistry (Moscow). 2018. Vol. 83, No. 7. P. 800–812. doi: 10.1134/S0006297918070040
- Belenky P., Bogan K.L., Brenner C. NAD+ metabolism in health and disease // Trends Biochem. Sci. 2007. Vol. 32, No. 1. P. 12–19. doi: 10.1016/j.tibs.2006.11.006
- Zhang N., Sauve A.A. Regulatory effects of NAD+ metabolic pathways on sirtuin activity // Prog. Mol. Biol. Transl Sci. 2018. Vol. 154. P. 71–104. doi: 10.1016/bs.pmbts.2017.11.012
- Fliegert R., Gasser A., Guse A.H. Regulation of calcium signalling by adenine-based second messengers // Biochem. Soc. Trans. 2007. Vol. 35, No. Pt 1. P. 109–114. doi: 10.1042/BST0350109
- Cantó C., Menzies K.J., Auwerx J. NAD(+) metabolism and the control of energy homeostasis: A balancing act between mitochondria and the nucleus // Cell Metab. 2015. Vol. 22. No. 1. P. 31–53. doi: 10.1016/j.cmet.2015.05.023
- Liu L., Su X., Quinn W.J. III et al. Quantitative analysis of NAD synthesis-breakdown fluxes // Cell. Metab. 2018. Vol. 27, No. 5. P. 1067–1080.e5. doi: 10.1016/j.cmet.2018.03.018
- Tannous C., Booz G.W., Altara R. et al. Nicotinamide adenine dinucleotide: Biosynthesis, consumption and therapeutic role in cardiac diseases // Acta Physiol. (Oxf). 2021. Vol. 231, No. 3. P. e13551. doi: 10.1111/apha.13551
- Gasperi V., Sibilano M., Savini I., Catani M.V. Niacin in the central nervous system: An update of biological aspects and clinical applications // Int. J. Mol. Sci. 2019. Vol. 20, No. 4. P. 974. doi: 10.3390/ijms20040974
- Kulikova V., Shabalin K., Nerinovski K. et al. Generation, release, and uptake of the NAD precursor nicotinic acid riboside by human cells // J. Biol. Chem. 2015. Vol. 290, No. 45. P. 27124–27137. doi: 10.1074/jbc.M115.664458
- Katsyuba E., Auwerx J. Modulating NAD+ metabolism, from bench to bedside // EMBO J. 2017. Vol. 36, No. 18. P. 2670–2683. doi: 10.15252/embj.201797135
- Yoshino J., Mills K.F., Yoon M.J, Imai S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice // Cell. Metab. 2011. Vol. 14, No. 4. P. 528–536. doi: 10.1016/j.cmet.2011.08.014
- Gomes A.P., Price N.L., Ling A.J. et al. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging // Cell. 2013. Vol. 155, No. 7. P. 1624–1638. doi: 10.1016/j.cell.2013.11.037
- Clement J., Wong M., Poljak A. et al. The plasma NAD+ metabolome is dysregulated in “normal” aging // Rejuvenation. Res. 2019. Vol. 22, No. 2. P. 121–130. doi: 10.1089/rej.2018.2077
- Covarrubias A.J., Perrone R., Grozio A., Verdin E. NAD+ metabolism and its roles in cellular processes during ageing // Nat. Rev. Mol. Cell Biol. 2021. Vol. 22, No. 2. P. 119–141. doi: 10.1038/s41580-020-00313-x
- Mukherjee S., Chellappa K., Moffitt A. et al. Nicotinamide adenine dinucleotide biosynthesis promotes liver regeneration // Hepatology. 2017. Vol. 65, No. 2. P. 616–663. doi: 10.1002/hep.28912
- Cantó C., Houtkooper R.H., Pirinen E. et al. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity // Cell. Metab. 2012. Vol. 15, No. 6. P. 838–847. doi: 10.1016/j.cmet.2012.04.022
- Braidy N., Berg J., Clement J. et al. Role of nicotinamide adenine dinucleotide and related precursors as therapeutic targets for age-related degenerative diseases: Rationale, biochemistry, pharmacokinetics, and outcomes // Antioxid. Redox. Signal. 2019. Vol. 30, No. 2. P. 251–294. doi: 10.1089/ars.2017.7269
- Bieganowski P., Brenner C. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans // Cell. 2004. Vol. 117, No. 4. P. 495–550. doi: 10.1016/s0092-8674(04)00416-7
- Trammell S.A., Yu L., Redpath P. et al. Nicotinamide riboside is a major NAD+ precursor vitamin in cow milk // J. Nutr. 2016. Vol. 146, No. 5. P. 957–963. doi: 10.3945/jn.116.230078
- Trammell S.A., Schmidt M.S., Weidemann B. et al. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans // Nat. Commun. 2016. Vol. 7. P. 12948. doi: 10.1038/ncomms12948
- Kropotov A., Kulikova V., Nerinovski K. et al. Equilibrative nucleoside transporters mediate the import of nicotinamide riboside and nicotinic acid riboside into human cells // Int. J. Mol. Sci. 2021. Vol. 22, No. 3. P. 1391. doi: 10.3390/ijms22031391
- Yoshino J., Baur J.A., Imai S.I. NAD+ Intermediates: The biology and therapeutic potential of NMN and NR // Cell Metab. 2018. Vol. 27, No. 3. P. 513–528. doi: 10.1016/j.cmet.2017.11.002
- Gong B., Pan Y., Vempati P. et al. Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-γ coactivator 1α regulated β-secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models // Neurobiol. Aging. 2013. Vol. 34, No. 6. P. 1581–1588. doi: 10.1016/j.neurobiolaging.2012.12.005
- Schöndorf D.C., Ivanyuk D., Baden P. et al. The NAD+ precursor nicotinamide riboside rescues mitochondrial defects and neuronal loss in iPSC and fly models of Parkinson’s disease // Cell Rep. 2018. Vol. 23, No. 10. P. 2976–2988. doi: 10.1016/j.celrep.2018.05.009
- Lloret A., Beal M.F. PGC-1α, sirtuins and PARPs in Huntington’s disease and other neurodegenerative conditions: NAD+ to rule them all // Neurochem. Res. 2019. Vol. 44, No. 10. P. 2423–2434. doi: 10.1007/s11064-019-02809-1
- Elhassan Y.S., Kluckova K., Fletcher R.S. et al. Nicotinamide riboside augments the aged human skeletal muscle NAD+ metabolome and induces transcriptomic and anti-inflammatory signatures // Cell Rep. 2019. Vol. 28, No. 7. P. 1717–1728.e6. doi: 10.1016/j.celrep.2019.07.043
- Brown K.D., Maqsood S., Huang J.Y. et al. Activation of SIRT3 by the NAD⁺ precursor nicotinamide riboside protects from noise-induced hearing loss // Cell Metab. 2014. Vol. 20, No. 6. P. 1059–1068. doi: 10.1016/j.cmet.2014.11.003
- Khan N.A., Auranen M., Paetau I. et al. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3 // EMBO Mol. Med. 2014. Vol. 6, No. 6. P. 721–731. doi: 10.1002/emmm.201403943
- Trammell S.A., Weidemann B.J., Chadda A. et al. Nicotinamide riboside opposes type 2 diabetes and neuropathy in mice // Sci. Rep. 2016. Vol. 6. P. 26933. doi: 10.1038/srep26933
- Zhou C.C., Yang X., Hua X. et al. Hepatic NAD(+) deficiency as a therapeutic target for non-alcoholic fatty liver disease in ageing // Br. J. Pharmacol. 2016. Vol. 173, No. 15. P. 2352–2368. doi: 10.1111/bph.13513
- Tummala K.S., Gomes A.L., Yilmaz M. et al. Inhibition of de novo NAD(+) synthesis by oncogenic URI causes liver tumorigenesis through DNA damage // Cancer Cell. 2014. Vol. 26, No. 6. P. 826–839. doi: 10.1016/j.ccell.2014.10.002
- Diguet N., Trammell S.A.J., Tannous C. et al. Nicotinamide riboside preserves cardiac function in a mouse model of dilated cardiomyopathy // Circulation. 2018. Vol. 137, No. 21. P. 2256–2273. doi: 10.1161/CIRCULATIONAHA.116.026099
- Frederick D.W., Loro E., Liu L. et al. Loss of NAD homeostasis leads to progressive and reversible degeneration of skeletal muscle // Cell Metab. 2016. Vol. 24, No. 2. P. 269–282. doi: 10.1016/j.cmet.2016.07.005
- Martens C.R., Denman B.A., Mazzo M.R. et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults // Nat. Commun. 2018. Vol. 9, No. 1. P. 1286. doi: 10.1038/s41467-018-03421-7
- Airhart S.E., Shireman L.M., Risler L.J. et al. An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers // PLoS One. 2017. Vol. 12, No. 12. P. e0186459. doi: 10.1371/journal.pone.0186459
- Chi Y., Sauve A.A. Nicotinamide riboside, a trace nutrient in foods, is a vitamin B3 with effects on energy metabolism and neuroprotection // Curr. Opin. Clin. Nutr. Metab. Care. 2013. Vol. 16, No. 6. P. 657–666. doi: 10.1097/MCO.0b013e32836510c0
- Effects of nicotinamide riboside on the clinical outcome of COVID-19 in the elderly [Электронный ресурс]. ClinicalTrials.gov Identifier: NCT04407390; 2021 Nov 5. Режим доступа: https://clinicaltrials.gov/ct2/show/NCT04407390. Дата обращения: 21.09.2022.
- Poddar S.K., Sifat A.E., Haque S. et al. Nicotinamide mononucleotide: Exploration of diverse therapeutic applications of a potential molecule // Biomolecules. 2019. Vol. 9, No. 1. P. 34. doi: 10.3390/biom9010034
- Mills K.F., Yoshida S., Stein L.R. et al. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice // Cell Metab. 2016. Vol. 24, No. 6. P. 795–806. doi: 10.1016/j.cmet.2016.09.013
- De Picciotto N.E., Gano L.B., Johnson L.C. et al. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice // Aging Cell. 2016. Vol. 15, No. 3. P. 522–530. doi: 10.1111/acel.12461
- Guan Y., Wang S.R., Huang X.Z. et al. Nicotinamide mononucleotide, an NAD+ precursor, rescues age-associated susceptibility to AKI in a sirtuin 1-dependent manner // J. Am. Soc. Nephrol. 2017. Vol. 28, No. 8. P. 2337–2352. doi: 10.1681/ASN.2016040385
- Stromsdorfer K.L., Yamaguchi S., Yoon M.J. et al. NAMPT-mediated NAD(+) biosynthesis in adipocytes regulates adipose tissue function and multi-organ insulin sensitivity in mice // Cell Rep. 2016. Vol. 16, No. 7. P. 1851–1860. doi: 10.1016/j.celrep.2016.07.027
- Ratajczak J., Joffraud M., Trammell S.A. et al. NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells // Nat. Commun. 2016. Vol. 7. P. 13103. doi: 10.1038/ncomms13103
- Grozio A., Mills K.F., Yoshino J. et al. Slc12a8 is a nicotinamide mononucleotide transporter // Nat. Metab. 2019. Vol. 1, No. 1. P. 47–57. doi: 10.1038/s42255-018-0009-4
- Martin A.S., Abraham D.M., Hershberger K.A. et al. Nicotinamide mononucleotide requires SIRT3 to improve cardiac function and bioenergetics in a Friedreich’s ataxia cardiomyopathy model // JCI Insight. 2017. Vol. 2, No. 14. P. e93885. doi: 10.1172/jci.insight.93885
- Park J.H., Long A., Owens K., Kristian T. Nicotinamide mononucleotide inhibits post-ischemic NAD(+) degradation and dramatically ameliorates brain damage following global cerebral ischemia // Neurobiol. Dis. 2016. Vol. 95. P. 102–110. doi: 10.1016/j.nbd.2016.07.018
- Wang X., Hu X., Yang Y. et al. Nicotinamide mononucleotide protects against β-amyloid oligomer-induced cognitive impairment and neuronal death // Brain Res. 2016. Vol. 1643. P. 1–9. doi: 10.1016/j.brainres.2016.04.060
- Yao Z., Yang W., Gao Z., Jia P. Nicotinamide mononucleotide inhibits JNK activation to reverse Alzheimer disease // Neurosci. Lett. 2017. Vol. 647. P. 133–140. doi: 10.1016/j.neulet.2017.03.027
- Assiri M.A., Ali H.R., Marentette J.O. et al. Investigating RNA expression profiles altered by niotinamide mononucleotide therapy in a chronic model of alcoholic liver disease // Hum. Genomics. 2019. Vol. 13, No. 1. P. 6. doi: 10.1186/s40246-019-0251-1
- Lin J.B., Kubota S., Ban N. et al. NAMPT-mediated NAD(+) biosynthesis is essential for vision in mice // Cell Rep. 2016. Vol. 17, No. 1. P. 69–85. doi: 10.1016/j.celrep.2016.08.073
- Klimova N., Long A., Kristian T. Nicotinamide mononucleotide alters mitochondrial dynamics by SIRT3-dependent mechanism in male mice // J. Neurosci. Res. 2019. Vol. 97, No. 8. P. 975–990. doi: 10.1002/jnr.24397
- Hacioglu C., Kar F., Kanbak G. Reproductive effects of nicotinamide on testicular function and structure in old male rats: Oxidative, apoptotic, hormonal, and morphological analyses // Reprod. Sci. 2021. Vol. 28, No. 12. P. 3352–3360. doi: 10.1007/s43032-021-00647-7
- Kiss T., Balasubramanian P., Valcarcel-Ares M.N. et al. Nicotinamide mononucleotide (NMN) treatment attenuates oxidative stress and rescues angiogenic capacity in aged cerebromicrovascular endothelial cells: a potential mechanism for the prevention of vascular cognitive impairment // Geroscience. 2019. Vol. 41, No. 5. P. 619–630. doi: 10.1007/s11357-019-00074-2
- Liao B., Zhao Y., Wang D. et al. Nicotinamide mononucleotide supplementation enhances aerobic capacity in amateur runners: a randomized, double-blind study // J. Int. Soc. Sports Nutr. 2021. Vol. 18, No. 1. P. 54. doi: 10.1186/s12970-021-00442-4
- Das A., Huang G.X., Bonkowski M.S. et al. Impairment of an endothelial NAD+-H2S signaling network is a reversible cause of vascular aging // Cell. 2019. Vol. 176, No. 4. P. 944–945. doi: 10.1016/j.cell.2019.01.026
- Eldridge A.L. Comparison of 1989 RDAs and DRIs for water-soluble vitamins // Nutr. Today. 2004. Vol. 39, No. 2. P. 88–93. doi: 10.1097/00017285-200403000-00011
- Guyton J.R. Niacin in cardiovascular prevention: mechanisms, efficacy, and safety // Curr. Opin. Lipidol. 2007. Vol. 18, No. 4. P. 415–442. doi: 10.1097/MOL.0b013e3282364add
- Kamanna V.S., Ganji S.H., Kashyap M.L. The mechanism and mitigation of niacin-induced flushing // Int. J. Clin. Pract. 2009. Vol. 63, No. 9. P. 1369–1377. doi: 10.1111/j.1742-1241.2009.02099.x
- Titcomb T.J., Tanumihardjo S.A. Global concerns with B vitamin statuses: Biofortification, fortification, hidden hunger, interactions, and toxicity // Compr. Rev. Food Sci. Food Saf. 2019. Vol. 18, No. 6. P. 1968–1984. doi: 10.1111/1541-4337.12491
- Revollo J.R., Grimm A.A., Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells // J. Biol. Chem. 2004. Vol. 279, No. 49. P. 50754–50763. doi: 10.1074/jbc.M408388200
- Stein L.R., Imai S. Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging // EMBO J. 2014. Vol. 33, No. 12. P. 1321–1340. doi: 10.1002/embj.201386917
- Hwang E.S., Song S.B. Possible adverse effects of high-dose nicotinamide: Mechanisms and safety assessment // Biomolecules. 2020. Vol. 10, No. 5. P. 687. doi: 10.3390/biom10050687
- Fania L., Mazzanti C., Campione E. et al. Role of nicotinamide in genomic stability and skin cancer chemoprevention // Int. J. Mol. Sci. 2019. Vol. 20, No. 23. P. 5946. doi: 10.3390/ijms20235946
- Agote M., Viaggi M., Kreimann E. et al. Influence of nicotinamide on the radiosensitivity of normal and goitrous thyroid in the rat // Thyroid. 2001. Vol. 11, No. 11. P. 1003–1007. doi: 10.1089/105072501753271671
- Malesu R., Martin A.J., Lyons J.G. et al. Nicotinamide for skin cancer chemoprevention: Effects of nicotinamide on melanoma in vitro and in vivo // Photochem. Photobiol. Sci. 2020. Vol. 19, No. 2. P. 171–179. doi: 10.1039/c9pp00388f
- Scatozza F., Moschella F., D’Arcangelo D. et al. Nicotinamide inhibits melanoma in vitro and in vivo // J. Exp. Clin. Cancer Res. 2020. Vol. 39, No. 1. P. 211. doi: 10.1186/s13046-020-01719-3
- Takahashi N., Li F., Fushima T. et al. Vitamin B3 nicotinamide: A promising candidate for treating preeclampsia and improving fetal growth // Tohoku J. Exp. Med. 2018. Vol. 244, No. 3. P. 243–248. doi: 10.1620/tjem.244.243
- Forbat E., Al-Niaimi F., Ali F.R. Use of nicotinamide in dermatology // Clin. Exp. Dermatol. 2017. Vol. 42, No. 2. P. 137–144. doi: 10.1111/ced.13021
- Ito T.K., TomohitoSato T., Hakamata A. et al. A nonrandomized study of single oral supplementation within the daily tolerable upper level of nicotinamide affects blood nicotinamide and NAD+ levels in healthy subjects // Transl. Med. Aging. 2020. Vol. 4. P. 45–54. doi: 10.1016/j.tma.2020.04.002
- Ranchoff R.E., Tomecki K.J. Niacin or niacinamide? Nicotinic acid or nicotinamide? What is the difference? // J. Am. Acad. Dermatol. 1986. Vol. 15, No. 1. P. 116–117. doi: 10.1016/s0190-9622(86)80149-9
- Connell N.J., Houtkooper R.H., Schrauwen P. NAD+ metabolism as a target for metabolic health: Have we found the silver bullet? // Diabetologia. 2019. Vol. 62, No. 6. P. 888–899. doi: 10.1007/s00125-019-4831-3
- Roberti A., Fernández A.F., Fraga M.F. Nicotinamide N-methyltransferase: At the crossroads between cellular metabolism and epigenetic regulation // Mol Metab. 2021. Vol. 45. P. 101165. doi: 10.1016/j.molmet.2021.101165
Дополнительные файлы
