Renal artery denervation: unsolved questions about mechanisms of changes of systemic hemodynamics
- Authors: Azovtsev R.A.1, Evlakhov V.I.1,2
-
Affiliations:
- Institute of Experimental Medicine
- Academician I.P. Pavlov First St. Petersburg State Medical University
- Issue: Vol 22, No 3 (2022)
- Pages: 5-14
- Section: Analytical reviews
- URL: https://journals.rcsi.science/MAJ/article/view/131474
- DOI: https://doi.org/10.17816/MAJ106891
- ID: 131474
Cite item
Abstract
In the review we discussed the clinical and physiological aspects of the use of renal artery denervation as an interventional method of treatment of refractory essential arterial hypertension. The application of radiofrequency denervation may be considered as an additional treatment to drug therapy in patients with arterial hypertension. At the same time, the main emphasis in the performed experimental and clinical studies was made on the assessment of changes in blood pressure, cardiac output and the calculated index of total peripheral resistance. However, there is no satisfactory data in the literature about changes of the venous return, as well as superior and inferior venae cavae flows. To assess the effectiveness of renal artery denervation on arterial and venous vessels resistance shifts, it is necessary to carry out experimental studies with perfusion of isolated organs in the conditions of modeling arterial hypertension in animals. The question of the extent to which denervation of the renal arteries leads to shifts in the reactions of organ venous vessels in response to pressor reflex stimuli also requires further studies on experimental models. There are practically no data in the literature on the degree of influence of renal artery denervation on orthostatic tolerance. To understand the mechanisms of changes in systemic hemodynamics in response to denervation of the renal arteries, it is also necessary to perform further research on the mechanisms of shifts in the capacitive and resistive functions of the pulmonary circulation with an assessment of pulmonary microcirculation.
Full Text
##article.viewOnOriginalSite##About the authors
Rostislav A. Azovtsev
Institute of Experimental Medicine
Email: azovtsev@mail.ru
Scopus Author ID: 255725
MD, Dr. Sci. (Med.), Head of the Department of X-ray Surgical Methods of Diagnosis and Treatment in Clinics
Russian Federation, Saint PetersburgVadim I. Evlakhov
Institute of Experimental Medicine; Academician I.P. Pavlov First St. Petersburg State Medical University
Author for correspondence.
Email: viespbru@mail.ru
ORCID iD: 0000-0002-2521-8140
SPIN-code: 9072-4077
Scopus Author ID: 6603378175
MD, Dr. Sci. (Med.), Head of the K.M. Bykov Laboratory of Physiology of Visceral Systems; Assistant Professor of the Department of Normal Physiology
Russian Federation, Saint Petersburg; Saint PetersburgReferences
- Kucherov VV, Fursov AN, Chernetsov VA, et al. The first experience with the use of catheter denervation of renal arteries in patients with refractory hypertension. Clinical Medicine. 2014;92(11):72–74. (In Russ.)
- Khubulava GG, Kozlov KL, Shishkevich AN, Mikhaylov SS. The use of radio-frequency ablation of renal arteries in the treatment of arterial hypertension. Bulletin of the Russian Military Medical Academy. 2016;(3(55)):81–83. (In Russ.)
- Danilov NM, Matchin YuG, Chazova IE. Endovascular radiofrequency denervation of renal arteries as an innovation method of treatment of refractory arterial hypertension: first experience in Russia. Angiology and Vascular Surgery. 2012;18(1):51–54. (In Russ.)
- Krum Н, Schlaich M, Whitbourn R, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373(9671):1275–1281. DOI: 1016/S0140-6736(09)60566-3
- Danilov NM, Agaeva RA, Matchin UG, et al. Russian Medical Society on Arterial Hypertension (RMSAH) Consensus of Experts on the use of radiofrequency denervation of the renal arteries in patients with arterial hypertension. Systemic Hypertension. 2020;17(4):7–18. (In Russ.) doi: 10.26442/2075082X.2020.4.200398
- Chepurnoy AG, Shugushev ZKh, Maksimkin DA. Second chance for renal artery denervation. Angiology and Vascular Surgery. 2021;27(2):32–39. (In Russ.) doi: 10.33529/ANGIO20211219
- Bolignano D, Coppolino G. Renal nerve ablation for resistant hypertension: facts, fictions and future directions. Rev Cardiovasc Med. 2019;20(1):9–18. doi: 10.31083/j.rcm.2019.01.51
- Pisano A, Iannone LF, Leo A. Renal denervation for resistant hypertension Cochrane Database Syst Rev. 2021;11(11):CD011499. doi: 10.1002/14651858.CD011499
- Tkachenko BI. Systemic hemodynamics. Russian Journal of Phisiology. 1999;85(9–10):1255–1266. (In Russ.)
- Voinov VA. Patofiziologiia serdca i sosudov: uchebnoe posobiie. Moscow: BINOM; 2017. (In Russ.)
- Guyenet PG, Stornetta RL, Souza GM, et al. Neuronal networks in hypertension: recent advances. Hypertension. 2020;76(2):300–311. doi: 10.1161/HYPERTENSIONAHA.120.14521
- Brouwers S, Sudano I, Kokubo Y, Sulaica EM. Arterial hypertension. Lancet. 2021;398(10296):249–261. doi: 10.1016/S0140-6736(21)00221-X
- Polimeni A, Curcio A, Indolfi C. Renal sympathetic denervation for treating resistant hypertension. Circ J. 2013;77(4):857–863. doi: 10.1253/circj.cj-13-0297
- Xu J, Hering D, Sata Y, et al. Renal denervation: current implications and future perspectives. Clin Sci (Lond). 2014;126(1):41–53. doi: 10.1042/CS20120581
- Weber MA, Mahfoud F, Schmieder RE, et al. Renal denervation for treating hypertension: current scientific and clinical evidence. JACC Cardiovasc Interv. 2019;12(12):1095–1105. doi: 10.1016/j.jcin.2019.02.050
- Tkachenko BI, Kulchitsky VA, Vishnevsky AA. Tsentral’naya regulyatsiya organnoi gemodinamiki. Saint Petersburg: Nauka; 1992. (In Russ.)
- Thakali KM, Lau Y, Fink GD, et al. Mechanisms of hypertension induced by nitric oxide (NO) deficiency: focus on venous function. J Cardiovasc Pharmacol. 2006;47(6):742–750. doi: 10.1097/01.fjc.0000211789.37658.e4
- Gao JQ, Yang W, Liu ZJ. Percutaneous renal artery denervation in patients with chronic systolic heart failure: A randomized controlled trial. Cardiol J. 2019;26(5):503–510. doi: 10.5603/CJ.a2018.0028
- Evlakhov VI, Pugovkin AP, Rudakova TL, Shalkovskaya LN. Osnovi fiziologii serdca: uchebnoie posobiie. Saint Petersburg: SpecLit; 2015. (In Russ.)
- Frohlich ED, Susic D. Mechanisms underlying obesity associated with systemic and renal hemodynamics in essential hypertension. Curr Hypertens Rep. 2008;10(2):151–155. doi: 10.1007/s11906-008-0028-8
- Fink GD, Johnson RJ, Galligan JJ. Mechanisms of increased venous smooth muscle tone in desoxycorticosterone acetate-salt hypertension. Hypertension. 2000;35(1 Pt 2):464–469. doi: 10.1161/01.hyp.35.1.464
- Meissner MH, Moneta G, Burnand K. The hemodynamics and diagnosis of venous disease. J Vasc Surg. 2007;46 Suppl S:4S–24S. doi: 10.1016/j.jvs.2007.09.043
- Hunter RW, Ivy JR, Bailey MA. Glucocorticoids and renal Na+ transport: implications for hypertension and salt sensitivity. J Physiol. 2014;592(8):1731–1744. doi: 10.1113/jphysiol.2013.267609
- Pang CC. Autonomic control of the venous system in health and disease: effects of drugs. Pharmacol Ther. 2001;90(2–3):179–230. doi: 10.1016/s0163-7258(01)00138-3
- Magder S. Volume and its relationship to cardiac output and venous return. Crit Care. 2016;20(1):271. doi: 10.1186/s13054-016-1438-7
- Lenski M, Mahfoud F, Razouk A, et al. Orthostatic function after renal sympathetic denervation in patients with resistant hypertension. Int J Cardiol. 2013;169(6):418–424. doi: 10.1016/j.ijcard.2013.10.017
- Howden EJ, East C, Lawley JS, et al. Integrative blood pressure response to upright tilt post renal denervation. Am J Hypertens. 2017;30(6):632–641. doi: 10.1093/ajh/hpx018
- Evlakhov VI, Poyassov IZ, Shaidakov EV, Ovsyannikov VI. Pulmonary hemodynamics following chronic thromboembolic pulmonary hypertension. Russian Journal of Physiology. 2017;103(11):1255–1240. (In Russ.)
- Vakhrushev AD, Condori Leandro HI, Goncharova NS, et al. Extended renal artery denervation is associated with artery wall lesions and acute systemic and pulmonary hemodynamic changes: a sham-controlled experimental study. Cardiovasc Ther. 2020;2020:8859663. doi: 10.1155/2020/8859663
- Qingyan Z, Xuejun J, Yanhong T, et al. Beneficial effects of renal denervation on pulmonary vascular remodeling in experimental pulmonary artery hypertension. Rev Esp Cardiol (Engl Ed). 2015;68(7):562–570. doi: 10.1016/j.rec.2014.11.022
- Vakhrushev AD, Сondori Leonardo HI, Goncharova NS, et al. Pulmonary and systemic hemodynamics following multielectrode radiofrequency catheter renal denervation in acutely induced pulmonaryarterial hypertension in swine. Biomed Res Int. 2021;2021:4248111. doi: 10.1155/2021/4248111
- Tkachenko BI, Evlakhov VI, Poiasov IZ. Hemodynamic mechanisms of the pulmonary artery pressure and blood flow changes following vasoactive pressor drugs injection. Russian Journal of Phisiology. 2008;94(8):888–899. (In Russ.)
- Efimova NY, Lichikaki VA, Lishmanov YB. Influence of sympathetic denervation of the renal artery on the level of arterial blood pressure, cerebral blood flow and cognitive function in patients with resistant arterial hypertension. Kardiologiia. 2017;57(7):27–34. (In Russ.) doi: 10.18087/cardio.2017.7.10003
Supplementary files
