M proteins are the major pathogenicity factors of Streptococcus pyogenes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

M proteins are the major pathogenicity factors of the widespread and potentially deadly bacterial pathogen Streptococcus pyogenes. These proteins confer to bacteria resistance against innate and adaptive immune responses. The study of the M proteins of hemolytic streptococci group A and their involvement in pathology clearly indicates that strains of streptococci, for one reason or another devoid of M proteins are unable to multiply in the macroorganism and form a focus of infection. This circumstance in itself once again underlines the leading role of M proteins in the realization of its many properties and in the development of the infectious process. The ability of M proteins to recruit plasma proteins of the macroorganism is their significant pathogenetic properties. The most important is the nonimmune binding by M proteins of human immunoglobulins, because it participates in the suppression of phagocytosis, violations of bacterial opsonization and complement activation along the classical pathway, not to mention the possible involvement of this phenomenon in the genesis of post-infectious complications of autoimmune nature. This review summarizes the current data on the structure M proteins, their functional activity, manifestations of pathogenicity, genetic regulation and methods of emm-typing.

About the authors

Larisa A. Burova

Institute of Experimental Medicine

Author for correspondence.
Email: lburova@yandex.ru
ORCID iD: 0000-0001-7687-2348
SPIN-code: 6084-1255
Scopus Author ID: 7003982261
ResearcherId: E-5270-2014

MD, Dr. Sci. (Med.), Leading Research Associate, Department of Molecular Microbiology

Russian Federation, Saint Petersburg

Alexander N. Suvorov

Institute of Experimental Medicine

Email: alexander_suvorov1@hotmail.com
ORCID iD: 0000-0003-2312-5589
SPIN-code: 8062-5281
Scopus Author ID: 7101829979
ResearcherId: J-6921-2013

MD, Dr. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences, Head Department of Molecular Microbiology

Russian Federation, Saint Petersburg

Artem A. Totolian

Institute of Experimental Medicine

Email: totolyan@hotmail.com
ORCID iD: 0000-0002-3310-9294
SPIN-code: 1741-9171
Scopus Author ID: 57194530404
ResearcherId: J-4218-214

MD, Dr. Sci. (Med.), Professor, Academician RAS, Chief Research Associate, Department of Molecular Microbiology

Russian Federation, Saint Petersburg

References

  1. Fischetti VA. M Protein and other surface proteins on streptococci. In: Streptococcus pyogenes: Basic Biology to Clinical Manifestations [Internet]. J.J. Ferretti, D.L. Stevens, V.A. Fischetti, editors. Oklahoma City: University of Oklahoma, Health Sciences Center; 2016.
  2. Carapetis JR, Steer AC, Mulholland EK, Weber M. The global burden of group A streptococcal diseases. Lancet Infect Dis. 2005;5(11):685–694. doi: 10.1016/S1473-3099(05)70267-X
  3. Maxted WR. The indirect bactericidal test as a means of identifying antibody to the M antigen of Streptococcus pyogenes. Br J Exp Pathol. 1956;37(4):415–422.
  4. Lancefield RC. Persistence of type-specific antibodies in man following infection with group A streptococci. J Exp Med. 1959;110(2):271–292. doi: 10.1084/jem.110.2.271
  5. Lancefield RC. Current knowledge of the type-specific M antigens of group A streptococci. J Immunol. 1962;89:307–313.
  6. Cunningham MW, Beachey EH. Peptic digestion of streptococcal M protein. I. Effect of digestion at suboptimal pH upon the biological and immunological properties of purified M protein extracts. Infect Immun. 1974;9(2):244–248. doi: 10.1128/iai.9.2.244-248.1974
  7. Beachey EH, Campbell GL, Ofek I. Peptic digestion of streptococcal M protein. II. Extraction of M antigen from group A streptococci with pepsin. Infect Immun. 1974;9(5):891–896. doi: 10.1128/iai.9.5.891-896.1974
  8. Beachey EH, Seyer JM, Dale JB, et al. Type-specific protective immunity evoked by synthetic peptide of Streptococcus pyogenes M protein. Nature. 1981;292(5822):457–459. doi: 10.1038/292457a0
  9. Dale JB, Seyer JM, Beachey EH. Type-specific immunogenicity of a chemically synthesized peptide fragment of type 5 streptococcal M protein. J Exp Med. 1983;158(5):1727–1732. doi: 10.1084/jem.158.5.1727
  10. Cunningham MW. Pathogenesis of group A streptococcal infections. Clin Microbiol Rev. 2000;13(3):470–511. doi: 10.1128/CMR.13.3.470
  11. Smeesters PR, McMillan DJ, Sriprakash KS. The streptococcal M protein: a highly versatile molecule. Trends Microbiol. 2010;18(6):275–282. doi: 10.1016/j.tim.2010.02.007
  12. Walker MJ, Barnett TC, McArthur JD, et al. Disease manifestations and pathogenic mechanisms of group a streptococcus. Clin Microbiol Rev. 2014;27(2):264–301. doi: 10.1128/CMR.00101-13
  13. Frost HR, Sanderson-Smith M, Walker M, et al. Group A streptococcal M-like proteins: From pathogenesis to vaccine potential. FEMS Microbiol Rev. 2018;42(2):193–204. doi: 10.1093/femsre/fux057
  14. Lancefield RC. The antigenic complex of Streptococcus hemolyticus: I. Demonstration of a type-specific substance in extracts of Streptococcus hemolyticus. J Exp Med. 1928;47(1):91–103. doi: 10.1084/jem.47.1.91
  15. Fischetti VA. Streptococcal M protein: molecular design and biological behavior. Clin Microbiol Rev. 1989;2(3):285–314. doi: 10.1128/CMR.2.3.285
  16. Phillips GN, Flicker PF, Cohen C, et al. Streptococcal M protein: alpha-helical coiled-coil structure and arrangement on the cell surface. Proc Natl Acad Sci USA. 1981;78(8):4689–4693. doi: 10.1073/pnas.78.8.4689
  17. Stewart CM, Buffalo CZ, Valderrama JA, et al. Coiled-coil destabilizing residues in the group A Streptococcus M1 protein are required for functional interaction. Proc Natl Acad Sci USA. 2016;113(34):9515–9520. doi: 10.1073/pnas.1606160113
  18. Swanson J, Hsu KC, Gotschlich EC. Electron microscopic studies on streptococci. I. M antigen. J Exp Med. 1969;130(5):1063–1091. doi: 10.1084/jem.130.5.1063
  19. Cole RM, Hahn JJ. Cell wall replication in Streptococcus pyogenes. Science. 1962;135(3505):722–724. doi: 10.1126/science.135.3505.722
  20. Raz A, Talay SR, Fischetti VA. Cellular aspects of the distinct M protein and SfbI anchoring pathways in Streptococcus pyogenes. Mol Microbiol. 2012;84(4):631–647. doi: 10.1111/j.1365-2958.2012.08047.x
  21. Hollingshead SK, Fischetti VA, Scott JR. Complete nucleotide sequence of type 6 M protein of the group A streptococcus: repetitive structure and membrane anchor. J Biol Chem. 1986;261(4):1677–1686.
  22. Fischetti VA, Parry DA, Trus BL, et al. Conformational characteristics of the complete sequence of group A streptococcal M6 protein. Proteins. 1988;3(1):60–69. doi: 10.1002/prot.340030106
  23. Fischetti VA, Jones KF, Scott JR. Size variation of the M protein in group A streptococci. J Exp Med. 1985;161(6):1384–1401. doi: 10.1084/jem.161.6.1384
  24. Fischetti VA, Jarymowycz M, Jones KF, Scott JR. Streptococcal M protein size mutants occur at high frequency within a single strain. J Exp Med. 1986;164(4):971–980. doi: 10.1084/jem.164.4.971
  25. Hollingshead SK, Fischetti VA, Scott JR. Size variation in group A streptococcal M protein is generated by homologous recombination between intragenic repeats. Mol Gen Genet. 1987;207(2–3):196–203. doi: 10.1007/BF00331578
  26. McMillan DJ, Drèze PA, Vu T, et al. Updated model of group A Streptococcus M proteins based on a comprehensive worldwide study. Clin Microbiol Infect. 2013;19(5):E222–E229. doi: 10.1111/1469-0691.12134
  27. Bessen DE. Molecular basis of serotyping and the underlying genetic organization of Streptococcus pyogenes. In: Streptococcus pyogenes: Basic Biology to Clinical Manifestations [Internet]. Oklahoma City: University of Oklahoma, Health Sciences Center; 2016.
  28. McNamara C, Zinkernagel AS, Macheboeuf P, et al. Coiled-coil irregularities and instabilities in group A Streptococcus M1 are required for virulence. Science. 2008;319(5868):1405–1408. doi: 10.1126/science.1154470
  29. Rafeek RAM, Sikder S, Hamlin AS, et al. Requirements for a robust animal model to investigate the disease mechanism of autoimmune complications associated with ARF/RHD. Front Cardiovasc Med. 2021;8:675339. doi: 10.3389/fcsm.2021.676339
  30. Fischetti VA, Pancholi V, Schneewind O. Conservation of a hexapeptide sequence in the anchor region of surface proteins of Gram-positive cocci. Mol Microbiol. 1990;4(9):1603–1605. doi: 10.1111/j.1365-2958.1990.tb02072.x
  31. Raz A, Fischetti VA. Sortase A localizes to distinct foci on the Streptococcus pyogenes membrane. Proc Natl Acad Sci USA. 2008;105(47):18549–18554. doi: 10.1073/pnas.0808301105
  32. Mills JO, Ghosh P. Nonimmune antibody interactions of Group A Streptococcus M and M-like proteins. PLoS Pathog. 2021;17(2):e1009248. doi: 10.1371/journal. ppat.1009248
  33. Heath DG, Cleary PP. Fc-receptor and M-protein genes of group A streptococci are products of gene duplication. Proc Natl Acad Sci USA. 1989;86(12):4741–4745. doi: 10.1073/pnas.86.12.4741
  34. Whatmore AM, Kehoe MA. Horizontal gene transfer in the evolution of group A streptococcal emm-like genes: gene mosaics and variation in Vir regulons. Mol Microbiol. 1994;11(2):363–374. doi: 10.1111/j.1365- 2958.1994.tb00316.x
  35. Courtney HS, Ofek I, Penfound T, et al. Relationship between expression of the family of M proteins and lipoteichoic acid to hydrophobicity and biofilm formation in Streptococcus pyogenes. PLoS One. 2009;4(1):e4166. doi: 10.1371/journal.pone.0004166
  36. Flores AR, Olsen RJ, Wunsche A, et al. Natural variation in the promoter of the gene encoding the Mga regulator alters host-pathogen interaction in group A Streptococcus carrier strains. Infect Immun. 2013;81(11):4128–4138. doi: 10.1128/IAI.00405-13
  37. Facklam R, Beall B, Efstratiou A, et al. emm typing and validation of provisional M types for group A streptococci. Emerg Infect Dis. 1999;5(2):247–253. doi: 10.3201/eid0502.990209
  38. Burova LA, Totolian Artem A. Major pathogenicity factors of Streptococcus pyogenes. Russian Journal of Infection and Immunity. 2022;12(1):33–50. (In Russ.). doi: 10.15789/2220-7619- MPF-1723
  39. Carlsson F, Sandin C, Lindahl G. Human fibrinogen bound to Streptococcus pyogenes M protein inhibits complement deposition via the classical pathway. Mol Microbiol. 2005;56(1):28–39. doi: 10.1111/j.1365-2958.2005.04527.x
  40. Macheboeuf P, Buffalo C, Fu CY, et al. Streptococcal M1 protein constructs a pathological host fibrinogen network. Nature. 2011;472(7341):64–68. doi: 10.1038/nature09967
  41. Berggard K, Johnsson E, Morfeldt E, et al. Binding of human C4BP to the hypervariable region of M protein: a molecular mechanism of phagocytosis resistance in Streptococcus pyogenes. Mol Microbiol. 2001;42(2):539–551. doi: 10.1046/j.1365-2958
  42. Buffalo CZ, Bahn-Suh AJ, Hirakis SP, et al. Conserved patterns hidden within group A Streptococcus M protein hypervariability recognize human C4b-binding protein. Nat Microbiol. 2016;1(11):16155. doi: 10.1038/nmicrobiol.2016.155
  43. Nilson BH, Frick IM, Akesson P, et al. Structure and stability of protein H and the M1 protein from Streptococcus pyogenes. Implications for other surface proteins of grampositive bacteria. Biochemistry. 1995;34(41):13688–13698. doi: 10.1021/bi00041a051
  44. Ermert D, Weckel A, Agarwal V, et al. Binding of complement inhibitor C4b-binding protein to a highly virulent Streptococcus pyogenes M1 strain is mediated by protein H and enhances adhesion to and invasion of endothelial cells. J Biol Chem. 2013;288(45):32172–32183. doi: 10.1074/jbc.M113.502955
  45. Kollman JM, Pandi L, Sawaya MR, et al. Crystal structure of human fibrinogen. Biochemistry. 2009;48(18):3877–3886. doi: 10.1021/bi802205g
  46. Sandin C, Carlsson F, Lindahl G. Binding of human plasma proteins to Streptococcus pyogenes M protein determines the location of opsonic and non-opsonic epitopes. Mol Microbiol. 2006;59(1):20–30. doi: 10.1111/j.1365-2958.2005.04913
  47. Carlsson F, Sandin C, Lindahl G. Human fibrinogen bound to Streptococcus pyogenes M protein inhibits complement deposition via the classical pathway. Mol Microbiol. 2005;56(1):28–39. doi: 10.1111/j.1365-2958.2005.04527.x
  48. Berge A, Sjobring U. PAM, a novel plasminogen-binding protein from Streptococcus pyogenes. J Biol Chem. 1993;268(34):25417–25424.
  49. Sun H, Ringdahl U, Homeister JW, et al. Plasminogen is a critical host pathogenicity factor for group A streptococcal infection. Science. 2004;305(5688):1283–1286. doi: 10.1126/science.1101245
  50. Ly D, Taylor JM, Tsatsaronis JA, et al. Plasmin (ogen) acquisition by group A Streptococcus protects against C3b-mediated neutrophil killing. J Innate Immun. 2014;6(2):240–250. DOI: org/10.1159/000353754
  51. Cole JN, McArthur JD, McKay FC, et al. Trigger for group A streptococcal M1T1 invasive disease. FASEB J. 2006;20(10):1745–1747. doi: 10.1096/fj.06-5804fje
  52. Bessen DE. Localization of immunoglobulin A-binding sites within M or M-like proteins of group A streptococci. Infect Immun. 1994;62(5):1968–1974. doi: 10.1128/IAI.62.5.1968-1974
  53. Johnsson E, Andersson G, Lindahl G, Heden LO. Identification of the IgA-binding region in streptococcal protein Arp. J Immunol. 1994;153(8):3557–3564.
  54. Kronvall G. A surface component in group A, C and G streptococci with non-immune reactivity for immunoglobulin G. J Immunol. 1973;111(5):1401–1406.
  55. Lindahl G, Stenberg L. Binding of IgA and/or IgG is a common property among clinical isolates of group A streptococci. Epidemiol Infect. 1990;105(1):87–93. doi: 10.1017/s0950268800047683
  56. Horton RE, Vidarsson G. Antibodies and their receptors: different potential roles in mucosal defense. Front Immunol. 2013;4:200. doi: 10.3389/fimmu.2013.00200
  57. Burova L, Pigarevsky P, Duplik N, et al. Immune complex binding Streptococcus pyogenes type M12/emm12 in experimental glomerulonephritis. J Med Microbiol. 2013;62(Pt 9):1272–1280. doi: 10.1099/jmm.0.059.196-0
  58. Christensen P, Oxelius V-A. A reaction between some streptococci and IgA myeloma proteins. Acta Path Microbiol Scand Sec C. 1975;83C(3):184–188. doi: 10.1111/J.1699-0463.1975.TB01624.X
  59. Lindahl G. An Odyssey in word of M proteins. In: Perspectives on receptins and resistance. Kronvall G., editor. Stockholm; 2013. P. 13–23.
  60. Barabas AZ, Cole CD, Lafreniere R, Weir DM. Immunopathological events initiated and maintained by pathogenic IgG autoantibodies in an experimental autoimmune kidney disease. Autoimmunity. 2012;45(7):495–509. DOI: 10.3.109/089.934.2012.70281216
  61. Burova LA, Schalen C, Koroleva IV, Svensson M-L. Role of group A streptococcal IgG Fc-receptor in induction of anti-IgG by immunization in rabbit. FEMS Microbiol Immunol. 1989;1(8–9):443–448. doi: 10.1111/j.1574-6968.1989.tb02435.x
  62. Lebrun L, Pillot J, Grangeot-Keros L. Significance of anti-IgG antibodies obtained by immunization of rabbits with same streptococcal strains. Ann Immunol (Paris).1982;133C(1):45–56. doi: 10.1016/0769-2625(82)90005-8
  63. Grubb R, Burova L, Hultguist R, et al. Anti-IgG-allotypic specifities of spontaneously occurring anti-immunoglobulins. In: Antibodies-protective, destructive and regulatory role. Milgrome F., Abeyounis C., Albini B., editors. Karger: Basel; 1985. P. 224–233.
  64. Burova LA, Christensen P, Grubb R, et al. Anti-immunoglobulins in experimental streptococcal immunization: relation to bacterial growth conditions and Fc-receptors. Acta Pathol Microbiol Immunol Scand C. 1985;93(1):19–23. doi: 10.1111/j.1699-0463.1985.tb02916.x
  65. Burova L, Therne A, Pigarevsky P, et al. Role of group A streptococcal IgG-binding proteins in triggering experimental glomerulonephritis in the rabbit. APMIS. 2003;111(10):955–962. doi: 10.1034/j.1600-0463.2003.1111007
  66. Burova LA, Pigarevsky PV, Seliverstova VG, et al. Experimental poststreptococcal glomerulonephritis elicited by IgG Fc-binding M family proteins and blocked by IgG Fc-fragment. APMIS. 2012;120(3):221–230. doi: 10.1111/j.1600-0463.2011.02826.x
  67. Burova LA, Suvorov AN, Totolian AA. Streptococcus pyogenes: phenomenon of non-immune binding of human immunoglobulins and its role in pathology. Medical Immunology (Russia). 2022;24(2):217–234. (In Russ.). doi: 10.15789/1563-0625-SPP-2450
  68. Burova LA, Pigarevsky PV, Snegova VA, et al. Nephritogenic activity of IgA-binding Streptococcus pyogenes. An experimental model of IgA glomerulonephritis. Medical Immunology (Russia). 2016;18(3):221–230. (In Russ.). doi: 10.15789/1563-0625-2016-3-221-230
  69. Schmitt R, Ståhl A, Olin A, et al. The combined role of galactose-deficient IgA1 and Streptococcal IgA-binding M protein in inducing IL-6 and C3 secretion from human mesangial cells: implications for IgA nephropathy. J Immunol. 2014;193(1):317–326. doi: 10.4049/jimmunol.1302249
  70. Iontova IM, Totolian AA. Lipoproteinase of group A streptococci and the antibodies in human sera. Zentralbl Bakteriol Orig A. 1975;233(4):452–463.
  71. Courtney HS, Pownall HJ. The structure and function of serum opacity factor: a unique streptococcal virulence determinant that targets high-density lipoproteins. J Biomed Biotechnol. 2010;2010:956071. doi: 10.1155/2010/956071
  72. Haanes EJ, Heath DG, Cleary PP. Architecture of the vir regulons of group A streptococci parallel opacity factor phenotype and M protein class. J Bacteriol. 1992;174(15):4967–4976. doi: 10.1128/jb.174.15.4967-4976.1992
  73. Beall B, Gherardi G, Lovgren M, et al. emm and sof gene sequence variation in relation to serological typing of opacity factor positive group A streptococci. Microbiology (Reading). 2000;146(Pt 5):1195–1209. doi: 10.1099/00221287-146-5-1195
  74. Martin DR. Rheumatogenic and nephritogenic group A streptococci. Myth or reality? An opening lecture. Adv Exp Med Biol. 1997;418:21–27.
  75. Totolian Artem A, Burova LA. Fc-receptor proteins of Streptococcus pyogenes and the pathogenesis of post-infection complications (critical review). Journal of Microbiology, Epidemiology and Immunobiology. 2014;3:78–91. (In Russ.)
  76. Totolian AA, Burova LA, Pigarevsky PV. Experimental post-streptococcal glomerulonephritis. Saint Petersburg; 2019. (In Russ.)
  77. Burova LA, Nagornev VA, Pigarevsky PV, et al. Myocardial tissue damage in rabbits injected with group A streptococci, types M1 and M22. Role of bacterial immunoglobulin–binding surface proteins. APMIS. 2005;113(1):21–30. doi: 10.1111/j.1600-0463.2005.apm1130104.x
  78. Burova LA, Nagornev VA, Pigarevsky PV, et al. Induction of myocarditis in rabbits injected with group A streptococci. Indian J Med Res. 2004;119 Suppl:183–185.
  79. Smeester PR, Mardulyn P, Vergison A, et al. Genetic diversity of group A Streptococcus M protein: implications for typing and vaccine development. Vaccine. 2008;26(46):5835–5842. doi: 10.1016/j.vaccine.2008.08.037
  80. Lannergard J, Gustafson M, Waldemarsson J, et al. The hypervariable region of Streptococcus pyogenes M protein escapes antibody attack by antigenic variation and weak immunogenicity. Cell Host Microb. 2011;10(2):147–157. doi: 10.1016/j.chom.2011.06.011
  81. Johnson D, Kaplan E, Shramek Ya, et al. Laboratory diagnostics of infections caused by group A streptococci. WHO: Geneva; 1998.
  82. Facklam RF, Martin DR, Lovgren M, et al. Extension of the Lancefield classification for group A streptococci by addition of 22 new M protein gene sequence types from clinical isolates: emm103 to emm124. Clin Infect Dis. 2002;34(1):28–38. doi: 10.1086/324621
  83. McGregor KF, Spratt BG, Kalia A, et al. Multilocus sequence typing of Streptococcus pyogenes representing most known emm types and distinctions among subpopulation genetic structures. J Bacteriol. 2004;186(13):4285–4294. doi: 10.1128/JB.186.13.4285-4294.2004
  84. Centers for Disease Control and Prevention: http://www.cdc.gov/strepla/groupa-strep/index.html
  85. Spellerberg B, Brandt C. Laboratory Diagnosis of Streptococcus pyogenes (group A streptococci) In: Streptococcus pyogenes: Basic Biology to Clinical Manifestations [Internet]. J.J. Ferretti, D.L. Stevens, V.A. Fischetti, editors. Oklahoma City: University of Oklahoma, Health Sciences Center; 2016.
  86. Enright MC, Spratt BG, Kalia A, et al. Multilocus sequence typing of Streptococcus pyogenes and the relationships between emm type and clone. Infect Immun. 2001;69(4):2416–2427. doi: 10.1128/IAI.69.4.2416-2427.2001
  87. Yang R, Otte MA, Hellmark T, et al. Successful treatment of experimental glomerulonephritis with IdeS and EndoS, IgG-degrading streptococcal enzymes. Nephrol Dial Transplant. 2010;25(8):2479–2486. doi: 10.1093/ndt/gfq115
  88. Segelmark M, Björck L Streptococcal enzymes as precision tools against pathogenic IgG autoantibodies in small vessel vasculitis. Front Immunol. 2019;10:2165. doi: 10.3389/fimmu.2019.02165
  89. Collin M, Olsén A. Effect of SpeB and EndoS from Streptococcus pyogenes on human immunoglobulins. Infect Immun. 2001;69(11):7187–7189. doi: 10.1128/IAI.69.11.7187-7189.2001
  90. Collin M, Olsén A. EndoS, a novel secreted protein from Streptococcus pyogenes with endoglycosidase activity on human IgG. EMBO J. 2001;20(12):3046–3055. doi: 10.1093/emboj/20.12.3046

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Typical appearance of Streptococcus pyogenes on the surface of 5% blood agar 18-hours incubation under aerobic conditions

Download (84KB)
3. Fig. 2. Characterization of the complete sequence of Streptococcus pyogenes M6 protein [1]. The M6 protein of S. pyogenes consists of four domains: A, B, C and D; N — terminal fragment of the M protein; C is the region of attachment of the M protein to the cell wall of the microbe; LPXTG — anchor sequence pattern

Download (117KB)
4. Fig. 3. Genetic organization of the Mga-regulon of Streptococcus pyogenes [35]: Mga is a regulator of a number of GAS genes, the most notable of which are the family of M proteins whose genes are tandem linked: emm encodes a type-specific Eмм protein, mrp and enn encode M-like proteins, scpa encodes peptidase C5a. Some serotypes contain only mga, emm and scpa (pattern A). Other serotypes contain one or more remaining genes (patterns B–E)

Download (124KB)
5. Fig. 4. The ability of M and M-like proteins Streptococcus pyogenes to bind human plasma proteins [32]. On the left is a diagram of the M protein molecule covalently attached to the streptococcal cell wall; on the right — M and M-like proteins on the surface of the streptococcal cell wall. M and M-like proteins bind non-immune human IgG and IgA, C4BP, factor H (FH), fibrinogen (Fg), plasminogen (Pla); they are also able to block the deposition of opsonins such as C3b and type-specific antibodies

Download (307KB)

Copyright (c) 2022 Eco-Vector



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».