Molecular mechanisms of drug resistance of glial tumor of brain. Part 2: Proliferation, angiogenesis, metastasis and recurrency

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The main reason for the low efficiency of glioblastoma therapy is its resistance to therapeutic procedures. The development of multidrug resistance occurs as a result of the selection of tumor clones during therapy. The resistant cell clones to radiotherapy and chemotherapy can proliferate, leading to tumor growth, in which its own vascular network is formed (angiogenesis), which promotes cell migration, invasion and the appearance of metastases and recurrent glioblastoma. The review examines the relationship at the molecular level of multidrug resistance with proliferation, angiogenesis, migration, metastasis, and the formation of glioblastoma relapses, with an emphasis on identifying new targets among proteins, microRNAs, signal transduction kinases, transcription factors, tumor-supressor genes and oncogenes.

About the authors

Alexander N. Chernov

Institute of Experimental Medicine

Author for correspondence.
Email: al.chernov@mail.ru
ORCID iD: 0000-0003-2464-7370

PhD, Cand. Sci. (Biol.), Research Associate, Department of General Pathology and Pathological Physiology

Russian Federation, Saint Petersburg

Elvira S. Galimova

Institute of Experimental Medicine; Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences

Email: elya-4@yandex.ru
ORCID iD: 0000-0002-8773-0932
Scopus Author ID: 24331659400

PhD, Cand. Sci. (Biol.), Senior Researcher; Senior Researcher

Russian Federation, Saint Petersburg; Saint Petersburg

Olga V. Shamova

Institute of Experimental Medicine; Saint Petersburg State University

Email: oshamova@yandex.ru
ORCID iD: 0000-0002-5168-2801
Scopus Author ID: 6603643804
ResearcherId: F-6743-2013

Dr. Sci. (Biol.), Assistant Professor, Corresponding Member of the Russian Academy of Sciences, Head of the Department of General Pathology and Pathological Physiology; Professor of the Department of Biochemistry

Russian Federation, Saint Petersburg; Saint Petersburg

References

  1. Griffin M, Khan R, Basu S, et al. Ion channels as therapeutic targets in high grade gliomas. Cancers (Basel). 2020;12(10):3068. doi: 10.3390/cancers12103068
  2. Sottoriva A, Spiteri I, Piccirillo SG, et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci USA. 2013;110(10):4009–4014. doi: 10.1073/pnas.1219747110
  3. Verhaak RGW, Hoadley KA, Purdom E, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110. doi: 10.1016/j.ccr.2009.12.020
  4. Wang Z, Zhang H, Xu S, et al. The adaptive transition of glioblastoma stem cells and its implications on treatments. Signal Transduc Target Ther. 2021;6(1):124. doi: 10.1038/s41392-021-00491-w
  5. Mesrati MH, Behrooz B, Abuhamad AY, Syahir A. Understanding glioblastoma biomarkers: knocking a mountain with a hammer. Cells. 2020;9(5):1236. doi: 10.3390/cells9051236
  6. Suvà ML, Tirosh I. The Glioma stem cell model in the era of single-cell genomics. Cancer Cell. 2020;37(5):630–636. doi: 10.1016/j.ccell.2020.04.001
  7. Park JC, Chang IB, Ahn JH, et al. Nerve growth factor stimulates glioblastoma proliferation through notch1 receptor signaling. J Korean Neurosurg Soc. 2018;61(4):441–449. doi: 10.3340/jkns.2017.0219
  8. Watanabe T, Katayama Y, Kimura S, Yoshino A. Control of proliferation and survival of C6 glioma cells with modification of the nerve growth factor autocrine system. J Neurooncol. 1999;41(2):121–128. doi: 10.1023/a:1006127624487
  9. Garofalo S, Porzia A, Mainiero F, et al. Environmental stimuli shape microglial plasticity in glioma. Elife. 2017;6:e33415. doi: 10.7554/eLife.33415
  10. Xiong J, Zhou L, Yang M, et al. ProBDNF and its receptors are upregulated in glioma and inhibit the growth of glioma cells in vitro. Neuro Oncol. 2013;15(8):990–1007. doi: 10.1093/neuonc/not039
  11. Venkatesh HS, Johung TB, Caretti V, et al. Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell. 2015;161:803–816. doi: 10.1016/j.cell.2015.04.012
  12. Venkatesh HS, Morishita W, Geraghty AC, et al. Electrical and synaptic integration of glioma into neural circuits. Nature. 2019;573:539–545. doi: 10.1038/s41586-019-1563-y
  13. Taylor KR, Barron T, Zhang H, et al. Glioma synapses recruit mechanisms of adaptive plasticity. BioRxiv. 2021. doi: 10.1101/2021.11.04.467325
  14. Wang Y, Liu YY, Chen MB, et al. Neuronal-driven glioma growth requires Gαi1 and Gαi3. Theranostics. 2021;11(17):8535–8549. doi: 10.7150/thno.61452
  15. Lawn S, Krishna N, Pisklakova A, et al. Neurotrophin signaling via TrkB and TrkC receptors promotes the growth of brain tumor-initiating cells. J Biol Chem. 2015;290(6):3814–3824. doi: 10.1074/jbc.M114.599373
  16. Wang T-C, Luo S-J, Chang S-F. Bone morphogenetic protein 7 effect on human glioblastoma cell transmigration and migration. Life (Basel). 2021;11(7):708. doi: 10.3390/life11070708
  17. Valter MM, Wiestler OD, Pietsche T. Differential control of VEGF synthesis and secretion in human glioma cells by IL-1 and EGF. Int J Dev Neurosci. 1999;17(5–6):565–577. doi: 10.1016/s0736-5748(99)00048-9
  18. Krcek R, Matschke V, Theis V, et al. Vascular endothelial growth factor, irradiation, and axitinib have diverse effects on motility and proliferation of glioblastoma multiforme cells. Front Oncol. 2017;7:182. doi: 10.3389/fonc.2017.00182
  19. Audero E, Cascone I, Zanon I, et al. Expression of angiopoietin-1 in human glioblastomas regulates tumor-induced angiogenesis: in vivo and in vitro studies. Arterioscler Thromb Vasc Biol. 2001;21(4):536–541. doi: 10.1161/01.atv.21.4.536
  20. Hu B, Guo P, Fang Q, et al. Angiopoietin-2 induces human glioma invasion through the activation of matrix metalloprotease-2. Proc Natl Acad Sci USA. 2003;100(15):8904–8909. doi: 10.1073/pnas.1533394100
  21. Hu B, Jarzynka MJ, Guo P, et al. Angiopoietin 2 induces glioma cell invasion by stimulating matrix metalloprotease 2 expression through the alphavbeta1 integrin and focal adhesion kinase signaling pathway. Cancer Res. 2006;66(2):775–783. doi: 10.1158/0008-5472.CAN-05-1149
  22. Brunckhorst MK, Wang H, Lu R, Yu Q. Angiopoietin-4 promotes glioblastoma progression by enhancing tumor cell viability and angiogenesis. Cancer Res. 2010;70(18):7283–7293. doi: 10.1158/0008-5472.CAN-09-4125
  23. Chen X-C, Wei X-T, Guan J-H, et al. EGF stimulates glioblastoma metastasis by induction of matrix metalloproteinase-9 in an EGFR-dependent mechanism. Oncotarget. 2017;8(39):65969–65982. doi: 10.18632/oncotarget.19622
  24. Pudełek M, Król K, Catapano J, et al. Epidermal Growth Factor (EGF) augments the invasive potential of human glioblastoma multiforme cells via the activation of collaborative EGFR/ROS-dependent signaling. Int J Mol Sci. 2020;21(10):3605. doi: 10.3390/ijms21103605
  25. An Z, Aksoy O, Zheng T, et al. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. Oncogene. 2018;37:1561–1575. doi: 10.1038/s41388-017-0045-7
  26. Garnett J, Chumbalkar V, Vaillant B, et al. Regulation of HGF expression by DeltaEGFR-mediated c-Met activation in glioblastoma cells. Neoplasia. 2013;15(1):73–84. doi: 10.1593/neo.121536
  27. Jimenez-Pascual A, Siebzehnrubl FA. Fibroblast growth factor receptor functions in glioblastoma. Cells. 2019;8(7):715. doi: 10.3390/cells8070715
  28. Jimenez-Pascual A, Mitchell K, Siebzehnrubl FA, Lathia JD. FGF2: a novel druggable target for glioblastoma? Expert Opin Ther Targets. 2020;24(4):311–318. doi: 10.1080/14728222.2020.1736558
  29. Tiong KH, Mah LY, Leong CO. Functional roles of fibroblast growth factor receptors (FGFRs) signaling in human cancers. Apoptosis. 2013;18(12):1447–1468. doi: 10.1007/s10495-013-0886-7
  30. Tirrò E, Massimino M, Romano C, et al. Prognostic and therapeutic roles of the insulin growth factor system in glioblastoma. Front Oncol. 2021;10:612385. doi: 10.3389/fonc.2020.612385
  31. Maris C, D’Haene N, Trepant AL, et al. IGF-IR: a new prognostic biomarker for human glioblastoma. Br J Cancer. 2015;113(5):729–737. doi: 10.1038/bjc.2015.242
  32. Simpson AD, Soo YWJ, Rieunier G, et al. Type 1 IGF receptor associates with adverse outcome and cellular radioresistance in paediatric high-grade glioma. Br J Cancer. 2020;122(5):624–629. doi: 10.1038/s41416-019-0677-1
  33. Cruickshanks N, Zhang Y, Yuan F, et al. Role and therapeutic targeting of the HGF/MET pathway in glioblastoma. Cancers (Basel). 2017;9(7):87. doi: 10.3390/cancers9070087
  34. Navis AC, van Lith SA, van Duijnhoven SM, et al. Identification of a novel MET mutation in high-grade glioma resulting in an auto-active intracellular protein. Acta Neuropathol. 2015;130:131–144. doi: 10.1007/s00401-015-1420-5
  35. Cantanhede IG, de Oliveira JRM. PDGF family expression in glioblastoma multiforme: data compilation from Ivy Glioblastoma Atlas Project Database. Sci Rep. 2017;7(1):15271. doi: 10.1038/s41598-017-15045-w
  36. Bohm AK, DePetro J, Binding CE, et al. In vitro modeling of glioblastoma initiation using PDGF-AA and p53-null neural progenitors. Neuro Oncol. 2020;22(8):1150–1161. doi: 10.1093/neuonc/noaa093
  37. Clara CA, Marie SK, de Almeida JR, et al. Angiogenesis and expression of PDGF-C, VEGF, CD105 and HIF-1α in human glioblastoma. Neuropathology. 2014;34(4):343–352. doi: 10.1111/neup.12111
  38. di Tomaso E, London N, Fuja D, et al. PDGF-C induces maturation of blood vessels in a model of glioblastoma and attenuates the response to anti-VEGF treatment. PLoS One. 2009;4(4):e5123. doi: 10.1371/journal.pone.0005123
  39. Guérit E, Arts F, Dachy G, et al. PDGF receptor mutations in human diseases. Cell Mol Life Sci. 2021;78(8):3867–3881. doi: 10.1007/s00018-020-03753-y
  40. Dico AL, Martelli C, Diceglie C, et al. Hypoxia-Inducible Factor-1α Activity as a switch for glioblastoma responsiveness to temozolomide. Front Oncol. 2018;8:249. doi: 10.3389/fonc.2018.00249
  41. Renfrow JJ, Soike MH, West JL, et al. Attenuating hypoxia driven malignant behavior in glioblastoma with a novel hypoxia-inducible factor 2 alpha inhibitor. Sci Rep. 2020;10(1): 15195. doi: 10.1038/s41598-020-72290-2
  42. Cornelison RC, Brennan CE, Kingsmore K., Munson JM. Convective forces increase CXCR4-dependent glioblastoma cell invasion in GL261 murine model. Sci Rep. 2018;8:17057. doi: 10.1038/s41598-018-35141-9
  43. Chao M, Liu N, Sun Z, et al. TGF-β signaling promotes glioma progression through stabilizing Sox9. Front Immunol. 2021;11:592080. doi: 10.3389/fimmu.2020.592080
  44. Yang R, Li X, Wu Y, et al. EGFR activates GDH1 transcription to promote glutamine metabolism through MEK/ERK/ELK1 pathway in glioblastoma. Oncogene. 2020;39(14):2975–2986. doi: 10.1038/s41388-020-1199-2
  45. Pace KR, Dutt R, Galileo DS. Exosomal L1CAM stimulates glioblastoma cell motility, proliferation, and invasiveness. Int J Mol Sci. 2019;20(16):3982. doi: 10.3390/ijms20163982
  46. Lee Y, Lee JK, Ahn S, et al. WNT signaling in glioblastoma and therapeutic opportunities. Lab Invest. 2016;96(2):137–150. doi: 10.1038/labinvest.2015.140
  47. Cenciarelli C, Marei HE, Felsani A, et al. PDGFRα depletion attenuates glioblastoma stem cells features by modulation of STAT3, RB1 and multiple oncogenic signals. Oncotarget. 2016;7(33):53047–53063. doi: 10.18632/oncotarget.10132
  48. Gong Y, Ma Y, Sinyuk M, et al. Insulin-mediated signaling promotes proliferation and survival of glioblastoma through Akt activation. Neuro Oncol. 2016;18(1):48–57. doi: 10.1093/neuonc/nov096
  49. Oliva CR, Halloran B, Hjelmeland AB, et al. IGFBP6 controls the expansion of chemoresistant glioblastoma through paracrine IGF2/IGF-1R signaling. Cell Commun Signal. 2018;16(1):61. doi: 10.1186/s12964-018-0273-7
  50. Sesen J, Cammas A, Scotland SJ, et al. Int6/eIF3e is essential for proliferation and survival of human glioblastoma cells. Int J Mol Sci. 2014;15(2):2172–2190. doi: 10.3390/ijms15022172
  51. Pan PC, Magge RS. Mechanisms of EGFR Resistance in Glioblastoma. Int J Mol Sci. 2020;21(22):8471. doi: 10.3390/ijms21228471
  52. Radin DP, Patel P. BDNF: an oncogene or tumor suppressor? Anticancer Res. 2017;37(8):3983–3990. doi: 10.21873/anticanres.11783
  53. Nie E, Jin X, Miao F, et al. TGF-β1 modulates temozolomide resistance in glioblastoma via altered microRNA processing and elevated MGMT. Neuro Oncol. 2021;23(3):435–446. doi: 10.1093/neuonc/noaa198
  54. Bai Y, Lathia JD, Zhang P, et al. Molecular targeting of TRF2 suppresses the growth and tumorigenesis of glioblastoma stem cells. Glia. 2014;62(10):1687–1698. doi: 10.1002/glia.22708
  55. Zhang L-H, Yin A-A, Cheng J-X, et al. TRIM24 promotes glioma progression and enhances chemoresistance through activation of the PI3K/Akt signaling pathway. Oncogene. 2015;34(5):600–610. doi: 10.1038/onc.2013.593
  56. Yu Z, Chen Y, Wang S, et al. Inhibition of NF-κB results in anti-glioma activity and reduces temozolomide-induced chemoresistance by down-regulating MGMT gene expression. Cancer Lett. 2018;428:77–89. doi: 10.1016/j.canlet.2018.04.033
  57. Edwards LA, Kim S, Madany M, et al. ZEB1 is a transcription factor that is prognostic and predictive in diffuse gliomas. Front Neurol. 2019;9:1199. doi: 10.3389/fneur.2018.01199
  58. Xu K, Zhang Z, Pei H, et al. FoxO3a induces temozolomide resistance in glioblastoma cells via the regulation of β-catenin nuclear accumulation. Oncol Rep. 2017;37(4):2391–2397. doi: 10.3892/or.2017.5459
  59. Zhang X, Lv QL, Huang YT, et al. Akt/FoxM1 signaling pathway-mediated upregulation of MYBL2 promotes progression of human glioma. J Exp Clin Cancer Res. 2017;36:105. doi: 10.1186/s13046-017-0573-6
  60. Zhang C, Han X, Xu X, et al. FoxM1 drives ADAM17/EGFR activation loop to promote mesenchymal transition in glioblastoma. Cell Death Dis. 2018;9:469. doi: 10.1038/s41419-018-0482-4
  61. Kim J-K, Jin X, Ham SW, et al. IRF7 promotes glioma cell invasion by inhibiting AGO2 expression. Tumor Biol. 2015;36(7):5561–5569. doi: 10.1007/s13277-015-3226-4
  62. Agnihotri S, Wolf A, Munoz DM, et al. A GATA4-regulated tumor suppressor network represses formation of malignant human astrocytomas. J Exp Med. 2011;208(4):689–702. doi: 10.1084/jem.20102099
  63. Wu Z, Wang L, Li G, et al. Increased expression of microRNA-9 predicts an unfavorable prognosis in human glioma. Mol Cell Biochem. 2013;384(1–2):263–268. doi: 10.1007/s11010-013-1805-5
  64. Wang G, Wang JJ, Tang HM, et al. Targeting strategies on miRNA-21 and PDCD4 for glioblastoma. Arch Biochem Biophys. 2015;580:64–74. doi: 10.1016/j.abb.2015.07.001
  65. Cheng Q, Ma X, Cao H, et al. Role of miR-223/paired box 6 signaling in temozolomide chemoresistance in glioblastoma multiforme cells. Mol Med Rep. 2017;15(2):597–604. doi: 10.3892/mmr.2016.6078
  66. Mathew LK, Skuli N, Mucaj V, et al. MiR-218 opposes a critical RTK-HIF pathway in mesenchymal glioblastoma. Proc Natl Acad Sci USA. 2014;111(1):291–296. doi: 10.1073/pnas.1314341111
  67. Wang Z, Li Z, Fu Y, et al. MiRNA-130a-3p inhibits cell proliferation, migration, and TMZ resistance in glioblastoma by targeting Sp1. Am J Transl Res. 2019;11(12):7272–7285.
  68. Gao Y-T, Chen X-B, Liu H-L. Up-regulation of miR-370-3p restores glioblastoma multiforme sensitivity to temozolomide by influencing MGMT expression. Sci Rep. 2016;6:32972. doi: 10.1038/srep32972
  69. Tian T, Mingyi M, Qiu X, et al. MicroRNA-101 reverses temozolomide resistance by inhibition of GSK3β in glioblastoma. Oncotarget. 2016;7(48):79584–79595. doi: 10.18632/oncotarget.12861
  70. Nie E, Jin X, Wu W, et al. MiR-198 enhances temozolomide sensitivity in glioblastoma by targeting MGMT. J Neurooncol. 2017;133(1):59–68. doi: 10.1007/s11060-017-2425-9
  71. Wang G-H, Wang L-Y, Zhang C, et al. MiR-1225-5p acts as tumor suppressor in glioblastoma via targeting FNDC3B. Open Med (Wars). 2020;15(1):872–881. doi: 10.1515/med-2020-0156
  72. Tanaka S, Kobayashi I, Oka H, et al. Drug-resistance gene expression and progression of astrocytic tumors. Brain Tumor Pathol. 2001;18(2):131–137. doi: 10.1007/BF02479426
  73. Hegge B, Sjøttem E, Mikkola I. Generation of a PAX6 knockout glioblastoma cell line with changes in cell cycle distribution and sensitivity to oxidative stress. BMC Cancer. 2018;18(1):496. doi: 10.1186/s12885-018-4394-6
  74. Talamillo A, Grande L, Ruiz-Ontañon P, et al. ODZ1 allows glioblastoma to sustain invasiveness through a Myc-dependent transcriptional upregulation of RhoA. Oncogene. 2017;36(12):1733–1744. doi: 10.1038/onc.2016.341
  75. Xia L, Huang Q, Nie D, et al. PAX3 is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells. Brain Res. 2013;1521:68–78. doi: 10.1016/j.brainres.2013.05.021
  76. Pojo M, Gonçalves CS, Xavier-Magalhães A, et al. A transcriptomic signature mediated by HOXA9 promotes human glioblastoma initiation, aggressiveness and resistance to temozolomide. Oncotarget. 2015;6(10):7657–7674. doi: 10.18632/oncotarget.3150
  77. Moiseeva NI, Susova OY, Mitrofanov AA, et al. Connection between proliferation rate and temozolomide sensitivity of primary glioblastoma cell culture and expression of YB-1 and LRP/MVP. Biochem (Mosc). 2016;81(6):628–635. doi: 10.1134/S0006297916060109
  78. Cao Y, Li X, Kong S. et al. CDK4/6 inhibition suppresses tumour growth and enhances the effect of temozolomide in glioma cells. J Cell Mol Med. 2020;24(9):5135–5145. doi: 10.1111/jcmm.15156
  79. Farhad M, Rolig AS, Redmond WL. The role of Galectin-3 in modulating tumor growth and immunosuppression within the tumor microenvironment. Oncoimmunology. 2018;7(6):e1434467. doi: 10.1080/2162402X.2018.1434467
  80. Wang H, Song X, Huang Q, et al. LGALS3 promotes treatment resistance in glioblastoma and is associated with tumor risk and prognosis. Cancer Epidemiol Biomarkers Prev. 2019;28(4):760–769. doi: 10.1158/1055-9965.EPI-18-0638
  81. Zhang M, Zhao Y, Zhao J, et al. Impact of AKAP6 polymorphisms on Glioma susceptibility and prognosis. BMC Neurol. 2019;19:296. doi: 10.1186/s12883-019-1504-2
  82. Mellai M, Cattaneo M, Storaci AM, et al. SEL1L SNP rs12435998, a predictor of glioblastoma survival and response to radio-chemotherapy. Oncotarget. 2015;6(14):12452–12467. doi: 10.18632/oncotarget.3611
  83. Riboni L, Hadi LA, Navone SE, et al. Sphingosine-1-phosphate in the tumor microenvironment: a signaling hub regulating cancer hallmarks. Cells. 2020;9(2):337. doi: 10.3390/cells9020337
  84. Chen D. Tumor formation and drug resistance properties of human glioblastoma side population cells. Mol Med Rep. 2015;11(6):4309–4314. doi: 10.3892/mmr.2015.3279
  85. Kaneko S, Nakatani Y, Takezaki T, et al. Ceacam1L modulates STAT3 signaling to control the proliferation of glioblastoma-initiating cells. Cancer Res. 2015;75(19):4224–4234. doi: 10.3892/mmr.2015.3279
  86. Yu F, Li G, Gao J, et al. SPOCK1 is upregulated in recurrent glioblastoma and contributes to metastasis and temozolomide resistance. Cell Prolif. 2016;49(2):195–206. doi: 10.1111/cpr.12241
  87. Afghani N, Mehta T, Wang J, et al. Microtubule actin cross-linking factor 1, a novel target in glioblastoma. Int J Oncol. 2017;50(1):310–316. doi: 10.3892/ijo.2016.3798
  88. Guerrero PA, Yin W, Camacho L, et al. Oncogenic role of Merlin/NF2 in glioblastoma. Oncogene. 2015;34(20):2621–2630. doi: 10.1038/onc.2014.185
  89. Xie Z, Janczyk PŁ, Zhang Y, et al. A cytoskeleton regulator AVIL drives tumorigenesis in glioblastoma. Nat Commun. 2020;11:3457. doi: 10.1038/s41467-020-17279-1
  90. Noh H, Yan J, Hong S, et al. Discovery of cell surface vimentin targeting mAb for direct disruption of GBM tumor initiating cells. Oncotarget. 2016;7(44):72021–72032. doi: 10.18632/oncotarget.12458
  91. Zhao J, Zhang L, Dong X, et al. High expression of vimentin is associated with progression and a poor outcome in glioblastoma. Appl Immunohistochem Mol Morphol. 2018;26(5):337–344. doi: 10.1097/PAI.0000000000000420
  92. Satelli A, Li S. Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci. 2011;68(18):3033–3046. doi: 10.1007/s00018-011-0735-1
  93. Zottel A, Jovčevska I, Šamec N, Komel R. Cytoskeletal proteins as glioblastoma biomarkers and targets for therapy: A systematic review. Crit Rev Oncol Hematol. 2021;160:103283. doi: 10.1016/j.critrevonc.2021.103283
  94. Ahir BK, Engelhard HH, Lakka SS. Tumor development and angiogenesis in adult brain tumor: glioblastoma. Mol Neurobiol. 2020;57:2461–2478. doi: 10.1007/s12035-020-01892-8
  95. Carmeliet P, Jain RK. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov. 2011;10(6):417–427. doi: 10.1038/nrd3455
  96. Loureiro LVM, Neder L, Callegaro-Filho D, et al. The immunohistochemical landscape of the VEGF family and its receptors in glioblastomas. Surg Exp Pathol. 2020;3:9. doi: 10.1186/s42047-020-00060-5
  97. Arif SH, Pandith AA, Tabasum R, et al. Significant effect of anti-tyrosine Kinase Inhibitor (Gefitinib) on overall survival of the glioblastoma multiforme patients in the backdrop of mutational status of epidermal growth factor receptor and PTEN Genes. Asian J Neurosurg. 2018;13(1):46–52. doi: 10.4103/ajns.AJNS_95_17
  98. Krishnan S, Szabo E, Burghardt I, et al. Modulation of cerebral endothelial cell function by TGF-β in glioblastoma: VEGF-dependent angiogenesis versus endothelial mesenchymal transition. Oncotarget. 2015;6(26):22480–22495. doi: 10.18632/oncotarget.4310
  99. Ichikawa K, Watanabe Miyano S, Minoshima Y, et al. Activated FGF2 signaling pathway in tumor vasculature is essential for acquired resistance to anti-VEGF therapy. Sci Rep. 2020;10:2939. doi: 10.1038/s41598-020-59853-z
  100. Goldman CK, Kim J, Wong WL, et al. Epidermal growth factor stimulates vascular endothelial growth factor production by human malignant glioma cells: a model of glioblastoma multiforme pathophysiology. Mol Biol Cell. 1993;4(1):121–133. doi: 10.1091/mbc.4.1.121
  101. Krishnan S, Szabo E, Burghardt I, et al. Modulation of cerebral endothelial cell function by TGF-β in glioblastoma: VEGF-dependent angiogenesis versus endothelial mesenchymal transition. Oncotarget. 2015. Vol. 6, No. 26. P. 22480–22495. doi: 10.18632/oncotarget.4310
  102. Kessler T, Sahm F, Blaes J, et al. Glioma cell VEGFR-2 confers resistance to chemotherapeutic and antiangiogenic treatments in PTEN-deficient glioblastoma. Oncotarget. 2015;6(31):31050–31068. doi: 10.18632/oncotarget.2910
  103. Serban F, Daianu O, Tataranu LG, et al. Silencing of epidermal growth factor, latrophilin and seven transmembrane domain-containing protein 1 (ELTD1) via siRNA-induced cell death in glioblastoma. J Immunoassay Immunochem. 2017;38(1):21–33. doi: 10.1080/15321819.2016.1209217
  104. Yuan G, Yan S, Xue H, et al. JSI-124 suppresses invasion and angiogenesis of glioblastoma cells in vitro. PLoS One. 2015;10(3):e0118894. doi: 10.1371/journal.pone.0118894
  105. Chang N, Ahn SH, Kong DS, et al. The role of STAT3 in glioblastoma progression through dual influences on tumor cells and the immune microenvironment. Mol Cell Endocrinol. 2017;451:53–65. doi: 10.1016/j.mce.2017.01.004
  106. Li JL, Sainson RC, Oon CE, et al. DLL4-Notch signaling mediates tumor resistance to anti-VEGF therapy in vivo. Cancer Res. 2011;71(18):6073–6083. doi: 10.1158/0008-5472.CAN-11-1704
  107. Hochart A, Leblond P, Le Bourhis X, et al. MET receptor inhibition: Hope against resistance to targeted therapies? Bull Cancer. 2017;104(2):157–166. (In French). doi: 10.1016/j.bulcan.2016.10.014
  108. Chen L, Feng P, Li S, et al. Effect of hypoxia-inducible factor-1α silencing on the sensitivity of human brain glioma cells to doxorubicin and etoposide. Neurochem Res. 2009;34(5):984–990. doi: 10.1007/s11064-008-9864-9
  109. Muh CR, Joshi S, Singh AR, et al. PTEN status mediates 2ME2 anti-tumor efficacy in preclinical glioblastoma models: role of HIF1α suppression. J Neurooncol. 2014;116(1):89–97. doi: 10.1007/s11060-013-1283-3
  110. Jimenez-Pascual A, Siebzehnrubl FA. Fibroblast growth factor receptor functions in glioblastoma. Cells. 2019;8(7):715. doi: 10.3390/cells8070715
  111. Hierro C, Rodon J, Tabernero J. Fibroblast growth factor (FGF) receptor/FGF inhibitors: novel targets and strategies for optimization of response of solid tumors. Semin Oncol. 2015;42(6):801–819. doi: 10.1053/j.seminoncol.2015.09.027
  112. Hsieh A, Ellsworth R, Hsieh D. Hedgehog/GLI1 regulates IGF dependent malignant behaviors in glioma stem cells. J Cell Physiol. 2011;226(4):1118–1127. doi: 10.1002/jcp.22433
  113. Cherepanov SA, Baklaushev VP, Gabashvili AN, et al. Hedgehog signaling in the pathogenesis of neuro-oncology diseases. Biomed. Khim. 2015;61(3):332–342. (In Russ.). doi: 10.18097/PBMC20156103332
  114. Tirrò E, Massimino M, Romano C, et al. Prognostic and therapeutic roles of the insulin growth factor system in glioblastoma. Front Oncol. 2021;10:612385. doi: 10.3389/fonc.2020.612385
  115. Martin V, Xu J, Pabbisetty SK, et al. Tie2-mediated multidrug resistance in malignant gliomas is associated with upregulation of ABC transporters. Oncogene. 2009;28(24):2358–2363. doi: 10.1038/onc.2009.103
  116. di Tomaso E, Snuderl M, Kamoun WS, et al. Glioblastoma recurrence after cediranib therapy in patients: lack of “rebound” revascularization as mode of escape. Cancer Res. 2011;71(1):19–28. doi: 10.1158/0008-5472.CAN-10-2602
  117. Ma Y, Yuan R-Q, Fan S, et al. Identification of genes that modulate sensitivity of U373MG glioblastoma cells to cis-platinum. Anticancer Drugs. 2006;17(7):733–751. doi: 10.1097/01.cad.0000217429.67455.18
  118. Yadav VN, Zamler D, Baker GJ, et al. CXCR4 increases in-vivo glioma perivascular invasion, and reduces radiation induced apoptosis: A genetic knockdown study. Oncotarget. 2016;7:83701–83719. doi: 10.18632/oncotarget.13295
  119. Gatti M, Pattarozzi A, Bajetto A, et al. Inhibition of CXCL12/CXCR4 autocrine/paracrine loop reduces viability of human glioblastoma stem-like cells affecting self-renewal activity. Toxicology. 2013;314(2-3):209–220. doi: 10.1016/j.tox.2013.10.003
  120. Yin D, Chen W, O’Kelly J, et al. Connective tissue growth factor associated with oncogenic activities and drug resistance in glioblastoma multiforme. Int J Cancer. 2010;127(10):2257–2267. doi: 10.1002/ijc.25257
  121. Dai D, Huang W, Lu Q, et al. miR-24 regulates angiogenesis in gliomas. Mol Med Rep. 2018;18(1):358–368. doi: 10.3892/mmr.2018.8978
  122. Smits M, Wurdinger T, van het Hof B, et al. Myc-associated zinc finger protein (MAZ) is regulated by miR-125b and mediates VEGF-induced angiogenesis in glioblastoma. FASEB J. 2012;26(6):2639–2647. doi: 10.1096/fj.11-202820
  123. Wang Q, Xu B, Du J, et al. MicroRNA-139-5p/Flt1/Wnt/β-catenin regulatory crosstalk modulates the progression of glioma. Int J Mol Med. 2018;41(4):2139–2149. doi: 10.3892/ijmm.2018.3439
  124. Duncan CG, Killela PJ, Payne CA, et al. Integrated genomic analyses identify ERRFI1 and TACC3 as glioblastoma-targeted genes. Oncotarget. 2010;1(4):265–277. doi: 10.18632/oncotarget.137
  125. Wang L, Shi Z-M, Jiang C-F, et al. MiR-143 acts as a tumor suppressor by targeting N-RAS and enhances temozolomide-induced apoptosis in glioma. Oncotarget. 2014;5:5416. doi: 10.18632/oncotarget.2116
  126. Chen K-C, Chen P-H, Ho K-H, et al. IGF-1-enhanced miR-513a-5p signaling desensitizes glioma cells to temozolomide by targeting the NEDD4L-inhibited Wnt/β-catenin pathway. PLoS One. 2019;14(12):e0225913. doi: 10.1371/journal.pone.0225913
  127. Zeng A, Yin J, Li Y, et al. miR-129-5p targets Wnt5a to block PKC/ERK/NF-κB and JNK pathways in glioblastoma. Cell Death Dis. 2018;9(3):394. doi: 10.1038/s41419-018-0343-1
  128. Balandeh E, Mohammadshafie K, Mahmoudi Y, et al. Roles of non-coding RNAs and angiogenesis in glioblastoma. Front Cell Dev Biol. 2021;9:716462. doi: 10.3389/fcell.2021.716462
  129. Mathew LK, Huangyang P, Mucaj V, et al. Feedback circuitry between miR-218 repression and RTK activation in glioblastoma. Sci Signal. 2015;8(375):ra42. doi: 10.1126/scisignal.2005978
  130. Smits M, Nilsson J, Mir SE, et al. miR-101 is down-regulated in glioblastoma resulting in EZH2-induced proliferation, migration, and angiogenesis. Oncotarget. 2010;1(8):710–720. doi: 10.18632/oncotarget.205
  131. Sun J, Zheng G, Gu Z, Guo Z. MiR-137 inhibits proliferation and angiogenesis of human glioblastoma cells by targeting EZH2. J Neurooncol. 2015;122:481–489. doi: 10.1007/s11060-015-1753-x
  132. Zhang J, Chen L, Han L, et al. EZH2 is a negative prognostic factor and exhibits pro-oncogenic activity in glioblastoma. Cancer Lett. 2015;356(2PtB):929–936. doi: 10.1016/j.canlet.2014.11.003
  133. Tian J-H, Mu L-J, Wang M-Y, et al. FOXM1-dependent transcriptional regulation of EZH2 induces proliferation and progression in prostate cancer. Anticancer Agents Med Chem. 2021;21(14):1835–1841. doi: 10.2174/1871520620666200731161810
  134. Gouazé-Andersson V, Ghérardi M-J, Lemarié A, et al. FGFR1/FOXM1 pathway: a key regulator of glioblastoma stem cells radioresistance and a prognosis biomarker. Oncotarget. 2018;9:31637–31649. doi: 10.18632/oncotarget.25827
  135. Zaman N, Dass SS, Parcq P, et al. The KDR (VEGFR-2) genetic polymorphism Q472H and c-KIT polymorphism M541L are associated with more aggressive behaviour in astrocytic gliomas. Cancer Genomics Proteomics. 2020;17(6):715–727. doi: 10.21873/cgp.20226
  136. Yu X, Sun NR, Jang HT, et al. Associations between EGFR gene polymorphisms and susceptibility to glioma: a systematic review and meta-analysis from GWAS and case-control studies. Oncotarget. 2017;8(49):86877–86885. doi: 10.18632/oncotarget.21011
  137. Zhao Y, Wang H, He C. Drug resistance of targeted therapy for advanced non-small cell lung cancer harbored EGFR mutation. From mechanism analysis to clinical strategy. J Cancer Res Clin Oncol. 2021;147(12):3653–3664. doi: 10.1007/s00432-021-03828-8
  138. Saleem H, Kulsoom Abdul U, Küçükosmanoglu A, et al. The TICking clock of EGFR therapy resistance in glioblastoma: target independence or target compensation. Drug Resist Updat. 2019;43:29–37. doi: 10.1016/j.drup.2019.04.002
  139. Ma Y, Tang N, Thompson RC. InsR/IGF1R pathway mediates resistance to EGFR inhibitors in glioblastoma. Clin Cancer Res. 2016;22:1767–1776. doi: 10.1158/1078-0432.CCR-15-1677
  140. Akhavan D, Pourzia AL, Nourian AA, et al. De-repression of PDGFRβ transcription promotes acquired resistance to EGFR tyrosine kinase inhibitors in glioblastoma patients. Cancer Discov. 2013;3(5):534–547. doi: 10.1158/2159-8290.CD-12-0502
  141. Song K, Yuan Y, Lin Y, et al. ERBB3, IGF1R, and TGFBR2 expression correlate with PDGFR expression in glioblastoma and participate in PDGFR inhibitor resistance of glioblastoma cells. Am J Cancer Res. 2018;8(5):792–809.
  142. Almiron Bonnin DA, Ran C, Havrda MC. Insulin-mediated signaling facilitates resistance to PDGFR inhibition in proneural hPDGFB-driven gliomas. Mol Cancer Ther. 2017;16:705–716. doi: 10.1158/1535-7163.MCT-16-0616
  143. Pullen NA, Pickford AR, Perry MM, et al. Current insights into matrix metalloproteinases and glioma progression: transcending the degradation boundary. Metalloproteinases In Medicine. 2018;2018(5):13–30. doi: 10.2147/MNM.S105123
  144. Xu S, Xu H, Wang W, et al. The role of collagen in cancer: from bench to bedside. J Transl Med. 2019;17:309. doi: 10.1186/s12967-019-2058-1
  145. Mooney KL, Choy W, Sidhu S, et al. The role of CD44 in glioblastoma multiforme. J Clin Neurosci. 2016;34:1–5. doi: 10.1016/j.jocn.2016.05.012
  146. Urbantat RM, Blank A, Kremenetskaia I. The CXCL2/IL8/CXCR2 pathway is relevant for brain tumor malignancy and endothelial cell function. Int J Mol Sci. 2021;22(5):2634. doi: 10.3390/ijms22052634
  147. Bordji K, Grandval A, Cuhna-Alves L, et al. Hypoxia-inducible factor-2α (HIF-2α), but not HIF-1α, is essential for hypoxic induction of class III β-tubulin expression in human glioblastoma cells. FEBS J. 2014;281(23):5220–5236. doi: 10.1111/febs.13062
  148. Chou CW, Wang CC, Wu CP, et al. Tumor cycling hypoxia induces chemoresistance in glioblastoma multiforme by upregulating the expression and function of ABCB1. Neurooncol. 2012;14(10):1227–1238. doi: 10.1093/neuonc/nos195
  149. Zhang L, Yang H, Zhang W, et al. Clk1 -regulated aerobic glycolysis is involved in gliomas chemoresistance. J Neurochem. 2017;142(4):574–588. doi: 10.1111/jnc.14096
  150. Kang W, Kim SH, Cho HJ, et al. Talin1 targeting potentiates anti-angiogenic therapy by attenuating invasion and stem-like features of glioblastoma multiforme. Oncotarget. 2015;6(29):27239–27251. doi: 10.18632/oncotarget.4835
  151. Matini AH, Naeini MM, Kashani HH, et al. Evaluation of Nestin and EGFR in patients with glioblastoma multiforme in a public hospital in Iran. Asian Pac J Cancer Prev. 2020;21(10):2889–2894. doi: 10.31557/APJCP.2020.21.10.2889
  152. Ahmed EM, Bandopadhyay G, Coyle B, Grabowska A. A HIF-independent, CD133-mediated mechanism of cisplatin resistance in glioblastoma cells. Cell Oncol (Dordr). 2018;41(3):319–328. doi: 10.1007/s13402-018-0374-8
  153. Suvasini R, Shruti B, Thota B, et al. Insulin growth factor-2 binding protein 3 (IGF2BP3) is a glioblastoma-specific marker that activates phosphatidylinositol 3-kinase/mitogen-activated protein kinase (PI3K/MAPK) pathways by modulating IGF-2. J Biol Chem. 2011;286(29):25882–25890. doi: 10.1074/jbc.M110.178012
  154. Womeldorff M, Gillespie D, Jensen RL. Hypoxia-inducible factor-1 and associated upstream and downstream proteins in the pathophysiology and management of glioblastoma. Neurosurg Focus. 2014;37(6):E8. doi: 10.3171/2014.9.focus14496
  155. Chen X-C, Wei X-T, Guan J-H, et al. EGF stimulates glioblastoma metastasis by induction of matrix metalloproteinase-9 in an EGFR-dependent mechanism. Oncotarget. 2017;8(39):65969–65982. doi: 10.18632/oncotarget.19622
  156. Rogers AE, Le JP, Sather S, et al. Mer receptor tyrosine kinase inhibition impedes glioblastoma multiforme migration and alters cellular morphology. Oncogene. 2012;31(38):4171–4181. doi: 10.1038/onc.2011.588
  157. Wang Y, Moncayo G, Morin P, et al. Mer receptor tyrosine kinase promotes invasion and survival in glioblastoma multiforme. Oncogene. 2013;32:872–882. doi: 10.1038/onc.2012.104
  158. Wislet S, Vandervelden G, Rogister B. From neural crest development to cancer and vice versa: How p75 NTR and (Pro)neurotrophins could act on cell migration and invasion? Front Mol Neurosci. 2018;11:244. doi: 10.3389/fnmol.2018.00244
  159. Yang W, Wu PF, Ma JX, et al. Sortilin promotes glioblastoma invasion and mesenchymal transition through GSK-3β/β-catenin/twist pathway. Cell Death Dis. 2019;10:208. doi: 10.1038/s41419-019-1449-9
  160. Brown MC, Staniszewska I, Lazarovici P, et al. Regulatory effect of nerve growth factor in α9β1 integrin–dependent progression of glioblastoma. Neuro Oncol. 2008;10(6):968–980. doi: 10.1215/15228517-2008-047
  161. Qi Q, He K, Liu X, et al. Disrupting the PIKE-A/Akt interaction inhibits glioblastoma cell survival, migration, invasion and colony formation. Oncogene. 2013;32(8):1030–1040. doi: 10.1038/onc.2012.109
  162. So J-S, Kim H, Han K-S. Mechanisms of invasion in glioblastoma: extracellular matrix, Ca2+ signaling, and glutamate. Front Cell Neurosci. 2021;15:663092. doi: 10.3389/fncel.2021.663092
  163. Raychaudhuri B, Han Y, Lu T, et al. Aberrant constitutive activation of nuclear factor κB in glioblastoma multiforme drives invasive phenotype. J Neurooncol. 2007;85(1):39–47. doi: 10.1007/s11060-007-9390-7
  164. Shan Q, Li S, Cao Q, et al. Inhibition of chromosomal region maintenance 1 suppresses the migration and invasion of glioma cells via inactivation of the STAT3/MMP2 signaling pathway. Korean J Physiol Pharmacol. 2020;24(3):193–201. doi: 10.4196/kjpp.2020.24.3.193
  165. Brantley EC, Benveniste EN. Signal transducer and activator of transcription-3: a molecular hub for signaling pathways in gliomas. Mol Cancer Res. 2008;6(5):675–684. doi: 10.1158/1541-7786.MCR-07-2180
  166. Cheng M, Zeng Y, Zhang T, et al. Transcription factor ELF1 activates MEIS1 transcription and then regulates the GFI1/FBW7 axis to promote the development of glioma. Mol Ther Nucleic Acids. 2020;23:418–430. doi: 10.1016/j.omtn.2020.10.015
  167. Ma J, Wang P, Liu Y, et al. Krüppel-like factor 4 regulates blood-tumor barrier permeability via ZO-1, occludin and claudin-5. J Cell Physiol. 2014;229(7):916–926. doi: 10.1002/jcp.24523
  168. Chen H, Lu Q, Fei X, et al. miR-22 inhibits the proliferation, motility, and invasion of human glioblastoma cells by directly targeting SIRT1. Tumour Biol. 2016;37(5):6761–6768. doi: 10.1007/s13277-015-4575-8
  169. Chakrabarti M, Ray SK. Direct transfection of miR-137 mimics is more effective than DNA demethylation of miR-137 promoter to augment anti-tumor mechanisms of delphinidin in human glioblastoma U87MG and LN18 cells. Gene. 2015;573(1):141–152. doi: 10.1016/j.gene.2015.07.034
  170. Lv S, Sun B, Dai C, et al. The downregulation of MicroRNA-146a modulates TGF-beta signaling pathways activity in glioblastoma. Mol Neurobiol. 2015;52(3):1257–1262. doi: 10.1007/s12035-014-8938-8
  171. Katakowski M, Zheng X, Jiang F, et al. MiR-146b-5p suppresses EGFR expression and reduces in vitro migration and invasion of glioma. Cancer Invest. 2010;28(10):1024–1030. doi: 10.3109/07357907.2010.512596
  172. Rao SA, Arimappamagan A, Pandey P, et al. miR-219-5p inhibits receptor tyrosine kinase pathway by targeting EGFR in glioblastoma. PLoS One. 2013;8(5):e63164. doi: 10.1371/journal.pone.0063164
  173. Gao Y, Yu H, Liu Y, et al. Long non-coding RNA HOXA-AS2 regulates malignant glioma behaviors and vasculogenic mimicry formation via the MiR-373/EGFR Axis. Cell Physiol Biochem. 2018;45(1):131–147. doi: 10.1159/000486253
  174. Zhou XY, Liu H, Ding ZB, et al. lncRNA SNHG16 promotes glioma tumorigenicity through miR-373/EGFR axis by activating PI3K/AKT pathway. Genomics. 2020;112(1):1021–1029. doi: 10.1016/j.ygeno.2019.06.017
  175. Pan DS, Cao P, Li JJ, et al. MicroRNA-374b inhibits migration and invasion of glioma cells by targeting EGFR. Eur Rev Med Pharmacol Sci. 2019;23(10):4254–4263. doi: 10.26355/eurrev_201905_17930
  176. Li X, Liu Y, Granberg KJ, et al. Two mature products of MIR-491 coordinate to suppress key cancer hallmarks in glioblastoma. Oncogene. 2015;34(13):1619–1628. doi: 10.1038/onc.2014.98
  177. Jiang C, Shen F, Du J, et al. MicroRNA-564 is downregulated in glioblastoma and inhibited proliferation and invasion of glioblastoma cells by targeting TGF-beta1. Oncotarget. 2016;7(35):56200–56208. doi: 10.18632/oncotarget.8987
  178. Ji Y, Sun Q, Zhang J, Hu H. MiR-615 inhibits cell proliferation, migration and invasion by targeting EGFR in human glioblastoma. Biochem Biophys Res Commun. 2018;499(3):719–726. doi: 10.1016/j.bbrc.2018.03.217
  179. Wang F, Xiao W, Sun J, et al. MiRNA-181c inhibits EGFR-signaling-dependent MMP9 activation via suppressing Akt phosphorylation in glioblastoma. Tumour Biol. 2014;35(9):8653–8658. doi: 10.1007/s13277-014-2131-6
  180. Lu Y, Chopp M, Zheng X, et al. Overexpression of miR145 in U87 cells reduces glioma cell malignant phenotype and promotes survival after in vivo implantation. Int J Oncol. 2015;46(3):1031–1038. doi: 10.3892/ijo.2014.2807
  181. Lu Y, Chopp M, Zheng X, et al. MiR-145 reduces ADAM17 expression and inhibits in vitro migration and invasion of glioma cells. Oncol Rep. 2013;29(1):67–72. doi: 10.3892/or.2012.2084
  182. Zhang KL, Zhou X, Han L, et al. MicroRNA-566 activates EGFR signaling and its inhibition sensitizes glioblastoma cells to nimotuzumab. Mol Cancer. 2014;13:63. doi: 10.1186/1476-4598-13-63
  183. Zhao K, Wang Q, Wang Y, et al. EGFR/c-myc axis regulates TGFbeta/Hippo/Notch pathway via epigenetic silencing miR-524 in gliomas. Cancer Lett. 2017;406:12–21. doi: 10.1016/j.canlet.2017.07.022
  184. Yin D, Ogawa S, Kawamata N, et al. miR-34a functions as a tumor suppressor modulating EGFR in glioblastoma multiforme. Oncogene. 2013;32(9):1155–1163. doi: 10.1038/onc.2012.132
  185. Kim J, Zhang Y, Skalski M, et al. microRNA-148a is a prognostic oncomiR that targets MIG6 and BIM to regulate EGFR and apoptosis in glioblastoma. Cancer Res. 2014;74(5):1541–1553. doi: 10.1158/0008-5472.CAN-13-1449
  186. Chai C, Song LJ, Han SY, et al. MicroRNA-21 promotes glioma cell proliferation and inhibits senescence and apoptosis by targeting SPRY1 via the PTEN/PI3K/AKT signaling pathway. CNS Neurosci Ther. 2018;24(5):369–380. doi: 10.1111/cns.12785
  187. Kwak SY, Kim BY, Ahn HJ, et al. Ionizing radiation-inducible miR-30e promotes glioma cell invasion through EGFR stabilization by directly targeting CBL-B. FEBS J. 2015;282(8):1512–1525. doi: 10.1016/j.gene.2015.07.034
  188. Kwak SY, Yang JS, Kim BY, et al. Ionizing radiation-inducible miR-494 promotes glioma cell invasion through EGFR stabilization by targeting p190B rhoGAP. Biochim Biophys Acta. 2014;1843(3):508–516. doi: 10.1016/j.bbamcr.2013.11.021
  189. Munoz JL, Rodriguez-Cruz V, Greco SJ, et al. Temozolomide resistance in glioblastoma cells occurs partly through epidermal growth factor receptor mediated induction of connexin 43. Cell Death Dis. 2014;5(3):e1145. doi: 10.1038/cddis.2014.111
  190. Wang H, Wang Y, Jiang C. Stromal protein periostin identified as a progression associated and prognostic biomarker in glioma via inducing an invasive and proliferative phenotype. Int J Oncol. 2013;42(5):1716–1724. doi: 10.3892/ijo.2013.1847
  191. Ketchen SE, Gamboa-Esteves FO, Lawler SE, et al. Drug resistance in glioma cells induced by a mesenchymal-amoeboid migratory switch. Biomedicines. 2021;10(1):9. doi: 10.3390/biomedicines10010009
  192. Zeng L, Kang C, Di C, et al. The adherens junction-associated protein 1 is a negative transcriptional regulator of MAGEA2, which potentiates temozolomide-induced apoptosis in GBM. Int J Oncol. 2014;44(4):1243–1251. doi: 10.3892/ijo.2014.2277
  193. George J, Gondi CS, Dinh DH, et al. Restoration of tissue factor pathway inhibitor-2 in a human glioblastoma cell line triggers caspase-mediated pathway and apoptosis. Clin Cancer Res. 2007;13(12):3507–3517. doi: 10.1158/1078-0432.CCR-06-3023
  194. El-Khayat SM, Arafat WO. Therapeutic strategies of recurrent glioblastoma and its molecular pathways ‘Lock up the beast’. Ecancermedicalscience. 2021;15:1176. doi: 10.3332/ecancer.2021.1176
  195. Zheng Q, Han L, Dong Y, et al. JAK2/STAT3 targeted therapy suppresses tumor invasion via disruption of the EGFRvIII/JAK2/STAT3 axis and associated focal adhesion in EGFRvIII-expressing glioblastoma. Neuro Oncol. 2014;16(9):1229–1243. doi: 10.1093/neuonc/nou046
  196. Tini P, Nardone V, Pastina P, et al. epidermal growth factor receptor expression predicts time and patterns of recurrence in patients with glioblastoma after radiotherapy and temozolomide. World Neurosurg. 2018;109:e662–e668. doi: 10.1016/j.wneu.2017.10.052
  197. Hau P, Jachimczak P, Schlaier J, et al. TGF-β2 signaling in high-grade gliomas. Curr Pharm Biotechnol. 2011;12(12):2150–2157. doi: 10.2174/138920111798808347
  198. Gaetani P, Hulleman E, Levi D, et al. Expression of the transcription factor HEY1 in glioblastoma: a preliminary clinical study. Tumori. 2010;96(1):97–102.
  199. Shahi MH, Farheen S, Mariyath MPM, et al. Potential role of Shh-Gli1-BMI1 signaling pathway nexus in glioma chemoresistance. Tumour Biol. 2016;37(11):15107–15114. doi: 10.1007/s13277-016-5365-7
  200. Quail DF, Bowman RL, Akkari L, et al. The tumor microenvironment underlies acquired resistance to CSF1R inhibition in gliomas. Science. 2016;352(6288):aad3018. doi: 10.1126/science.aad3018
  201. Koo C-Y, Muir KW, Lam E-F. FOXM1: from cancer initiation to progression and treatment. Biochim Biophys Acta. 2012;1819(1):28–37. doi: 10.1016/j.bbagrm.2011.09.004
  202. Wang Y, Wang X, Zhang J, et al. MicroRNAs involved in the EGFR/PTEN/AKT pathway in gliomas. J Neurooncol. 2012;106(2):217–224. doi: 10.1007/s11060-011-0679-1
  203. Tian T, Mingyi M, Qiu X, Qiu Y. MicroRNA-101 reverses temozolomide resistance by inhibition of GSK3β in glioblastoma. Oncotarget. 2016;7(48):79584–79595. doi: 10.18632/oncotarget.12861
  204. Yue X, Lan F, Hu M, et al. Downregulation of serum microRNA-205 as a potential diagnostic and prognostic biomarker for human glioma. J Neurosurg. 2016;124(1):122–128. doi: 10.3171/2015.1.JNS141577
  205. Huang H, Xiang Y, Su B, et al. Potential roles for Gfi1 in the pathogenesis and proliferation of glioma. Med Hypotheses. 2013;80(5):629–632. doi: 10.1016/j.mehy.2013.02.007
  206. Yao CJ, Han TY, Shih PH, et al. Elimination of cancer stem-like side population in human glioblastoma cells accompanied with stemness gene suppression by Korean herbal recipe MSC500. Integr Cancer Ther. 2014;13(6):541–554. doi: 10.1177/1534735414549623

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. Signaling mechanisms involved in the proliferation of glioblastoma (see text for explanations)

Download (391KB)

Copyright (c) 2022 Chernov A.N., Galimova E.S., Shamova O.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».