Inhibition of the complement anaphylatoxin activities in the central nervous system disorders

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The review is devoted to inhibition of the complement anaphylatoxin activities in diseases of the central nervous system. Here we present epidemiological data on the prevalence of cerebrovascular diseases, in particular, ischemic stroke and craniocerebral trauma. The mechanisms of complement activation and complement-mediated pathology in the central nervous system are considered in detail. Clinical data confirming the role of the complement system in the pathogenesis of stroke and of post-traumatic brain injury are presented. We also summarize the results of in vivo specific activity studies of the complement anaphylatoxin inhibitors using animal models of stroke and traumatic brain injury. Briefly described is the present state of the art in developing drugs that target the effector compounds of the complement cascade.

About the authors

Kseniya A. Nekrasova

State Research Institute of Highly Pure Biopreparations

Email: k.a.nekrasova@hpb.spb.ru
ORCID iD: 0000-0002-0242-9615

Head of R&D Department

Russian Federation, Saint Petersburg

Alexander M. Ischenko

State Research Institute of Highly Pure Biopreparations

Email: a.m.ischenko@hpb.spb.ru

PhD, Head of Laboratory of Protein Biochemistry

Russian Federation, Saint Petersburg

Alexander V. Trofimov

State Research Institute of Highly Pure Biopreparations

Author for correspondence.
Email: a.v.trofimov@hpb.spb.ru

Group Leader, Laboratory of Protein Biochemistry

Russian Federation, Saint Petersburg

References

  1. Piradov MA, Maksimova MYu, Tanashyan MM. Stroke. Step-by-step instruction. Moscow: GEOTAR-Media; 2019. (In Russ.)
  2. Parmar P, Krishnamurthi R, Ikram MA, et al. The Stroke Riskometer (TM) App: validation of a data collection tool and stroke risk redictor. Int J Stroke. 2015;10(2):231–244. doi: 10.1111/ijs.12411
  3. Gusev EI, Konovalov AN, Skvortsova VI. Neurology and neurosurgery: textbook: v 2 t. Ed. by A.N. Konovalova, A.V. Kozlova. Moscow: GEOTAR-Media; 2009. Vol. 2. (In Russ.)
  4. Amor S, Puentes F, Baker D, van der Valk P. Inflammation inneurodegenerative diseases. Immunology. 2010;129(2):154–169. doi: 10.1111/j.1365-2567.2009.03225.x
  5. Francis K, van Beek J, Canova C, et al. Innate immunity and brain inflammation: the key role of complement. Expert Rev Mol Med. 2003;5(15):1–19. doi: 10.1017/S1462399403006252
  6. Van Beek J, Bernaudin M, Petit E, et al. Expression of receptors for complement anaphylatoxins C3a and C5a following permanent focal cerebral ischemia in the mouse. Exp Neurol. 2000;161(1):373–382. doi: 10.1006/exnr.1999.7273
  7. Merle NS, Noe R, Halbwachs-Mecarelli L, et al. Complement system part II: role in immunity. Front Immunol. 2015;6:257. doi: 10.3389/fimmu.2015.00257
  8. Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a keysystem for immune surveillance and homeostasis. Nat Immunol. 2010;11(9):785–797. doi: 10.1038/ni.1923
  9. Alper CA, Johnson AM, Birtch AG, Moore FD. Human C'3: evidence for the liver as the primary site of synthesis. Science. 1969;163(3684):286–288. doi: 10.1126/science.163.3864.286
  10. Singhrao SK, Neal JW, Rushmere NK, et al. Spontaneous classical pathway activation and deficiency of membrane regulators render human neurons susceptible to complement lysis. Am J Pathol. 2000;157(3):905–918. doi: 10.1016/S0002-9440(10)64604-4
  11. Orsini F, De Blasio D, Zangari R, et al. Versatility of the complement system in neuroinflammation, neurodegeneration andbrain homeostasis. Front Cell Neurosci. 2014;8:380. doi: 10.3389/fncel.2014.00380
  12. Harris CL. Expanding horizons in complement drug discovery: challenges and emerging strategies. Semin Immunopathol. 2018;40(1):125–140. doi: 10.1007/s00281-017-0655-8
  13. Reis ES, Mastellos DC, Hajishengallis G, Lambris JD. New insights into the immune functions of complement. Nat Rev Immunol. 2019;19(8):503–516. doi: 10.1038/s41577-019-0168-x
  14. Lo MW, Woodruff TM. Complement: bridging the innate and adaptive immune systems in sterile inflammation. J Leukoc Biol. 2020;108(1):339–351. doi: 10.1002/JLB.3MIR0220-270R
  15. Gaboriaud C, Ling WL, Thielens NM, et al. Deciphering the fine details of C1 assembly and activation mechanisms: “mission impossible”? Front Immunol. 2014;5:565. doi: 10.3389/fimmu.2014.00565
  16. Héja D, Kocsis A, Dobó J, et al. Revised mechanism of complement lectin-pathway activation revealing the role of serine protease MASP-1 as the exclusive activator of MASP-2. Proc Natl Acad Sci U S A. 2012;109(26):10498–10503. doi: 10.1073/pnas.1202588109
  17. Rawal N, Pangburn MK. Formation of high affinity C5 convertase of the classical pathway of complement. J Biol Chem. 2003;278(40):38476–38483. doi: 10.1074/jbc.M307017200
  18. Chen ZA, Pellarin R, Fischer L, et al. Structure of complement C3(H2O) revealed by quantitative cross-linking/mass spectrometry and modeling. Mol Cell Proteomics. 2016;15(8):2730–2743. doi: 10.1074/mcp.M115.056473
  19. Kouser L, Abdul-Aziz M, Nayak A, et al. Properdin and factor h: opposing players on the alternative complement pathway “see-saw”. Front Immunol. 2013;4:93. doi: 10.3389/fimmu.2013.00093
  20. Parker CL, Sodetz JM. Role of the human C8 subunits in complement-mediated bacterial killing: evidence that C8 gamma is not essential. Mol Immunol. 2002;39(7–8):453–458. doi: 10.1016/S0161-5890(02)00121-9
  21. Shao S, Sun X, Chen Y, et al. Complement evasion: an effective strategy that parasites utilize to survive in the host. Front Microbiol. 2019;10:532. doi: 10.3389/fmicb.2019.00532
  22. Marinozzi MC, Vergoz L, Rybkine T, et al. Complement factor B mutations in atypical hemolytic uremic syndrome-disease-relevant or benign? J Am Soc Nephrol. 2014;25(9):2053–2065. doi: 10.1681/ASN.2013070796
  23. Gasque P, Dean YD, McGreal EP, et al. Complement components of the innate immune system in health and disease in the CNS. Immunopharmacology. 2000;49(1–2):171–186. doi: 10.1016/S0162-3109(00)80302-1
  24. Brennan FH, Anderson AJ, Taylor SM, et al. Complement activation in the injured central nervous system: anotherdual-edged sword? J Neuroinflammation. 2012;9:137. doi: 10.1186/1742-2094-9-137
  25. Gasque P, Morgan BP. Complement regulatory protein expression by a human oligodendrocyte cell line: cytokine regulation and comparison with astrocytes. Immunology. 1996;89(3):338–347. doi: 10.1046/j.1365-2567.1996.d01-756.x
  26. Yang C, Jones JL, Barnum SR. Expression of decay-accelerating factor (CD55), membrane cofactor protein (CD46) and CD59 in the human astroglioma cell line, D54-MG, and primary rat astrocytes. J Neuroimmunol. 1993;47(2):123–132. doi: 10.1016/0165-5728(93)90022-q
  27. Ischenko A, Sayah S, Patte C, et al. Expression of a functional anaphylatoxin C3a receptor by astrocytes. J Neurochem. 1998;71(6):2487–2496. doi: 10.1046/j.1471-4159.1998.71062487.x
  28. Murakami Y, Imamichi T, Nagasawa S. Characterization of C3a anaphylatoxin receptor on guinea-pig macrophages. Immunology. 1993;79(4):633–638.
  29. Elsner J, Oppermann M, Czech W, Kapp A. C3a activates the respiratory burst in human polymorphonuclear neutrophilic leukocytes via pertussis toxin-sensitive G-proteins. Blood. 1994;83(11):3324–3331. doi: 10.1182/blood.V83.11.3324.3324
  30. Coulthard LG, Woodruff TM. Is the complement activation product C3a a proinflammatory molecule? Re-evaluating the evidence and the myth. J Immunol. 2015;194(8):3542–3548. doi: 10.4049/jimmunol.1403068
  31. Schartz ND, Tenner AJ. The good, the bad, and the opportunities of the complement system in neurodegenerative disease. J Neuroinflammation. 2020;17(1):354. doi: 10.1186/s12974-020-02024-8
  32. Guo RF, Ward PA. Role of C5a in inflammatory responses. Annu Rev Immunol. 2005;23:821–852. doi: 10.1146/annurev.immunol.23.021704.115835
  33. Brennan FH, Gordon R, Lao HW, et al. The complement receptor C5aR controls acute inflammation and astrogliosis following spinal cord injury. J Neurosci. 2015;35(16):6517–6531. doi: 10.1523/JNEUROSCI.5218-14.2015
  34. Feigin VL, Lawes CM, Bennett DA, Anderson CS. Stroke epidemiology: areview of population-based studies of incidence, prevalence, andcase-fatality in the late 20th century. Lancet Neurol. 2003;2(1):43–53. doi: 10.1016/S1474-4422(03)00266-7
  35. Deb P, Sharma S, Hassan KM. Pathophysiologic mechanisms of acute ischemic stroke: an overview with emphasis on therapeutic significance beyond thrombolysis. Pathophysiology. 2010;17(3):197–218. doi: 10.1016/j.pathophys.2009.12.001
  36. Pedersen ED, Loberg EM, Vege E, et al. In situ deposition of complement in human acute brain ischaemia. Scand J Immunol. 2009;69(6):555–562. doi: 10.1111/j.1365-3083.2009.02253.x
  37. Tsakanova G, Stepanyan A, Nahapetyan K, et al. Serine proteases of the complement lectin pathway and their genetic variations in ischaemic stroke. J Clin Pathol. 2018;71(2):141–147. doi: 10.1136/jclinpath-2017-204403
  38. Fust G, Munthe-Fog L, Illes Z, et al. Low ficolin-3 levels in early follow-up serum samples are associated with the severity and unfavorable outcome of acute ischemic stroke. J Neuroinflammation. 2011;8:185. doi: 10.1186/1742-2094-8-185
  39. Zhang ZG, Wang C, Wang J, et al. Prognostic value of mannose-binding lectin: 90-day outcome in patients with acute ischemic stroke. Mol Neurobiol. 2015;51(1):230–239. doi: 10.1007/s12035-014-8682-0
  40. Mocco J, Mack WJ, Ducruet AF, et al. Complement component C3 mediates inflammatory injury following focal cerebral ischemia. Circ Res. 2006;99(2):209–217. doi: 10.1161/01.RES.0000232544.90675.42
  41. Ducruet AF, Hassid BG, Mack WJ, et al. C3a receptor modulation of granulocyte infiltration after murine focal cerebral ischemia is reperfusion dependent. J Cereb Blood Flow Metab. 2008;28(5):1048–1058. doi: 10.1038/sj.jcbfm.9600608
  42. Ducruet AF, Zacharia BE, Sosunov SA, et al. Complement inhibition promotes endogenous neurogenesis and sustained anti-inflammatory neuroprotection following reperfused stroke. PLoS One. 2012;7(6):e38664. doi: 10.1371/journal.pone.0038664
  43. Rahpeymai Y, Hietala MA, Wilhelmsson U, et al. Complement: a novel factor in basal and ischemia-induced neurogenesis. Embo J. 2006;25(6):1364–1374. doi: 10.1038/sj.emboj.7601004
  44. Ahmad S, Pandya C, Kindelin A, et al. C3a receptor antagonist therapy is protective with or without thrombolysis in murine thromboembolic stroke. Br J Pharmacol. 2020;177(11):2466–2477. doi: 10.1111/bph.14989
  45. Mathieu MC, Sawyer N, Greig GM, et al. The C3a receptor antagonist SB290157 has agonist activity. Immunol Lett. 2005;100(2):139–145. doi: 10.1016/j.imlet.2005.03.003
  46. Stokowska A, Atkins AL, Mora´n J, et al. Complement peptide C3a stimulates neural plasticity after experimental brain ischaemia. Brain. 2017;140(2):353–369. doi: 10.1093/brain/aww314
  47. Jarlestedt K, Rousset CI, Stahlberg A, et al. Receptor for complement peptide C3a: a therapeutic target for neonatal hypoxic-ischemic brain injury. FASEB J. 2013;27(9):3797–3804. doi: 10.1096/fj.13-230011
  48. Pischke SE, Gustavsen A, Orrem HL, et al. Complement factor 5 blockade reduces porcine myocardial infarction size and improves immediate cardiac function. Basic Res Cardiol. 2017;112(3):20. doi: 10.1007/s00395-017-0610-9
  49. Mehta G, Scheinman RI, Holers VM, Banda NK. A new approach for the treatment of arthritis in mice with a novel conjugate of an anti-C5aR1 antibody and C5 small interfering RNA. J Immunol. 2015;194(11):5446–5454. doi: 10.4049/jimmunol.1403012
  50. Costa C, Zhao L, Shen Y, et al. Role of complement component C5 in cerebral ischemia/reperfusion injury. Brain Res. 2006;1100:142–151. DOI: 10.1016/ j.brainres.2006.05.029
  51. Garrett MC, Otten ML, Starke RM, et al. Synergistic neuroprotective effects of C3a and C5a receptor blockade following intracerebral hemorrhage. Brain Res. 2009;1298:171–177. doi: 10.1016/j.brainres.2009.04.047
  52. Finch AM, Wong AK, Paczkowski NJ, et al. Low-molecular-weight peptidic and cyclic antagonists of the receptor for the complement factor C5a. J Med Chem. 1999;42(11):1965–1974. doi: 10.1021/jm9806594
  53. March DR, Proctor LM, Stoermer MJ, et al. Potent cyclic antagonists of the complement C5a receptor on human polymorphonuclear leukocytes. Relationships between structures and activity. Mol Pharmacol. 2004;65(4):868–879. doi: 10.1124/mol.65.4.868
  54. Arumugam TV, Tang SC, Lathia JD, et al. Intravenous immunoglobulin (IVIG) protects the brain against experimental stroke by preventing complement-mediated neuronal cell death. Proc Natl Acad Sci U S A. 2007;104(35):14104–14109. doi: 10.1073/pnas.0700506104
  55. Kim GH, Mocco J, Hahn DK, et al. Protective effect of C5a receptor inhibition after murine reperfused stroke. Neurosurgery. 2008;63(1):122–126. doi: 10.1227/01.NEU.0000335079.70222.8D
  56. Vakeva AP, Agah A, Rollins SA, et al. Myocardial infarction and apoptosis after myocardial ischemia and reperfusion: role of the terminal complement components and inhibition by anti-C5 therapy. Circulation. 1998;97(22):2259–2267. doi: 10.1161/01.cir.97.22.2259
  57. Pavlovski D, Thundyil J, Monk PN, et al. Generation of complement component C5a by ischemic neurons promotes neuronal apoptosis. Faseb J. 2012;26(9):3680–3690. doi: 10.1096/fj.11-202382
  58. Mukherjee P, Thomas S, Pasinetti GM. Complement anaphylatoxin C5a neuroprotects through regulation of glutamate receptor subunit 2 in vitro and in vivo. J Neuroinflammation. 2008;5:5. doi: 10.1186/1742-2094-5-5
  59. Bellander BM, Singhrao SK, Ohlsson M, et al. Complement activation in the human brain after traumatic head injury. J Neurotrauma. 2001;18(12):1295–1311. doi: 10.1089/08977150152725605
  60. Burk A-M, Martin M, Flierl MA, et al. Early complementopathy after multiple injuries in humans. Shock. 2012;37(4):348–354. doi: 10.1097/shk.0b013e3182471795
  61. Stahel PF, Morganti-Kossmann MC, Perez D, et al. Intrathecal levels of complement-derived soluble membrane attack complex (sC5b-9) correlate with blood-brain barrier dysfunction in patients with traumatic brain injury. J Neurotrauma. 2001;18(8):773–781. doi: 10.1089/089771501316919139
  62. De Blasio D, Fumagalli S, Longhi L, et al. Pharmacological inhibition of mannose-binding lectin ameliorates neurobehavioral dysfunction following experimental traumatic brain injury. J Cereb Blood Flow Metab. 2017;37(3):938–950. doi: 10.1177/0271678x16647397
  63. Ruseva MM, Ramaglia V, Morgan BP, Harris CL. An anticomplement agent that homes to the damaged brain and promotes recovery after traumatic brain injury in mice. Proc Natl Acad Sci U S A. 2015;112(46):14319–14324. doi: 10.1073/pnas.1513698112
  64. Stahel PF, Morganti-Kossmann MC, Kossmann T. The role of the complement system in traumatic brain injury. Brain Res Rev Brain Res. 1998;27(3):243–256. doi: 10.1016/s0165-0173(98)00015-0
  65. Alawieh A, Langley EF, Weber S, et al. Identifying the role of complement in triggering neuroinflammation after traumatic brain injury. J Neurosci. 2018;38(10):2519–2532. doi: 10.1523/jneurosci.2197-17.2018
  66. Hammad A, Westacott L, Zaben M. The role of the complement system in traumatic brain injury: a review. J Neuroinflammation. 2018;15(1):24. doi: 10.1186/s12974-018-1066-z
  67. Xiong Y, Mahmood A, Chopp M. Animal models of traumatic brain injury. Nat Rev Neurosci. 2013;14(2):128–142. doi: 10.1038/nrn3407
  68. Rynkowski MA, Kim GH, Garrett MC, et al. C3a receptor antagonist attenuates brain injury after intracerebral hemorrhage. J Cereb Blood Flow Metab. 2009;29(1):98–107. doi: 10.1038/jcbfm.2008.95
  69. Gorbunov NP, Ishchenko AM, Zhakhov AV, et al. Study of the inhibitory effect of anti-C3 antibodies in a model of traumatic brain injury in rats. Russian Journal of Immunology. 2018;12(4):641–643. (In Russ.). doi: 10.31857/S102872210002623-0
  70. Sewell DL, Nacewicz B, Liu F, et al. Complement C3 and C5 play critical roles in traumatic brain cryoinjury: blocking effects on neutrophil extravasation by C5a receptor antagonist. J Neuroimmunol. 2004;155(1–2):55–63. doi: 10.1016/j.jneuroim.2004.06.003
  71. Li G, Fan RM, Chen JL, et al. Neuroprotective effects of argatroban and C5a receptor antagonist (PMX53) following intracerebral haemorrhage. Clin Exp Immunol. 2014;175(2):285–295. doi: 10.1111/cei.12220
  72. US Food and Drug Administration (2015) Soliris (eculizumab) [Internet]. Alexion Pharmaceuticals, Inc., Cheshire. Available from: https://www.fda.gov/media/ 79369/download. Accessed: Jun 2, 2021.
  73. European Medicines Agency. Soliris (eculizumab): EU summary of product characteristics [Internet]. Available from: http://www.emea.europa.eu/docs/en_GB/document_library/EPAR__Product_Information/human/000791/ WC500054208.pdf. Accessed: Jun 2, 2021.
  74. Clinical Trial of BCD-148 and Soliris® for the Treatment of Patients With Paroxysmal Nocturnal Hemoglobinuria [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT04060264?term=BCD-148&draw=2&rank=1. Accessed: Jun 2, 2021.
  75. McKeage K. Ravulizumab: First global approval. Drugs. 2019;79(3):347–352. doi: 10.1007/s40265-019-01068-2
  76. Intravitreal LFG316 in Patients With Age-related Macular Degeneration (AMD) [Internet]. Available from: https://clinicaltrials.gov/ct2/show/ NCT01527500?term=LFG316&draw=2&rank=4. Accessed: Jun 2, 2021.
  77. Hill A, Weston-Davies W, Nunn M, et al. Coversin, a novel C5 complement inhibitor, is safe and effective in the treatment of PNH: results of a phase II clinical trial. Blood. 2017;130(Suppl 1):4747. doi: 10.1182/blood.V130.Suppl_1.4747.4747
  78. A Study of ARC1905 (Anti-C5 Aptamer) in Subjects With Dry Age-related Macular Degeneration [Internet]. Available from: https://www.clinicaltrials.gov/ct2/show/ NCT00950638. Accessed: Jun 2, 2021.
  79. Badri P, Jiang X, Borodovsky A, et al. Pharmacokinetic and pharmacodynamic properties of Cemdisiran, an RNAi therapeutic targeting complement component 5, in healthy hubjects and patients with paroxysmal nocturnal hemoglobinuria. Clin Pharmacokinet. 2021;60(3):365–378. doi: 10.1007/s40262-020-00940-9
  80. Merkel PA, Jayne DR, Wang C, et al. Evaluation of the safety and efficacy of Avacopan, a C5a receptor inhibitor, in patients with antineutrophil cytoplasmic antibody-associated vasculitis treated concomitantly with Rituximab or Cyclophosphamide/Azathioprine: protocol for a randomized, double-blind, active-controlled, phase 3 trial. JMIR Res Protoc. 2020;9(4):e16664. doi: 10.2196/16664
  81. Ricklin D, Lambris JD. Compstatin: a complement inhibitor on its way to clinical application. Adv Exp Med Biol. 2008;632:273–292. doi: 10.1007/978-0-387-78952-1_20
  82. Pegcetacoplan (APL-2) in Neovascular AMD [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT03465709?term=Apellis&draw=2&rank=1. Accessed: Jun 2, 2021.
  83. Study of Pegcetacoplan (APL-2) Therapy in Patients With Geographic Atrophy [Internet]. Available from: https://clinicaltrials.gov/ct2/show/study/ NCT02503332?term=Apellis&draw=2. Accessed: Jun 2, 2021.
  84. Pilot Study to Assess Safety, Preliminary Efficacy and Pharmacokinetics of S.C. Pegcetacoplan (APL-2) in PNH Subjects [Internet]. Available from: https://clinicaltrials.gov/ct2/show/study/NCT02588833?term=Apellis&draw=2. Accessed: Jun 2, 2021.
  85. First-In-Human Clinical Study of the C3 Complement Inhibitor AMY-101 in Healthy Male Volunteers [Internet]. Available from: https://clinicaltrials.gov/ct2/show/ study/NCT03316521?term=Compst %D0 %B0tin&draw=2&rank=1. Accessed: Jun 2, 2021.
  86. Safety of Intravitreal POT-4 Therapy for Patients With Neovascular Age-Related Macular Degeneration (AMD) [Internet]. Available from: https://clinicaltrials.gov/ ct2/show/NCT00473928?term=NCT00473928&draw=2&rank=1. Accessed: Jun 2, 2021.
  87. De Winter H, Buysse M-A, Hack E, inventors. Monoclonal antibody anti-C3-2 directed against the third component of complement (C3) and its use in methods to inhibit complement activation. World patent WO/2004/031240. 2002 Oct 4. EP.
  88. Basi GS, Barbour R, inventors. Compositions and methods for treating diseases of protein aggregation involving iC3b deposition. World patent WO/2012/139069. 2011 Apr 7. US.
  89. Risitano AM, Ricklin D, Huang Y, et al. Peptide inhibitors of C3 activation as a novel strategy of complement inhibition for the treatment of paroxysmal nocturnal hemoglobinuria. Blood. 2014;123(13):2094–101. doi: 10.1182/blood-2013-11-536573
  90. Paixao-Cavalcante D, Torreira E, Lindorfer MA, et al. A humanized antibody that regulates the alternative pathway convertase: potential for therapy of renal disease associated with nephritic factors. J Immunol. 2014;192(10):4844–4851. doi: 10.4049/jimmunol.1303131
  91. Patent № RU2630647C1/27.05.2016. Kartuzova VE, Trofimov AV, Ishchenko AM, et al. Gumanizirovannoe antitelo k konformatsionnomu epitopu S3 komponenta komplementa cheloveka, posledovatel'nost' DNK (varianty), ekspressionnyy vektor, soderzhashchiy posledovatel'nost' DNK (varianty), i shtamm kletok yaichnikov kitayskogo khomyachka CHO-humC34 – produtsent dannogo gumanizirovannogo antitela [Humanized antibody to the conformational epitope C3 of the human complement component, DNA sequence (variants), expression vector containing the DNA sequence (variants), and the Chinese hamster ovary cell strain CHO-humC34 – the producer of this humanized antibody]. (In Russ.)
  92. Huang Y. Evolution of compstatin family as therapeutic complement inhibitors. Expert Opin Drug Discov. 2018;13(5):435–444. doi: 10.1080/17460441.2018.1437139

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. Mechanisms of activation of the complement system. Continuous arrows — the pathways of complement activation, brocken arrows — negative regulation of convertases and membrane attack complex (MAC) assembly, ovals — regulatory proteins, ∫ — activating surface, FD* — precursor of factor D, l/phase — liquid-phase, s/phase — solid-phase

Download (508KB)

Copyright (c) 2021 Nekrasova K.A., Ischenko A.M., Trofimov A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».