Inhibition of the complement anaphylatoxin activities in the central nervous system disorders
- Authors: Nekrasova K.A.1, Ischenko A.M.1, Trofimov A.V.1
-
Affiliations:
- State Research Institute of Highly Pure Biopreparations
- Issue: Vol 21, No 2 (2021)
- Pages: 37-52
- Section: Analytical reviews
- URL: https://journals.rcsi.science/MAJ/article/view/71315
- DOI: https://doi.org/10.17816/MAJ71315
- ID: 71315
Cite item
Abstract
The review is devoted to inhibition of the complement anaphylatoxin activities in diseases of the central nervous system. Here we present epidemiological data on the prevalence of cerebrovascular diseases, in particular, ischemic stroke and craniocerebral trauma. The mechanisms of complement activation and complement-mediated pathology in the central nervous system are considered in detail. Clinical data confirming the role of the complement system in the pathogenesis of stroke and of post-traumatic brain injury are presented. We also summarize the results of in vivo specific activity studies of the complement anaphylatoxin inhibitors using animal models of stroke and traumatic brain injury. Briefly described is the present state of the art in developing drugs that target the effector compounds of the complement cascade.
Full Text
##article.viewOnOriginalSite##About the authors
Kseniya A. Nekrasova
State Research Institute of Highly Pure Biopreparations
Email: k.a.nekrasova@hpb.spb.ru
ORCID iD: 0000-0002-0242-9615
Head of R&D Department
Russian Federation, Saint PetersburgAlexander M. Ischenko
State Research Institute of Highly Pure Biopreparations
Email: a.m.ischenko@hpb.spb.ru
PhD, Head of Laboratory of Protein Biochemistry
Russian Federation, Saint PetersburgAlexander V. Trofimov
State Research Institute of Highly Pure Biopreparations
Author for correspondence.
Email: a.v.trofimov@hpb.spb.ru
Group Leader, Laboratory of Protein Biochemistry
Russian Federation, Saint PetersburgReferences
- Piradov MA, Maksimova MYu, Tanashyan MM. Stroke. Step-by-step instruction. Moscow: GEOTAR-Media; 2019. (In Russ.)
- Parmar P, Krishnamurthi R, Ikram MA, et al. The Stroke Riskometer (TM) App: validation of a data collection tool and stroke risk redictor. Int J Stroke. 2015;10(2):231–244. doi: 10.1111/ijs.12411
- Gusev EI, Konovalov AN, Skvortsova VI. Neurology and neurosurgery: textbook: v 2 t. Ed. by A.N. Konovalova, A.V. Kozlova. Moscow: GEOTAR-Media; 2009. Vol. 2. (In Russ.)
- Amor S, Puentes F, Baker D, van der Valk P. Inflammation inneurodegenerative diseases. Immunology. 2010;129(2):154–169. doi: 10.1111/j.1365-2567.2009.03225.x
- Francis K, van Beek J, Canova C, et al. Innate immunity and brain inflammation: the key role of complement. Expert Rev Mol Med. 2003;5(15):1–19. doi: 10.1017/S1462399403006252
- Van Beek J, Bernaudin M, Petit E, et al. Expression of receptors for complement anaphylatoxins C3a and C5a following permanent focal cerebral ischemia in the mouse. Exp Neurol. 2000;161(1):373–382. doi: 10.1006/exnr.1999.7273
- Merle NS, Noe R, Halbwachs-Mecarelli L, et al. Complement system part II: role in immunity. Front Immunol. 2015;6:257. doi: 10.3389/fimmu.2015.00257
- Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a keysystem for immune surveillance and homeostasis. Nat Immunol. 2010;11(9):785–797. doi: 10.1038/ni.1923
- Alper CA, Johnson AM, Birtch AG, Moore FD. Human C'3: evidence for the liver as the primary site of synthesis. Science. 1969;163(3684):286–288. doi: 10.1126/science.163.3864.286
- Singhrao SK, Neal JW, Rushmere NK, et al. Spontaneous classical pathway activation and deficiency of membrane regulators render human neurons susceptible to complement lysis. Am J Pathol. 2000;157(3):905–918. doi: 10.1016/S0002-9440(10)64604-4
- Orsini F, De Blasio D, Zangari R, et al. Versatility of the complement system in neuroinflammation, neurodegeneration andbrain homeostasis. Front Cell Neurosci. 2014;8:380. doi: 10.3389/fncel.2014.00380
- Harris CL. Expanding horizons in complement drug discovery: challenges and emerging strategies. Semin Immunopathol. 2018;40(1):125–140. doi: 10.1007/s00281-017-0655-8
- Reis ES, Mastellos DC, Hajishengallis G, Lambris JD. New insights into the immune functions of complement. Nat Rev Immunol. 2019;19(8):503–516. doi: 10.1038/s41577-019-0168-x
- Lo MW, Woodruff TM. Complement: bridging the innate and adaptive immune systems in sterile inflammation. J Leukoc Biol. 2020;108(1):339–351. doi: 10.1002/JLB.3MIR0220-270R
- Gaboriaud C, Ling WL, Thielens NM, et al. Deciphering the fine details of C1 assembly and activation mechanisms: “mission impossible”? Front Immunol. 2014;5:565. doi: 10.3389/fimmu.2014.00565
- Héja D, Kocsis A, Dobó J, et al. Revised mechanism of complement lectin-pathway activation revealing the role of serine protease MASP-1 as the exclusive activator of MASP-2. Proc Natl Acad Sci U S A. 2012;109(26):10498–10503. doi: 10.1073/pnas.1202588109
- Rawal N, Pangburn MK. Formation of high affinity C5 convertase of the classical pathway of complement. J Biol Chem. 2003;278(40):38476–38483. doi: 10.1074/jbc.M307017200
- Chen ZA, Pellarin R, Fischer L, et al. Structure of complement C3(H2O) revealed by quantitative cross-linking/mass spectrometry and modeling. Mol Cell Proteomics. 2016;15(8):2730–2743. doi: 10.1074/mcp.M115.056473
- Kouser L, Abdul-Aziz M, Nayak A, et al. Properdin and factor h: opposing players on the alternative complement pathway “see-saw”. Front Immunol. 2013;4:93. doi: 10.3389/fimmu.2013.00093
- Parker CL, Sodetz JM. Role of the human C8 subunits in complement-mediated bacterial killing: evidence that C8 gamma is not essential. Mol Immunol. 2002;39(7–8):453–458. doi: 10.1016/S0161-5890(02)00121-9
- Shao S, Sun X, Chen Y, et al. Complement evasion: an effective strategy that parasites utilize to survive in the host. Front Microbiol. 2019;10:532. doi: 10.3389/fmicb.2019.00532
- Marinozzi MC, Vergoz L, Rybkine T, et al. Complement factor B mutations in atypical hemolytic uremic syndrome-disease-relevant or benign? J Am Soc Nephrol. 2014;25(9):2053–2065. doi: 10.1681/ASN.2013070796
- Gasque P, Dean YD, McGreal EP, et al. Complement components of the innate immune system in health and disease in the CNS. Immunopharmacology. 2000;49(1–2):171–186. doi: 10.1016/S0162-3109(00)80302-1
- Brennan FH, Anderson AJ, Taylor SM, et al. Complement activation in the injured central nervous system: anotherdual-edged sword? J Neuroinflammation. 2012;9:137. doi: 10.1186/1742-2094-9-137
- Gasque P, Morgan BP. Complement regulatory protein expression by a human oligodendrocyte cell line: cytokine regulation and comparison with astrocytes. Immunology. 1996;89(3):338–347. doi: 10.1046/j.1365-2567.1996.d01-756.x
- Yang C, Jones JL, Barnum SR. Expression of decay-accelerating factor (CD55), membrane cofactor protein (CD46) and CD59 in the human astroglioma cell line, D54-MG, and primary rat astrocytes. J Neuroimmunol. 1993;47(2):123–132. doi: 10.1016/0165-5728(93)90022-q
- Ischenko A, Sayah S, Patte C, et al. Expression of a functional anaphylatoxin C3a receptor by astrocytes. J Neurochem. 1998;71(6):2487–2496. doi: 10.1046/j.1471-4159.1998.71062487.x
- Murakami Y, Imamichi T, Nagasawa S. Characterization of C3a anaphylatoxin receptor on guinea-pig macrophages. Immunology. 1993;79(4):633–638.
- Elsner J, Oppermann M, Czech W, Kapp A. C3a activates the respiratory burst in human polymorphonuclear neutrophilic leukocytes via pertussis toxin-sensitive G-proteins. Blood. 1994;83(11):3324–3331. doi: 10.1182/blood.V83.11.3324.3324
- Coulthard LG, Woodruff TM. Is the complement activation product C3a a proinflammatory molecule? Re-evaluating the evidence and the myth. J Immunol. 2015;194(8):3542–3548. doi: 10.4049/jimmunol.1403068
- Schartz ND, Tenner AJ. The good, the bad, and the opportunities of the complement system in neurodegenerative disease. J Neuroinflammation. 2020;17(1):354. doi: 10.1186/s12974-020-02024-8
- Guo RF, Ward PA. Role of C5a in inflammatory responses. Annu Rev Immunol. 2005;23:821–852. doi: 10.1146/annurev.immunol.23.021704.115835
- Brennan FH, Gordon R, Lao HW, et al. The complement receptor C5aR controls acute inflammation and astrogliosis following spinal cord injury. J Neurosci. 2015;35(16):6517–6531. doi: 10.1523/JNEUROSCI.5218-14.2015
- Feigin VL, Lawes CM, Bennett DA, Anderson CS. Stroke epidemiology: areview of population-based studies of incidence, prevalence, andcase-fatality in the late 20th century. Lancet Neurol. 2003;2(1):43–53. doi: 10.1016/S1474-4422(03)00266-7
- Deb P, Sharma S, Hassan KM. Pathophysiologic mechanisms of acute ischemic stroke: an overview with emphasis on therapeutic significance beyond thrombolysis. Pathophysiology. 2010;17(3):197–218. doi: 10.1016/j.pathophys.2009.12.001
- Pedersen ED, Loberg EM, Vege E, et al. In situ deposition of complement in human acute brain ischaemia. Scand J Immunol. 2009;69(6):555–562. doi: 10.1111/j.1365-3083.2009.02253.x
- Tsakanova G, Stepanyan A, Nahapetyan K, et al. Serine proteases of the complement lectin pathway and their genetic variations in ischaemic stroke. J Clin Pathol. 2018;71(2):141–147. doi: 10.1136/jclinpath-2017-204403
- Fust G, Munthe-Fog L, Illes Z, et al. Low ficolin-3 levels in early follow-up serum samples are associated with the severity and unfavorable outcome of acute ischemic stroke. J Neuroinflammation. 2011;8:185. doi: 10.1186/1742-2094-8-185
- Zhang ZG, Wang C, Wang J, et al. Prognostic value of mannose-binding lectin: 90-day outcome in patients with acute ischemic stroke. Mol Neurobiol. 2015;51(1):230–239. doi: 10.1007/s12035-014-8682-0
- Mocco J, Mack WJ, Ducruet AF, et al. Complement component C3 mediates inflammatory injury following focal cerebral ischemia. Circ Res. 2006;99(2):209–217. doi: 10.1161/01.RES.0000232544.90675.42
- Ducruet AF, Hassid BG, Mack WJ, et al. C3a receptor modulation of granulocyte infiltration after murine focal cerebral ischemia is reperfusion dependent. J Cereb Blood Flow Metab. 2008;28(5):1048–1058. doi: 10.1038/sj.jcbfm.9600608
- Ducruet AF, Zacharia BE, Sosunov SA, et al. Complement inhibition promotes endogenous neurogenesis and sustained anti-inflammatory neuroprotection following reperfused stroke. PLoS One. 2012;7(6):e38664. doi: 10.1371/journal.pone.0038664
- Rahpeymai Y, Hietala MA, Wilhelmsson U, et al. Complement: a novel factor in basal and ischemia-induced neurogenesis. Embo J. 2006;25(6):1364–1374. doi: 10.1038/sj.emboj.7601004
- Ahmad S, Pandya C, Kindelin A, et al. C3a receptor antagonist therapy is protective with or without thrombolysis in murine thromboembolic stroke. Br J Pharmacol. 2020;177(11):2466–2477. doi: 10.1111/bph.14989
- Mathieu MC, Sawyer N, Greig GM, et al. The C3a receptor antagonist SB290157 has agonist activity. Immunol Lett. 2005;100(2):139–145. doi: 10.1016/j.imlet.2005.03.003
- Stokowska A, Atkins AL, Mora´n J, et al. Complement peptide C3a stimulates neural plasticity after experimental brain ischaemia. Brain. 2017;140(2):353–369. doi: 10.1093/brain/aww314
- Jarlestedt K, Rousset CI, Stahlberg A, et al. Receptor for complement peptide C3a: a therapeutic target for neonatal hypoxic-ischemic brain injury. FASEB J. 2013;27(9):3797–3804. doi: 10.1096/fj.13-230011
- Pischke SE, Gustavsen A, Orrem HL, et al. Complement factor 5 blockade reduces porcine myocardial infarction size and improves immediate cardiac function. Basic Res Cardiol. 2017;112(3):20. doi: 10.1007/s00395-017-0610-9
- Mehta G, Scheinman RI, Holers VM, Banda NK. A new approach for the treatment of arthritis in mice with a novel conjugate of an anti-C5aR1 antibody and C5 small interfering RNA. J Immunol. 2015;194(11):5446–5454. doi: 10.4049/jimmunol.1403012
- Costa C, Zhao L, Shen Y, et al. Role of complement component C5 in cerebral ischemia/reperfusion injury. Brain Res. 2006;1100:142–151. DOI: 10.1016/ j.brainres.2006.05.029
- Garrett MC, Otten ML, Starke RM, et al. Synergistic neuroprotective effects of C3a and C5a receptor blockade following intracerebral hemorrhage. Brain Res. 2009;1298:171–177. doi: 10.1016/j.brainres.2009.04.047
- Finch AM, Wong AK, Paczkowski NJ, et al. Low-molecular-weight peptidic and cyclic antagonists of the receptor for the complement factor C5a. J Med Chem. 1999;42(11):1965–1974. doi: 10.1021/jm9806594
- March DR, Proctor LM, Stoermer MJ, et al. Potent cyclic antagonists of the complement C5a receptor on human polymorphonuclear leukocytes. Relationships between structures and activity. Mol Pharmacol. 2004;65(4):868–879. doi: 10.1124/mol.65.4.868
- Arumugam TV, Tang SC, Lathia JD, et al. Intravenous immunoglobulin (IVIG) protects the brain against experimental stroke by preventing complement-mediated neuronal cell death. Proc Natl Acad Sci U S A. 2007;104(35):14104–14109. doi: 10.1073/pnas.0700506104
- Kim GH, Mocco J, Hahn DK, et al. Protective effect of C5a receptor inhibition after murine reperfused stroke. Neurosurgery. 2008;63(1):122–126. doi: 10.1227/01.NEU.0000335079.70222.8D
- Vakeva AP, Agah A, Rollins SA, et al. Myocardial infarction and apoptosis after myocardial ischemia and reperfusion: role of the terminal complement components and inhibition by anti-C5 therapy. Circulation. 1998;97(22):2259–2267. doi: 10.1161/01.cir.97.22.2259
- Pavlovski D, Thundyil J, Monk PN, et al. Generation of complement component C5a by ischemic neurons promotes neuronal apoptosis. Faseb J. 2012;26(9):3680–3690. doi: 10.1096/fj.11-202382
- Mukherjee P, Thomas S, Pasinetti GM. Complement anaphylatoxin C5a neuroprotects through regulation of glutamate receptor subunit 2 in vitro and in vivo. J Neuroinflammation. 2008;5:5. doi: 10.1186/1742-2094-5-5
- Bellander BM, Singhrao SK, Ohlsson M, et al. Complement activation in the human brain after traumatic head injury. J Neurotrauma. 2001;18(12):1295–1311. doi: 10.1089/08977150152725605
- Burk A-M, Martin M, Flierl MA, et al. Early complementopathy after multiple injuries in humans. Shock. 2012;37(4):348–354. doi: 10.1097/shk.0b013e3182471795
- Stahel PF, Morganti-Kossmann MC, Perez D, et al. Intrathecal levels of complement-derived soluble membrane attack complex (sC5b-9) correlate with blood-brain barrier dysfunction in patients with traumatic brain injury. J Neurotrauma. 2001;18(8):773–781. doi: 10.1089/089771501316919139
- De Blasio D, Fumagalli S, Longhi L, et al. Pharmacological inhibition of mannose-binding lectin ameliorates neurobehavioral dysfunction following experimental traumatic brain injury. J Cereb Blood Flow Metab. 2017;37(3):938–950. doi: 10.1177/0271678x16647397
- Ruseva MM, Ramaglia V, Morgan BP, Harris CL. An anticomplement agent that homes to the damaged brain and promotes recovery after traumatic brain injury in mice. Proc Natl Acad Sci U S A. 2015;112(46):14319–14324. doi: 10.1073/pnas.1513698112
- Stahel PF, Morganti-Kossmann MC, Kossmann T. The role of the complement system in traumatic brain injury. Brain Res Rev Brain Res. 1998;27(3):243–256. doi: 10.1016/s0165-0173(98)00015-0
- Alawieh A, Langley EF, Weber S, et al. Identifying the role of complement in triggering neuroinflammation after traumatic brain injury. J Neurosci. 2018;38(10):2519–2532. doi: 10.1523/jneurosci.2197-17.2018
- Hammad A, Westacott L, Zaben M. The role of the complement system in traumatic brain injury: a review. J Neuroinflammation. 2018;15(1):24. doi: 10.1186/s12974-018-1066-z
- Xiong Y, Mahmood A, Chopp M. Animal models of traumatic brain injury. Nat Rev Neurosci. 2013;14(2):128–142. doi: 10.1038/nrn3407
- Rynkowski MA, Kim GH, Garrett MC, et al. C3a receptor antagonist attenuates brain injury after intracerebral hemorrhage. J Cereb Blood Flow Metab. 2009;29(1):98–107. doi: 10.1038/jcbfm.2008.95
- Gorbunov NP, Ishchenko AM, Zhakhov AV, et al. Study of the inhibitory effect of anti-C3 antibodies in a model of traumatic brain injury in rats. Russian Journal of Immunology. 2018;12(4):641–643. (In Russ.). doi: 10.31857/S102872210002623-0
- Sewell DL, Nacewicz B, Liu F, et al. Complement C3 and C5 play critical roles in traumatic brain cryoinjury: blocking effects on neutrophil extravasation by C5a receptor antagonist. J Neuroimmunol. 2004;155(1–2):55–63. doi: 10.1016/j.jneuroim.2004.06.003
- Li G, Fan RM, Chen JL, et al. Neuroprotective effects of argatroban and C5a receptor antagonist (PMX53) following intracerebral haemorrhage. Clin Exp Immunol. 2014;175(2):285–295. doi: 10.1111/cei.12220
- US Food and Drug Administration (2015) Soliris (eculizumab) [Internet]. Alexion Pharmaceuticals, Inc., Cheshire. Available from: https://www.fda.gov/media/ 79369/download. Accessed: Jun 2, 2021.
- European Medicines Agency. Soliris (eculizumab): EU summary of product characteristics [Internet]. Available from: http://www.emea.europa.eu/docs/en_GB/document_library/EPAR__Product_Information/human/000791/ WC500054208.pdf. Accessed: Jun 2, 2021.
- Clinical Trial of BCD-148 and Soliris® for the Treatment of Patients With Paroxysmal Nocturnal Hemoglobinuria [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT04060264?term=BCD-148&draw=2&rank=1. Accessed: Jun 2, 2021.
- McKeage K. Ravulizumab: First global approval. Drugs. 2019;79(3):347–352. doi: 10.1007/s40265-019-01068-2
- Intravitreal LFG316 in Patients With Age-related Macular Degeneration (AMD) [Internet]. Available from: https://clinicaltrials.gov/ct2/show/ NCT01527500?term=LFG316&draw=2&rank=4. Accessed: Jun 2, 2021.
- Hill A, Weston-Davies W, Nunn M, et al. Coversin, a novel C5 complement inhibitor, is safe and effective in the treatment of PNH: results of a phase II clinical trial. Blood. 2017;130(Suppl 1):4747. doi: 10.1182/blood.V130.Suppl_1.4747.4747
- A Study of ARC1905 (Anti-C5 Aptamer) in Subjects With Dry Age-related Macular Degeneration [Internet]. Available from: https://www.clinicaltrials.gov/ct2/show/ NCT00950638. Accessed: Jun 2, 2021.
- Badri P, Jiang X, Borodovsky A, et al. Pharmacokinetic and pharmacodynamic properties of Cemdisiran, an RNAi therapeutic targeting complement component 5, in healthy hubjects and patients with paroxysmal nocturnal hemoglobinuria. Clin Pharmacokinet. 2021;60(3):365–378. doi: 10.1007/s40262-020-00940-9
- Merkel PA, Jayne DR, Wang C, et al. Evaluation of the safety and efficacy of Avacopan, a C5a receptor inhibitor, in patients with antineutrophil cytoplasmic antibody-associated vasculitis treated concomitantly with Rituximab or Cyclophosphamide/Azathioprine: protocol for a randomized, double-blind, active-controlled, phase 3 trial. JMIR Res Protoc. 2020;9(4):e16664. doi: 10.2196/16664
- Ricklin D, Lambris JD. Compstatin: a complement inhibitor on its way to clinical application. Adv Exp Med Biol. 2008;632:273–292. doi: 10.1007/978-0-387-78952-1_20
- Pegcetacoplan (APL-2) in Neovascular AMD [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT03465709?term=Apellis&draw=2&rank=1. Accessed: Jun 2, 2021.
- Study of Pegcetacoplan (APL-2) Therapy in Patients With Geographic Atrophy [Internet]. Available from: https://clinicaltrials.gov/ct2/show/study/ NCT02503332?term=Apellis&draw=2. Accessed: Jun 2, 2021.
- Pilot Study to Assess Safety, Preliminary Efficacy and Pharmacokinetics of S.C. Pegcetacoplan (APL-2) in PNH Subjects [Internet]. Available from: https://clinicaltrials.gov/ct2/show/study/NCT02588833?term=Apellis&draw=2. Accessed: Jun 2, 2021.
- First-In-Human Clinical Study of the C3 Complement Inhibitor AMY-101 in Healthy Male Volunteers [Internet]. Available from: https://clinicaltrials.gov/ct2/show/ study/NCT03316521?term=Compst %D0 %B0tin&draw=2&rank=1. Accessed: Jun 2, 2021.
- Safety of Intravitreal POT-4 Therapy for Patients With Neovascular Age-Related Macular Degeneration (AMD) [Internet]. Available from: https://clinicaltrials.gov/ ct2/show/NCT00473928?term=NCT00473928&draw=2&rank=1. Accessed: Jun 2, 2021.
- De Winter H, Buysse M-A, Hack E, inventors. Monoclonal antibody anti-C3-2 directed against the third component of complement (C3) and its use in methods to inhibit complement activation. World patent WO/2004/031240. 2002 Oct 4. EP.
- Basi GS, Barbour R, inventors. Compositions and methods for treating diseases of protein aggregation involving iC3b deposition. World patent WO/2012/139069. 2011 Apr 7. US.
- Risitano AM, Ricklin D, Huang Y, et al. Peptide inhibitors of C3 activation as a novel strategy of complement inhibition for the treatment of paroxysmal nocturnal hemoglobinuria. Blood. 2014;123(13):2094–101. doi: 10.1182/blood-2013-11-536573
- Paixao-Cavalcante D, Torreira E, Lindorfer MA, et al. A humanized antibody that regulates the alternative pathway convertase: potential for therapy of renal disease associated with nephritic factors. J Immunol. 2014;192(10):4844–4851. doi: 10.4049/jimmunol.1303131
- Patent № RU2630647C1/27.05.2016. Kartuzova VE, Trofimov AV, Ishchenko AM, et al. Gumanizirovannoe antitelo k konformatsionnomu epitopu S3 komponenta komplementa cheloveka, posledovatel'nost' DNK (varianty), ekspressionnyy vektor, soderzhashchiy posledovatel'nost' DNK (varianty), i shtamm kletok yaichnikov kitayskogo khomyachka CHO-humC34 – produtsent dannogo gumanizirovannogo antitela [Humanized antibody to the conformational epitope C3 of the human complement component, DNA sequence (variants), expression vector containing the DNA sequence (variants), and the Chinese hamster ovary cell strain CHO-humC34 – the producer of this humanized antibody]. (In Russ.)
- Huang Y. Evolution of compstatin family as therapeutic complement inhibitors. Expert Opin Drug Discov. 2018;13(5):435–444. doi: 10.1080/17460441.2018.1437139
Supplementary files
