The influence of lactoferrin on the epigenetic characteristics of mammalian cells of different types
- Authors: Sharrouf K.A.1,2, Suchkova I.O.1
-
Affiliations:
- Institute of Experimental Medicine
- Saint Petersburg University
- Issue: Vol 21, No 1 (2021)
- Pages: 85-95
- Section: Analytical reviews
- URL: https://journals.rcsi.science/MAJ/article/view/64106
- DOI: https://doi.org/10.17816/MAJ64106
- ID: 64106
Cite item
Abstract
Despite the huge amount of accumulated data, the study of the main mechanisms of interaction between proteins and epigenetic mechanisms in health and various pathologies remains one of the most important problems of molecular biology. The search for various endogenous and exogenous factors affecting the epigenome of eukaryotes continues to be relevant. Lactoferrin is the second most abundant milk protein and has proven to be a very promising anti-inflammatory, antifungal, antibacterial, and anti-cancer agent. This protein can act as a transcription factor regulating the expression of some genes. However, little attention has been paid to the use of lactoferrin as an epigenetic modulating factor. This review demonstrates that lactoferrin can directly and/or indirectly influence epigenetic mechanisms (DNA methylation, histone modification, chromatin compaction, and microRNA pathways) in different types of cells, in particular cancer cells.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Kinda Ali Sharrouf
Institute of Experimental Medicine; Saint Petersburg University
Email: kinda996@yahoo.com
ORCID iD: 0000-0003-0926-0549
Master’s student, Department of Genetics and Biotechnology, Faculty of Biology and Soil
Russian Federation, Saint PetersburgIrina O. Suchkova
Institute of Experimental Medicine
Author for correspondence.
Email: irsuchkova@mail.ru
ORCID iD: 0000-0003-2127-0459
SPIN-code: 4155-7314
Scopus Author ID: 6602838276
ResearcherId: H-4484-2014
MD, PhD (Biology), Senior Researcher, Laboratory of Molecular Cytogenetics of Mammalian Development, Department of Molecular Genetics
Russian Federation, Saint PetersburgReferences
- McGee SL, Hargreaves M. Epigenetics and exercise. Trends Endocrinol Metab. 2019;30(9):636–645. doi: 10.1016/j.tem.2019.06.002
- Bird AP, Wolffe AP. Methylation-induced repression — belts, braces, and chromatin. Cell. 1999;99(5):451–454. doi: 10.1016/s0092-8674(00)81532-9
- Ramassone A, Pagotto S, Veronese A, Visone R. Epigenetics and MicroRNAs in Cancer. Int J Mol Sci. 2018;19(2):459. doi: 10.3390/ijms19020459
- Jenuwein T. Re-SET-ting heterochromatin by histone methyltransferases. Trends Cell Biol. 2001;11(6):266–273. doi: 10.1016/S0962-8924(01)02001-3
- Kanwar JR, Roy K, Patel Y, et al. Multifunctional iron bound lactoferrin and nanomedicinal approaches to enhance its bioactive functions. Molecules. 2015;20(6):9703–9731. doi: 10.3390/molecules20069703
- Sorensen M, Sorensen SPL. The Proteins in whey. Compt Rendus Trav Lab Carlsberg. 1940;23(7):55–99.
- Johansson B. Isolation of an iron-containing red protein from human milk. Acta Chem Scand. 1960;14:510–512. doi: 10.3891/acta.chem.scand.14-0510
- Yount NY, Andrés MT, Fierro JF, Yeaman MR. The γ-core motif correlates with antimicrobial activity in cysteine-containing kaliocin-1 originating from transferrins. Biochim Biophys Acta. 2007;1768(11):2862–2872. doi: 10.1016/j.bbamem.2007.07.024
- Ellison 3rd RT, Giehl TJ. Killing of gram-negative bacteria by lactoferrin and lysozyme. J Clin Invest. 1991;88(4):1080–1091. doi: 10.1172/JCI115407
- Hwang S, Chung IY, Jo J, et al. Comparison of proliferative effect of human lactoferrin and its proteolytic peptide on normal and transformed epithelial cells. Appl Biochem Biotechnol. 2016;178:44–57. doi: 10.1007/s12010-015-1857-y
- Gonzalez-Chavez SA, Arevalo-Gallegos S, Rascon-Cruz Q. Lactoferrin: structure, function and applications. Int J Antimicrob Agents. 2009;33(4):301.e1–301.e8. doi: 10.1016/j.ijantimicag.2008.07.020
- Baker EN, Baker HM. Molecular structure, binding properties and dynamics of lactoferrin. Cell Mol Life Sci. 2005;62(22):2531–2539. doi: 10.1007/s00018-005-5368-9
- Furmanski P, Li Z, Fortuna MB, et al. Multiple molecular forms of human lactoferrin. Identification of a class of lactoferrins that possess ribonuclease activity and lack iron-binding capacity. J Exp Med. 1989;170(2):415–429. doi: 10.1084/jem.170.2.415
- Baker EN. Structure and reactivity of transferrins. Adv Inorg Chem. 1994;41:389–463. doi: 10.1016/S0898-8838(08)60176-2
- Liu D, Wang X, Zhang Z, Teng CT. An intronic alternative promoter of the human lactoferrin gene is activated by Ets. Biochem Biophys Res Commun. 2003;301(2):472–479. doi: 10.1016/S0006-291X(02)03077-2
- Mariller C, Hardivillé S, Hoedt E, et al. Delta-lactoferrin, an intracellular lactoferrin isoform that acts as a transcription factor. Biochem Cell Biol. 2012;90(3):307–319. doi: 10.1139/o11-070
- Rubartelli A, Sitia R. Entry of exogenous polypeptides into the nucleus of living cells: facts and speculations. Trends Cell Biol. 1995;5(11):409–412. doi: 10.1016/S0962-8924(00)89093-5
- Kanyshkova TG, Semenov DV, Buneva VN, Nevinsky GA. Human milk lactoferrin binds two DNA molecules with different affinities. FEBS Lett. 1999;451(3):235–237. doi: 10.1016/S0014-5793(99)00579-7
- Verduci E, Banderali G, Barberi S, et al. Epigenetic effects of human breast milk. Nutrients. 2014;6(4):1711–1724. doi: 10.3390/nu6041711
- Lebedev DV, Zabrodskaya YA, Pipich V, et al. Effect of alpha-lactalbumin and lactoferrin oleic acid complexes on chromatin structural organization. Biochem Biophys Res Commun. 2019;520(1):136–139. doi: 10.1016/j.bbrc.2019.09.116
- Zadvornyi TV, Lukianova NY, Borikun TV, Chekhun VF. Effects of exogenous lactoferrin on phenotypic profile and invasiveness of human prostate cancer cells (DU145 and LNCaP) in vitro. Exp Oncol. 2018;40(3):184–189.
- Danforth DN, Sgagias MK. Interleukin-1α and interleukin-6 act additively to inhibit growth of MCF-7 breast cancer cells in vitro. Cancer Res. 1993;53(7):1538–1545.
- Mishra S, Tai Q, Gu X, et al. Estrogen and estrogen receptor alpha promotes malignancy and osteoblastic tumorigenesis in prostate cancer. Oncotarget. 2015;6(42):44388–44402. doi: 10.18632/oncotarget.6317
- Fleisch AF, Wright RO, Baccarelli AA. Environmental epigenetics: a role in endocrine disease? J Mol Endocrinol. 2012;49(2):R61–R67. doi: 10.1530/JME-12-0066
- Kovács T, Szabó-Meleg E, Ábrahám I. Estradiol-induced epigenetically mediated mechanisms and regulation of gene expression. Int J Mol Sci. 2020;21(9):3177. doi: 10.3390/ijms21093177
- Ariazi E, Taylor J, Black M, et al. A new role for ERα: Silencing via DNA methylation of basal, stem cell, and EMT genes. Mol Cancer Res. 2017;15(2):152–164. doi: 10.1158/1541-7786.mcr-16-0283
- Jin X, Li Y, Guo Y, et al. ERα is required for suppressing OCT4-induced proliferation of breast cancer cells via DNMT1/ISL1/ERK axis. Cell Prolif. 2019;52(4):e12612. doi: 10.1111/cpr.12612
- Wang L, Ozark P, Smith E, et al. TET2 coactivates gene expression through demethylation of enhancers. Sci Adv. 2018;4(11):eaau6986. doi: 10.1126/sciadv.aau6986
- Reale E, Taverna D, Cantini L, et al. Investigating the epi-miRNome: identification of epi-miRNAs using transfection experiments. Epigenomics. 2019;11(14):1581–1599. doi: 10.2217/epi-2019-0050
- Di Croce L, Helin K. Transcriptional regulation by Polycomb group proteins. Nat Struct Mol Biol. 2013;20(10):1147–1155. doi: 10.1038/nsmb.2669
- Nuytten M, Beke L, Van Eynde A, et al. The transcriptional repressor NIPP1 is an essential player in EZH2-mediated gene silencing. Oncogene. 2008;27(10):1449–1460. doi: 10.1038/sj.onc.1210774
- Williams LV, Veliceasa D, Vinokour E, Volpert OV. miR-200b inhibits prostate cancer EMT, growth and metastasis. PLoS One. 2013;8(12):e83991. doi: 10.1371/journal.pone.0083991
- Kojima S, Chiyomaru T, Kawakami K, et al. Tumour suppressors miR-1 and miR-133a target the oncogenic function of purine nucleoside phosphorylase (PNP) in prostate cancer. Br J Cancer. 2012;106(2):405–413. doi: 10.1038/bjc.2011.462
- Chavali V, Tyagi SC, Mishra PK. MicroRNA-133a regulates DNA methylation in diabetic cardiomyocytes. Biochem Biophys Res Commun. 2012;425(3):668–672. doi: 10.1016/j.bbrc.2012.07.105
- Liu J, Zhang X, Huang Y, et al. miR-200b and miR-200c co-contribute to the cisplatin sensitivity of ovarian cancer cells by targeting DNA methyltransferases. Oncol Lett. 2019;17(2):1453–1460. doi: 10.3892/ol.2018.9745
- Guo C, Yang Z-H, Zhang S, et al. Intranasal lactoferrin enhances α-secretase-dependent amyloid precursor protein processing via the ERK1/2-CREB and HIF-1α pathways in an Alzheimer’s disease mouse model. Neuropsychopharmacology. 2017;42(13):2504–2515. doi: 10.1038/npp.2017.8
- Malm T, Koistinaho J, Kanninen K. Utilization of APPswe/PS1dE9 transgenic mice in research of Alzheimer’s disease: Focus on gene therapy and cell-based therapy applications. Int J Alzheimers Dis. 2011:517160. doi: 10.4061/2011/517160
- Taher N, McKenzie C, Garrett R, et al. Amyloid-β alters the DNA methylation status of cell-fate genes in an Alzheimer’s disease model. J Alzheimers Dis. 2014;38(4):831–844. doi: 10.3233/JAD-131061
- Grau AJ, Willig V, Fogel W, Werle E. Assessment of plasma lactoferrin in Parkinson’s disease. Mov Disord. 2001;16(1):131–134. doi: 10.1002/1531-8257(200101)16:1<131::aid-mds1008>3.0.co;2-o
- Sokolov AV, Miliukhina IV, Belsky YuP, et al. Potential role of lactoferrin in early diagnostics and treatment of Parkinson disease. Medical Academic Journal. 2020;20(1):37–44. doi: 10.17816/MAJ33848
- Zalutski IV, Lukianova NY, Storchai DM, et al. Influence of exogenous lactoferrin on the oxidant/ antioxidant balance and molecular profile of hormone receptor-positive and -negative human breast cancer cells in vitro. Exp Oncol. 2017;39(2):106–111.
- Zakharova E, Kostevich V, Sokolov A, Vasilyev V. Human apo-lactoferrin as a physiological mimetic of hypoxia stabilizes hypoxia-inducible factor-1 alpha. Biometals. 2012;25(6):1247–1259. doi: 10.1007/s10534-012-9586-y
- Luo W, Chang R, Zhong J, et al. Histone demethylase JMJD2C is a coactivator for hypoxia-inducible factor 1 that is required for breast cancer progression. Proc Natl Acad Sci USA. 2012;109(49):E3367–E3376. doi: 10.1073/pnas.1217394109
- Skowronski K, Dubey S, Rodenhiser D, Coomber B. Ischemia dysregulates DNA methyltransferases and p16INK4a methylation in human colorectal cancer cells. Epigenetics. 2010;5(6):547–556. doi: 10.4161/epi.5.6.12400
- Patterson A, Chen M, Xue Q, et al. Chronic prenatal hypoxia induces epigenetic programming of PKCε gene repression in rat hearts. Circ Res. 2010;107(3):365–373. doi: 10.1161/circresaha.110.221259
- Thienpont B, Steinbacher J, Zhao H, et al. Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature. 2016;537(7618):63–68. doi: 10.1038/nature19081
- Akanji M, Rotimi D, Adeyemi O. Hypoxia-inducible factors as an alternative source of treatment strategy for cancer. Oxid Med Cell Longev. 2019:8547846. doi: 10.1155/2019/8547846
- Wang G, Jiang B, Rue E, Semenza G. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 1995;92(12):5510–5514. doi: 10.1073/pnas.92.12.5510
- Kostevich V, Sokolov A, Zakharova E, Vasilyev V. Apolactoferrin in mother’s milk induces HIF signaling in neonate animals. Am J Perinatol. 2018;35(S 01):S1–S26. doi: 10.1055/s-0038-1647102
- Bellamy W, Takase M, Wakabayashi H, et al. Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. J Appl Bacteriol. 1992;73(6):472–479. doi: 10.1111/j.1365-2672.1992.tb05007.x
- Lizzi A, Carnicelli V, Clarkson M, et al. Lactoferrin derived peptides: mechanisms of action and their perspectives as antimicrobial and antitumoral agents. Mini Rev Med Chem. 2009;9(6):687–695. doi: 10.2174/138955709788452757
- Zhang T-N, Liu N. Effect of bovine lactoferricin on DNA methyltransferase 1 levels in Jurkat T-leukemia cells. J Dairy Sci. 2010;93(9):3925–3930. doi: 10.3168/jds.2009-3024
Supplementary files
