Immunogenicity and protective activity of recombinant influenza viruses expressing fragments of ScaAB lipoprotein of group B streptococci in a mouse model
- Authors: Stepanova E.A.1, Isakova-Sivak I.N.1, Matyushenko V.A.1, Matushkina A.S.1, Smolonogina T.A.1, Donina S.A.1, Leontieva G.F.1, Suvorov A.N.1, Rudenko L.G.1
-
Affiliations:
- Institute of Experimental Medicine
- Issue: Vol 20, No 3 (2020)
- Pages: 33-42
- Section: Original research
- URL: https://journals.rcsi.science/MAJ/article/view/50307
- DOI: https://doi.org/10.17816/MAJ50307
- ID: 50307
Cite item
Abstract
Group B streptococci (GBS) cause a number of serious diseases in humans. The development of an effective vaccine against GBS requires special approaches. In the present study, three recombinant influenza viruses were constructed on the backbone of H7N9 live attenuated influenza vaccine (LAIV) strain expressing fragments of the ScaAB lipoprotein of Streptococcus agalactiae, fused to the surface protein of the virus, hemagglutinin, using a flexible linker. Recombinant viruses with ScaAB inserts of 85, 141, and 200 amino acids were successfully rescued by the means of reverse genetics. The recombinant strains were able to grow in developing chicken embryos and MDCK cells and retained the temperature-sensitive phenotype attributable to the LAIV viruses. Studies of immunogenicity and protective activity of the vaccine candidates in BALB/c mice revealed that the most promising strain was a strain with an insert of 141 amino acids: this variant had optimal immunogenicity against influenza and GBS and had a protective effect against both pathogens. These data indicate that further studies of the recombinant vectored vaccine H7-ScaAB-141 as a combined viral-bacterial vaccine capable of protection against both influenza virus and bacterial infections caused by group B streptococci are warranted.
Full Text
##article.viewOnOriginalSite##About the authors
E. A. Stepanova
Institute of Experimental Medicine
Author for correspondence.
Email: fedorova.iem@gmail.com
ORCID iD: 0000-0002-8670-8645
SPIN-code: 8010-3047
PhD, senior researcher, Department of Virology
Russian Federation, Saint Petersburg, RussiaI. N. Isakova-Sivak
Institute of Experimental Medicine
Email: isakova.sivak@iemspb.ru
ORCID iD: 0000-0002-2801-1508
SPIN-code: 3469-3600
ScD, Head of Laboratory of Immunology and Prophylaxis of Viral Infections, Virology department
Russian Federation, Saint Petersburg, RussiaV. A. Matyushenko
Institute of Experimental Medicine
Email: matyshenko@iemspb.ru
ORCID iD: 0000-0002-4698-6085
SPIN-code: 1857-1769
researcher, Virology Department
Russian Federation, Saint Petersburg, RussiaA. S. Matushkina
Institute of Experimental Medicine
Email: anastasiia.evsina@gmail.com
ORCID iD: 0000-0002-9045-0683
SPIN-code: 5437-8402
researcher, Virology department
Russian Federation, Saint Petersburg, RussiaT. A. Smolonogina
Institute of Experimental Medicine
Email: smolonogina@mail.ru
ORCID iD: 0000-0002-2886-6987
SPIN-code: 5419-7677
PhD, senior researcher, Virology Department
Russian Federation, Saint Petersburg, RussiaS. A. Donina
Institute of Experimental Medicine
Email: sveta.donina@gmail.com
ORCID iD: 0000-0002-6502-8341
SPIN-code: 6961-3849
PhD, senior researcher, Virology Department
Russian Federation, Saint Petersburg, RussiaG. F. Leontieva
Institute of Experimental Medicine
Email: galeonte@yandex.ru
ORCID iD: 0000-0002-9876-6594
SPIN-code: 5204-9252
PhD, lead researcher, Molecular Microbiology Department
Russian Federation, Saint Petersburg, RussiaA. N. Suvorov
Institute of Experimental Medicine
Email: alexander_suvorov1@hotmail.com
ORCID iD: 0000-0003-2312-5589
SPIN-code: 8062-5281
ScD, Professor, Head of Molecular Microbiology Department
Russian Federation, Saint Petersburg, RussiaL. G. Rudenko
Institute of Experimental Medicine
Email: vaccine@mail.ru
ORCID iD: 0000-0002-0107-9959
SPIN-code: 4181-1372
ScD, Professor, Head of Virology Department
Russian Federation, Saint Petersburg, RussiaReferences
- Gransden WR, Eykyn SJ, Phillips I. Septicaemia in the newborn and elderly. J Antimicrob Chemother. 1994;34 Suppl A:
- -119. https://doi.org/10.1093/jac/34.suppl_A.101.
- Heath PT. Status of vaccine research and development of vaccines for GBS. Vaccine. 2016;34(26):2876-2879. https://doi.org/10.1016/j.vaccine.2015.12.072.
- Грабовская К.Б., Леонтьева Г.Ф., Мерингова Л.Ф., и др. Протективные свойства некоторых поверхностных белков стрептококков группы В // Журнал микробиологии, эпидемиологии и иммунобиологии. – 2007. – № 5. – С. 44–50. [Grabovskaya KB, Lеontyeva GF, Mеringova LF, et al. Protective properties of certain external proteins of group B streptococci. Journal of microbiology, epidemiology and immunobiology. 2007;(5):44-50. (In Russ.)]
- Суворов А.Н., Грабовская К.Б., Леонтьева Г.Ф., и др. Рекомбинантные фрагменты консервативных белков стрептококков группы В как основа специфической вакцины // Журнал микробиологии, эпидемиологии и иммунобиологии. – 2010. – № 2. – С. 44–50. [Suvorov AN, Grabovskaya KB, Lеontyeva GF, et al. Recombinant fragments of conservative proteins of group B streptococci as a basis of specific vaccine. Journal of microbiology, epidemiology and immunobiology. 2010;(2):44-50. (In Russ.)]
- Суворов А.Н., Леонтьева Л.Ф., Ермоленко Е.И., и др. Рекомбинантные вакцины и пробиотики как возможные средства защиты от стрептококковых заболеваний // Медицинский академический журнал. – 2010. – Т. 10. – № 2. – С. 32–39. [Suvorov AN, Lеontyeva GF, Ermolenko EI, et al. Recombinant vaccines and probiotics as possible means of protection from streptococcal infections. Medical academic journal. 2010;10(2):32-39. (In Russ.)]. https://doi.org/10.17816/MAJ10232-39.
- Draper SJ, Heeney JL. Viruses as vaccine vectors for infectious diseases and cancer. Nat Rev Microbiol. 2010;8(1):62-73. https://doi.org/10.1038/nrmicro2240.
- Smolonogina TA, Isakova-Sivak IN, Kotomina TS, et al. Generation of a vaccine against group B streptococcal infection on the basis of cold-adapted influenza A vurus. Mol Gen Microbiol Virol. 2019;34(1):25-34. https://doi.org/10.3103/S0891416819010087.
- Fedorova EA, Smolonogina TA, Isakova-Sivak IN, et al. Modelling of 3D structure of chimeric constructs based on hemagglutinin of influenza virus and immunogenic epitopes of Streptococcus agalactiae. Bull Exp Biol Med. 2018;164(6):743-748. https://doi.org/10.1007/s10517-018-4071-4.
- WHO Global Influenza Surveillance Network. Manual for the laboratory diagnosis and virological surveillance of influenza. Geneva: World Health Organization; 2011. Available from: http://154.72.196.19/sites/default/files/resource/Manual%20for%20the%20Laboratory%20diagnosis%20and%20virological%20surveillance%20of%20influenza.pdf.
- Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints 12. Am J Epidemiol. 1938;27(3):493-497. https://doi.org/10.1093/oxfordjournals.aje.a118408.
- Huber VC, Peltola V, Iverson AR, McCullers JA. Contribution of vaccine-induced immunity toward either the HA or the NA component of influenza viruses limits secondary bacterial complications. J Virol. 2010;84(8):4105-4108. https://doi.org/10.1128/JVI.02621-09.
- Isakova-Sivak I, Tretiak T, Rudenko L. Cold-adapted influenza viruses as a promising platform for viral-vector vaccines. Expert Rev Vaccines. 2016;15(10):1241-1243. https://doi.org/10.1080/14760584.2016.1208088.
- Li J, Arévalo MT, Zeng M. Engineering influenza viral vectors. Bioengineered. 2013;4(1):9-14. https://doi.org/10.4161/bioe.21950.
- Rudenko LG, Desheva JA, Korovkin S, et al. Safety and immunogenicity of live attenuated influenza reassortant H5 vaccine (phase I-II clinical trials). Influenza Other Respir Viruses. 2008;2(6):203-209. https://doi.org/10.1111/j.1750-2659.2008.00064.x.
- Rudenko LG, Arden NH, Grigorieva EP, et al. Immunogenicity and efficacy of Russian live attenuated and US inactivated influenza vaccines used alone and in combination in nursing home residents. Vaccine. 2000;19(2-3):308-318. https://doi.org/10.1016/s0264-410x(00)00153-5.
- Rudenko LG, Lonskaya NI, Klimov AI, et al. Clinical and epidemiological evaluation of a live, cold-adapted influenza vaccine for 3-14-year-olds. Bull World Health Organ. 1996;74(1):77-84.
- Isakova-Sivak I, Chen LM, Matsuoka Y, et al. Genetic bases of the temperature-sensitive phenotype of a master donor virus used in live attenuated influenza vaccines: A/Leningrad/134/17/57 (H2N2). Virology. 2011;412(2):297-305. https://doi.org/10.1016/j.virol.2011.01.004.
- Isakova-Sivak IN, Matyushenko VA, Stepanova EA, et al. Recombinant live attenuated influenza vaccine viruses carrying conserved T-cell epitopes of human adenoviruses induce functional cytotoxic T-cell responses and protect mice against both infections. Vaccines (Basel). 2020;8(2):196. https://doi.org/10.3390/vaccines8020196.
- Kotomina T, Isakova-Sivak I, Stepanova E, et al. Neutralizing epitope of the fusion protein of respiratory syncytial virus embedded in the HA molecule of LAIV virus is not sufficient to prevent RS virus pulmonary replication but ameliorates lung pathology following RSV infection in mice. Open Microbiol J. 2020;14(1):147-156. https://doi.org/10.2174/1874285802014010147.
- Matyushenko V, Kotomina T, Kudryavtsev I, et al. Conserved T-cell epitopes of respiratory syncytial virus (RSV) delivered by recombinant live attenuated influenza vaccine viruses efficiently induce RSV-specific lung-localized memory T cells and augment influenza-specific resident memory T-cell responses. Antiviral Res. 2020;182:104864. https://doi.org/10.1016/j.antiviral.2020.104864.
- Vorobieva EI, Meringova LF, Leontieva GF, et al. Analysis of recombinant group B streptococcal protein ScaAB and evaluation of its immunogenicity. Folia Microbiol (Praha). 2005;50(2):172-176. https://doi.org/10.1007/BF02931468
Supplementary files
