Covid-19: особенности патогенеза заболевания и мишени для иммунотерапевтического воздействия
- Авторы: Климов Н.А.1, Симбирцев А.С.1
-
Учреждения:
- Федеральное государственное бюджетное научное учреждение «Институт экспериментальной медицины», Санкт-Петербург, Российская Федерация.
- Выпуск: Том 20, № 3 (2020)
- Страницы: 75-88
- Раздел: Аналитический обзор
- URL: https://journals.rcsi.science/MAJ/article/view/48959
- DOI: https://doi.org/10.17816/MAJ48959
- ID: 48959
Цитировать
Аннотация
Произведен анализ современной научной литературы в области патогенеза коронавирусной инфекции, ставшего причиной пандемии 2019 г., — COVID-19. Рассмотрены строение, геном, внедрение в клетку и жизненный цикл вируса SARS-CoV-2, вызвавшего пандемию, механизмы защиты вируса от иммунной системы хозяина, особенности клинической картины коронавирусной инфекции, патогенез вирусной пневмонии, в частности нарушение работы ренин-ангиотензиновой системы, цитокиновый шторм, участие системы комплемента в патогенезе COVID-19. Рассмотрены также модели инфекций, вызываемых SARS-СоV и SARS-СоV-2, на лабораторных мышах и перспективы иммунотерапевтического воздействия на инфекции, вызываемые SARS-коронавирусами.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Н. А. Климов
Федеральное государственное бюджетное научное учреждение «Институт экспериментальной медицины», Санкт-Петербург, Российская Федерация.
Автор, ответственный за переписку.
Email: nklimov@mail.ru
канд. мед. наук, заведующий лабораторией генной инженерии белков, отдел медицинской биотехнологии и иммунофармакологии
Россия, г. Санкт-Петербург, РоссияА. С. Симбирцев
Федеральное государственное бюджетное научное учреждение «Институт экспериментальной медицины», Санкт-Петербург, Российская Федерация.
Email: simbas@mail.ru
д-р мед. наук, профессор, член-корр. РАН, заведующий отделом медицинской биотехнологии и иммунофармакологии
Россия, г. Санкт-Петербург, РоссияСписок литературы
- WHO. 2004. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. Available from: https://www.who.int/csr/sars/country/table2004_04_21/en/.
- Fehr AR, Channapannavar R, Perlman S. Middle East respiratory syndrome (MERS): Emergence of a pathogenic human Coronavirus. Annu Rev Med. 2017;68:387-399. https://doi.org/10.1146/annurev-med-051215-031152.
- Kuhn JH, Li W, Choe H, et al. Angiotensin-converting enzyme 2: A functional receptor for SARS coronavirus. Cell Mol Life Sci. 2004;61(21):2738-2743. https://doi.org/10.1007/s00018-004-4242-5.
- Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet. 2020;395(10224):565-574. https://doi.org/10.1016/S0140-6736(20)30251-8.
- Kim D, Lee JY, Yang JS, et al. The Architecture of SARS-CoV-2 Transcriptome. Cell. 2020;181(4):914-921.e10. https://doi.org/10.1016/j.cell.2020.04.011.
- Li X, Geng M, Peng Y, et al. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020;10(2):102-108. https://doi.org/10.1016/j.jpha.2020.03.001.
- Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450-454. https://doi.org/10.1038/nature02145.
- Hamming I, Timens W, Bulthuis ML, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understand-ding SARS pathogenesis. J Pathol. 2004;203(2):631-637. https://doi.org/10.1002/path.1570.
- Walls AC, Park YJ, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;180(2):281-292.e6. https://doi.org/10.1016/j.cell.2020.02.058.
- Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and Is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271-280.e8. https://doi.org/10.1016/
- j.cell.2020.02.052.
- Perlman S, Netland J. Coronaviruses post-SARS: Update on replication and pathogenesis. Nat Rev Microbiol. 2009;7(6):439-450. https://doi.org/10.1038/nrmicro2147.
- Ogando NS, Dalebout TJ, Zevenhoven-Dobbe JC, et al. SARS-coronavirus-2 replication in Vero E6 cells: replication kinetics, rapid adaptation and cytopathology. J Gen Virol. 2020;101(9):925-940. https://doi.org/10.1099/jgv.0.001453.
- Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805-820. https://doi.org/
- 1016/j.cell.2010.01.022.
- Jefferies C. Regulating IRFs in IFN driven disease. Front Immunol. 2019;10:325. https://doi.org/10.3389/fimmu.
- 00325.
- Mitchell S, Mercado E, Adelaja A, et al. An NFkB activity calculator to delineate signaling crosstalk: Type I and II interferons enhance NFkB via distinct mechanisms. Front Immunol. 2019;10:1425. https://doi.org/10.3389/fimmu.
- 01425.
- Ivashkiv L, Donlin L. Regulation of type I interferon responses. Nature reviews Immunology. 2014;14(1):36-49. https://doi.org/10.1038/nri3581.
- Schoggins J, Wilson S, Panis M, et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature. 2011;472(7344):481-485. https://doi.org/10.1038/nature09907.
- Knoops K, Kikkert M, Worm SH, et al. SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol. 2008;6(9):e226. https://doi.org/10.1371/journal.pbio.0060226.
- Snijder EJ, van der Meer Y, Zevenhoven-Dobbe J, et al. Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J Virol. 2006;80(12):5927-5940. https://doi.org/10.1128/JVI.02501-05.
- Li G, Fan Y, Lai Y, et al. Coronavirus infections and immune responses. J Med Virol. 2020;92(4):424-432. https://doi.org/10.1002/jmv.25685.
- Totura AL, Baric RS. SARS coronavirus pathogenesis: Host innate immune responses and viral antagonism of interferon. Curr Opin Virol. 2012;2(3):264-275. https://doi.org/10.1016/
- j.coviro.2012.04.004.
- Kindler E, Thiel V, Weber F. Interaction of SARS and MERS Coronaviruses with the antiviral interferon response. Adv Virus Res. 2016;96:219-243. https://doi.org/10.1016/bs.aivir.2016.08.006
- Domingo P, Mur I, Pomar V, et al. The four horsemen of a viral Apocalypse: The pathogenesis of SARS-CoV-2 infection (COVID-19). EBioMedicine. 2020;58:102887. https://doi.org/10.1016/j.ebiom.2020.102887.
- Blanco-Melo D, Nilsson-Payant B, Liu WC, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181(5):1036-1045.e9. https://doi.org/10.1016/j.cell.2020.04.026.
- Lokugamage K, Hage A, Schindewolf C, et al. SARS-CoV-2 is sensitive to type I interferon pretreatment. bioRxiv. 2020;2020.03.07.982264. https://doi.org/10.1101/2020.03.07.982264.
- Faure E, Poissy J, Goffard A, et al. Distinct immune response in two MERS-CoV-infected patients: Can we go from bench to bedside? PLoS One. 2014;9(2):e88716. https://doi.org/10.1371/journal.pone.0088716.
- Channappanavar R, Perlman S. Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39(5):529-539. https://doi.org/10.1007/s00281-017-0629-x.
- Channappanavar R, Fehr A, Vijay R. et al. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe. 2016;19(2):181-193. https://doi.org/10.1016/j.chom.2016.01.007.
- Gu J, Gong E, Zhang B, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005;202(3):415-424. https://doi.org/10.1084/jem.20050828.
- Huang K, Su IJ, Theron M, et al. An interferon-gamma-related cytokine storm in SARS patients. J Med Virol. 2005;75(2):185-194. https://doi.org/10.1002/jmv.20255.
- Cameron M, Xu L, Danesh A, et al. Interferon-mediated immunopathological events are associated with atypical innate and adaptive immune responses in patients with severe acute respiratory syndrome. J Virol. 2007;81(16):8692-8706. https://doi.org/10.1128/JVI.00527-07.
- Hadjadj J, Yatim N, Barnabei L, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020;369(6504):718-724. https://doi.org/10.1126/science.abc6027.
- Paranjpe I, Russak A, De Freitas JK, et al. Clinical characteristics of hospitalized COVID-19 patients in New York City. medRxiv. 2020;2020.04.19.20062117. https://doi.org/10.1101/2020.04.19.20062117.
- Zhu J, Zhong Z, Ji P, et al. Clinicopathological characteristics of 8697 patients with COVID-19 in China: A meta-analysis. Fam Med Commun Health. 2020;8(2):e000406. https://doi.org/10.1136/fmch-2020-000406.
- Kuba K, Imai Y, Rao S, et al. Lessons from SARS: Control of acute lung failure by the SARS receptor ACE2. J Mol Med (Berl). 2006;84(10):814-820. https://doi.org/10.1007/s00109-006-0094-9.
- Chen J, Subbarao K. The immunobiology of SARS. Annu Rev Immunol. 2007;25(1):443-472. https://doi.org/10.1146/annurev.immunol.25.022106.141706.
- Cheung OY, Chan JW, Ng CK, et al. The spectrum of pathological changes in severe acute respiratory syndrome (SARS). Histopathology. 2004;45(2):119-124. https://doi.org/10.1111/j.1365-2559.2004.01926.x.
- Zhang ZL, Hou YL, Li DT, et al. Laboratory findings of COVID-19: A systematic review and meta-analysis. Scand J Lab Invest. 2020;80(6):441-447. https://doi.org/10.1080/00365513.2020.1768587.
- Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581(7809):465-469. https://doi.org/10.1038/s41586-020-2196-x.
- Mehta PK, Griendling KK. Angiotensin II cell signaling: Physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol. 2007;292(1):C82-97. https://doi.org/10.1152/ajpcell.00287.2006.
- Simões e Silva AC, Silveira KD, Ferreira AJ, et al. ACE2, angiotensin-(1-7) and Mas receptor axis in inflammation and fibrosis. Br J Pharmacol. 2013;169(3):477-492. https://doi.org/10.1111/bph.12159.
- Patel VP, Zhong J-C, Grant MB, et al. Role of the ACE2/Angiotensin 1-7 axis of the renin-angiotensin system in heart failure. Circ Res. 2016;118(8):1313-1326. https://doi.org/10.1161/CIRCRESAHA.116.307708.
- Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436(7047):112-116. https://doi.org/10.1038/nature03712.
- Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11(8):875-879. https://doi.org/10.1038/nm1267.
- Liu Y, Yang Y, Zhang C, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020;63(3):364-374. https://doi.org/10.1007/s11427-020-1643-8.
- Fara A, Mitrev Z, Rosalia RA, Cytokine storm and COVID-19: A chronicle of proinflammatory cytokines. Open Biol. 2020;10(9):200160. https://doi.org/10.1098/rsob.200160.
- Johnson BS, Laloraya M. A cytokine super cyclone in COVID-19 patients with risk factors: The therapeutic potential of BCG immunization. Cytokine Growth Factor Rev. 2020;54:32-42. https://doi.org/10.1016/j.cytogfr.2020.06.014.
- Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(5):846-848. https://doi.org/10.1007/s00134-020-05991-x.
- Herold T, Jurinovic V, Arnreich C, et al. Elevated levels of IL-6 and CRP predict the need for mechanical ventilation in COVID-19. J Allergy Clin Immunol. 2020;146(1):128-136.e4. https://doi.org/10.1016/j.jaci.2020.05.008.
- Симбирцев А.С. Цитокины в патогенезе и лечении заболеваний человека. – СПб.: Фолиант, 2018. – 510 с. [Simbirtsev AS. Tsitokiny v patogeneze i lechenii zabolevanii cheloveka. Saint Petersburg: Foliant; 2018. 510 р. (In Russ.)]
- Wang W, Ye L, Ye L, et al. Up-regulation of IL-6 and TNF-alpha induced by SARS-coronavirus spike protein in murine macrophages via NF-kappaB pathway. Virus Res. 2007;128(1-2):1-8. https://doi.org/10.1016/j.virusres.
- 02.007.
- Zhang X, Wu K, Wang D, et al. Nucleocapsid protein of SARS-CoV activates interleukin-6 expression through cellular transcription factor NF-kappaB. Virology. 2007;365(2):324-335. https://doi.org/10.1016/j.virol.2007.04.009.
- Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. https://doi.org/10.1016/S0140-6736(20)30183-5.
- Soy M, Keser G, Atagündüz P, et al. Cytokine storm in COVID-19: Pathogenesis and overview of anti-inflammatory agents used in treatment. Clin Rheumatol. 2020;39(7):2085-2094. https://doi.org/10.1007/s10067-020-05190-5.
- Sarzi-Puttini P, Giorgi V, Sirotti S, et al. COVID-19, cytokines and immunosuppression: What can we learn from severe acute respiratory syndrome? Clin Exp Rheumatol. 2020;38(2):337-342.
- Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417-1418. https://doi.org/10.1016/S0140-6736(20)30937-5.
- Magro C, Mulvey CJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Transl Res. 2020;220:1-13. https://doi.org/10.1016/j.trsl.2020.04.007.
- Laurence J, MulveyJJ, Seshadri M, et al. Anti-complement c5 therapy with eculizumab in three cases of critical COVID-19. Clin Immunol. 2020;219:108555. https://doi.org/10.1016/j.clim.2020.108555.
- Rambaldi A, Gritti G, Micò MC, et al. Endothelial injury and thrombotic microangiopathy in COVID-19: Treatment with the lectin-pathway inhibitor narsoplimab. Immunobiology. 2020;9:152001. https://doi.org/10.1016/j.imbio.2020.152001.
- Gralinski LE, Sheahan TP, Morrison TE, et al. Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. mBio. 2018;9(5):e01753-18. https://doi.org/10.1128/mBio.01753-18.
- Diurno F, Numis FG, Porta G, et al. Eculizumab treatment in patients with COVID-19: Preliminary results from real life ASL Napoli 2 Nord experience. Eur Rev Med Pharmacol Sci. 2020;24(7):4040-4047. https://doi.org/10.26355/eurrev_202004_20875.
- Mastaglio S, Ruggeri A, Risitano AM, et al. The first case of COVID-19 treated with the complement C3 inhibitor AMY-101. Clin Immunol. 2020;215:108450. https://doi.org/10.1016/j.clim.2020.108450.
- Du L, He Y, Zhou Y, et al. The spike protein of SARS-CoV — a target for vaccine and therapeutic development. Nat Rev Microbiol. 2009;7(3):226-236. https://doi.org/10.1038/nrmicro2090.
- Yasui F, Kohara M, Kitabatake M, et al. Phagocytic cells contribute to the antibody-mediated elimination of pulmonary-infected SARS coronavirus. Virology. 2014;454-455:157-168. https://doi.org/10.1016/j.virol.2014.02.005.
- Ni L, Ye F, Cheng ML, et al. Detection of SARS-CoV-2-Specific humoral and cellular immunity in COVID-19 convalescent individuals. Immunity. 2020;52(6):971-977.e3. https://doi.org/10.1016/j.immuni.2020.04.023.
- Gong SR, Bao LL. The battle against SARS and MERS coronaviruses: Reservoirs and animal models. Animal Model Exp Med. 2018;1(2):125-133. https://doi.org/10.1002/ame2.12017.
- Roberts A, Paddock C, Vogel L, et al. Aged BALB/c mice as a model for increased severity of severe acute respiratory syndrome in elderly humans. J Virol. 2005;79(9):5833-5838. https://doi.org/10.1128/JVI.79.9.5833-5838.2005.
- Day СW, Baric R, Cai SX, et al. A new mouse-adapted strain of SARS-CoV as a lethal model for evaluating antiviral agents in vitro and in vivo. Virology. 2009;395(2):210-222. https://doi.org/10.1016/j.virol.2009.09.023.
- Roberts A, Deming D, Paddock CD, et al. A mouse-adapted SARS-coronavirus causes disease and mortality in BALB/c mice. PLoS Pathog. 2007;3(1):e5. https://doi.org/10.1371/journal.ppat.0030005.
- Yang XH, Deng W, Tong Z, et al. Mice transgenic for human angiotensin-converting enzyme 2 provide a model for SARS coronavirus infection. Comp Med. 2007;57(5):450-459.
- Bao L, Deng W, Huang B, et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature. 2020;583(7818):
- -833. https://doi.org/10.1038/s41586-020-2312-y.
- McCray PB, Pewe L, Wohlford-Lenane C, et al. Lethal Infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol. 2007;81(2):813-821. https://doi.org/10.1128/JVI.02012-06.
- Jiang RD, Liu MQ, Chen Y, et al. Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2. Cell. 2020;182(1):50-58.e8. https://doi.org/10.1016/j.cell.2020.05.027.
- Lutz C, Maher L, Lee C, et al. COVID-19 preclinical models: Human angiotensin-converting enzyme 2 transgenic mice. Hum Genomics. 2020;14(1):20. https://doi.org/10.1186/s40246-020-00272-6.
- Yuen CK, Lam JY, Wong WM, et al. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists. Emerg Microbes Infect. 2020;9(1):1418-1428. https://doi.org/10.1080/22221751.2020.1780953.
- Omrani A, Saad M, Baig K, et al. Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: A retrospective cohort study. Lancet Infect Dis. 2014;14(11):1090-1095. https://doi.org/10.1016/S1473-3099(14)70920-X.
- Zumla A, Chan J, Azhar E, et al. Coronaviruses – drug discovery and therapeutic options. Nat Rev Drug Discov. 2016;15(5):327-347 https://doi.org/10.1038/nrd.2015.37.
- Park A, Iwasaki A. Type I and type III interferons – induction, signaling, evasion, and application to combat COVID-19. Cell Host Microbe. 2020;27(6):870-878. https://doi.org/10.1016/j.chom.2020.05.008.
- Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov Ther. 2020;14(1):58-60. https://doi.org/10.5582/ddt.2020.01012.
- WHO. Draft landscape of COVID-19 candidate vaccines. Available from: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines.
- Usmani SS, Raghava GP. Potential challenges for coronavirus (SARS-CoV-2) vaccines under trial. Front Immunol. 2020;11:561851. https://doi.org/10.3389/fimmu.2020.561851.
- Tseng CT, Sbrana E, Iwata-Yoshikawa N, et al. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS One. 2012;7(4):e35421. https://doi.org/10.1371/journal.pone.0035421.
- Sajna KV, Kamat S. Antibodies at work in the time of severe acute respiratory syndrome coronavirus 2. Cytotherapy. 2020;S1465-3249(20)30846-X. https://doi.org/10.1016/j.jcyt.2020.08.009.
- Owji H, Negahdaripour M, Hajighahramani N. Immunotherapeutic approaches to curtail COVID-19. Int Immunopharmacol. 2020;88:106924. https://doi.org/10.1016/
- j.intimp.2020.106924.
- ClinicalTrials.gov. Explore 358,767 research studies in all 50 states and in 219 countries. Available from: www.clinicaltrials.gov.
- Liu P, Wysocki J, Souma T, et al. Novel ACE2-Fc chimeric fusion provides long-lasting hypertension control and organ protection in mouse models of systemic renin angiotensin system activation. Kidney Int. 2018;94(1):114-125. https://doi.org/10.1016/j.kint.2018.01.029.
- Moore MJ, Dorfman T, Li W, et al. Retroviruses pseudotyped with the severe acute respiratory syndrome coronavirus spike protein efficiently infect cells expressing angiotensin-converting enzyme 2. J Virol. 2004;78(19):10628-10635. https://doi.org/10.1128/JVI.78.19.10628-10635.2004.
- Li Y, Wang H, Tang X, et al. SARS-CoV-2 and three related coronaviruses utilize multiple ACE2 orthologs and are potently blocked by an improved ACE2-Ig.
- J Virol. 2020;94(22):e01283-20. https://doi.org/10.1128/JVI.01283-20.
- Wang X, Mathieu M, Brezski RJ. IgG Fc engineering to modulate antibody effector functions. Protein Cell. 2018;9(1):63-73. https://doi.org/10.1007/s13238-017-0473-8.
- Iwanaga N, Cooper L, Rong L, et al. Novel ACE2-IgG1 fusions with improved activity against SARS-CoV2. bioRxiv. 2020;2020.06.15.152157. https://doi.org/10.1101/2020.06.
- 152157.
- Hussen J, Kandeel M, Hemida MG, Al-Mubarak AI. Antibody-based immunotherapeutic strategies for COVID-19. Pathogens. 2020;9(11):E917. https://doi.org/10.3390/pathogens9110917.
- Wooding DJ, Bach H. Treatment of COVID-19 with convalescent plasma: Lessons from past coronavirus outbreaks. Clin Microbiol Infect. 2020;26(10):1436-1446. https://doi.org/10.1016/j.cmi.2020.08.005.
- Channappanavar R, Perlman S. Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39(5):529-539. https://doi.org/10.1007/s00281-017-0629-x.
Дополнительные файлы
