Hybrid multiepitope recombinant vaccine for protection against infection caused by group B streptococcus

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Streptococcus agalactiae, commonly known as group B streptococcus, is an important pathogen responsible for severe and sometimes fatal invasive infections in newborns. It also poses a significant risk to older adults and those with weakened immune systems. Current preventive strategies primarily include the use of antibiotics to prevent maternal-to-fetal transmission of group B streptococcus and to treat established infections. The emergence of antibiotic-resistant strains has reduced the effectiveness of these treatments and highlighted the need for alternative preventive measures. Vaccines represent a promising complement to antibiotics, potentially providing broader and more effective protection against group B streptococcus infections.

AIM: The study aims to evaluate the immunogenic properties and protective efficacy of a newly developed chimeric recombinant protein vaccine (Su4) designed to combat group B streptococcus infections. This vaccine incorporates immunodominant epitopes from five group B streptococcus virulence factor proteins. The research investigated various vaccination methods in mice, followed by an analysis of the effectiveness of the induced immune response in providing protection against multiple forms of group B streptococcus infection.

MATERIALS AND METHODS: Female outbred mice (6–8 weeks of age) were immunized subcutaneously, intranasally, or intravaginally with a hybrid recombinant vaccine polypeptide Su4 at a dose of 20 μg with repeated administration at the same dose after 21 days. Blood samples were taken from the submandibular vein on days 20 and 40 after immunization. Immunogenicity was assessed by measuring the levels of specific IgG, IgG1, IgG2a and IgG3 using ELISA. The plates were coated with Su4 protein or recombinant peptide analogs of each of the five regions of the Su4 complex molecule, and antibody concentrations were determined using standard curves. Protective efficacy was assessed by the bacterial load in the lungs and vaginal lavages of mice infected with the group B streptococcus strain 6224 nasally or vaginally at a dose of 108 CFU/mouse. Bacterial concentrations in lung homogenates and vaginal washings were determined by plating the material on Columbia blood agar.

RESULTS: The study examined the protective effectiveness of vaccination with the polyepitope molecule Su4, consisting of linear determinants of five group B streptococcus proteins. Immunization by subcutaneous, intranasal and vaginal routes showed that the Su4 protein was immunogenic and caused the production of specific IgG. Subcutaneous immunization ensured the accumulation of the highest levels of antibodies. The immune response developed according to the Th2 type and predominantly led to the induction of IgG1 antibodies, potentially capable of opsonizing bacteria and initiating phagocytosis. Vaccination resulted in accelerated clearance of group B streptococcus from the vaginal cavity of mice following infection compared with the control group, demonstrating the protective effectiveness of the stimulated immune response in protecting against group B streptococcus infections.

CONCLUSIONS: The polyepitope chimeric recombinant protein Su4 is immunogenic via subcutaneous, intranasal, and vaginal administration, inducing a systemic IgG response specific to group B streptococcus proteins. This response enhances resistance to nasal and vaginal group B streptococcus infections, indicating that Su4 is a promising candidate for a multi-epitope vaccine against group B streptococcus.

About the authors

Galina F. Leontieva

Institute of Experimental Medicine

Email: galeonte@Yandex.ru
ORCID iD: 0000-0002-9876-6594
SPIN-code: 5204-9252

Cand. Sci. (Biology), Leading Research Associate of Department of Molecular Microbiology

Russian Federation, 12 Academician Pavlov St., Saint Petersburg, 197022

Tatyana A. Kramskaya

Institute of Experimental Medicine

Author for correspondence.
Email: Tatyana.kramskaya@gmail.com
ORCID iD: 0000-0002-9408-6647
SPIN-code: 4529-3260

Cand. Sci. (Biology), Senior Research Associate of Department of Molecular Microbiology

Russian Federation, 12 Academician Pavlov St., Saint Petersburg, 197022

Irina V. Koroleva

Institute of Experimental Medicine

Email: IVKoroleva@Yandex.ru
ORCID iD: 0000-0002-7966-5130
SPIN-code: 6456-7406

Cand. Sci. (Biology), Senior Research Associate of Department of Molecular Microbiology

Russian Federation, 12 Academician Pavlov St., Saint Petersburg, 197022

Evgenia V. Kuleshevich

Institute of Experimental Medicine

Email: k-zh-v@mail.ru
SPIN-code: 6514-2213

Cand. Sci. (Biology), Research Associate of Department of Molecular Microbiology

Russian Federation, 12 Academician Pavlov St., Saint Petersburg, 197022

Nadezhda V. Duplik

Institute of Experimental Medicine

Email: nadezhdaduplik@gmail.com
ORCID iD: 0000-0001-6595-7354
SPIN-code: 6628-3532

Cand. Sci. (Biology), Research Associate of Department of Molecular Microbiology

Russian Federation, 12 Academician Pavlov St., Saint Petersburg, 197022

Alexander N. Suvorov

Institute of Experimental Medicine

Email: alexander_suvorov1@hotmail.com
ORCID iD: 0000-0003-2312-5589
SPIN-code: 8062-5281

MD, Dr. Sci. (Medicine), Professor, Corresponding Member RAS, Head of Department of Molecular Microbiology

Russian Federation, 12 Academician Pavlov St., Saint Petersburg, 197022

References

  1. Spellerberg B. Pathogenesis of neonatal Streptococcus agalactiae infections. Microbes Infect. 2000;2(14):1733–1742. doi: 10.1016/s1286-4579(00)01328-9
  2. Edwards MS, Baker CJ. Group B streptococcal infections in elderly adults. Clin Infect Dis. 2005;41(6):839–847. doi: 10.1086/432804
  3. Sambola A, Miro JM, Tornos MP, et al. Streptococcus agalactiae infective endocarditis: analysis of 30 cases and review of the literature, 1962–1998. Clin Infect Dis. 2002;34(12):1576–1584. doi: 10.1086/340538
  4. Rollán MJ, San Román JA, Vilacosta I, et al. Clinical profile of Streptococcus agalactiae native valve endocarditis. Am Heart J. 2003;146(6):1095–1098. doi: 10.1016/S0002-8703(03)00444-7
  5. Scully BE, Spriggs D, Neu HC. Streptococcus agalactiae (group B) endocarditis – a description of twelve cases and review of the literature. Infection. 1987;15(3):169–176. doi: 10.1007/BF01646041
  6. Le Doare K, Heath PT. An overview of global GBS epidemiology. Vaccine. 2013;31 Suppl 4:D7–12. doi: 10.1016/j.vaccine.2013.01.009
  7. Gizachew M, Tiruneh M, Moges F, Tessema B. Streptococcus agalactiae maternal colonization, antibiotic resistance and serotype profiles in Africa: a meta-analysis. Ann Clin Microbiol Antimicrob. 2019;18(1):14. doi: 10.1186/s12941-019-0313-1
  8. Wang P, Tong JJ, Ma XH, et al. Serotypes, antibiotic susceptibilities, and multi-locus sequence type profiles of Streptococcus agalactiae isolates circulating in Beijing, China. PLoS One. 2015;10(3):e0120035. doi: 10.1371/journal.pone.012003
  9. Cheng Z, Qu P, Ke P, et al. Antibiotic resistance and molecular epidemiological characteristics of Streptococcus agalactiae isolated from pregnant women in Guangzhou, South China. Can J Infect Dis Med Microbiol . 2020;2020:1368942. doi: 10.1155/2020/13689425
  10. Carreras-Abad C, Ramkhelawon L, Heath PT, Le Doare K. A vaccine against group B streptococcus: recent advances. Infect Drug Resist. 2020;13:1263–1272. doi: 10.2147/IDR.S203454
  11. Kim S-Y, Nguyen C, Russell LB, et al. Cost-effectiveness of a potential group B streptococcal vaccine for pregnant women in the United States. Vaccine. 2017;35(45):6238–6247. doi: 10.1016/j.vaccine.2017.08.085
  12. Kim SY, Russell LB, Park J, et al. Cost-effectiveness of a potential group B streptococcal vaccine program for pregnant women in South Africa. Vaccine. 2014;32(17):1954–1963. doi: 10.1016/j.vaccine.2014.01.062
  13. Hartley J, Li Y, Kunkel L, Crowcroft NS. The burden of infant group B streptococcal infections in Ontario: Analysis of administrative data to estimate the potential benefits of new vaccines. Hum Vaccin Immunother. 2019;15(1):193–202. doi: 10.1080/21645515.2018.1511666
  14. Baker CJ, Rench MA, Edwards MS, et al. Immunization of pregnant women with a polysaccharide vaccine of group B streptococcus. N Engl J Med. 1988;319(18):1180–1185. doi: 10.1056/NEJM198811033191802
  15. Baker CJ, Rench MA, Fernandez M, et al. Safety and immunogenicity of a bivalent group B streptococcal conjugate vaccine for serotypes II and III. J Infect Dis. 2003;188(1):66–73. doi: 10.1086/375536
  16. Baker CJ, Rench MA, McInnes P. Immunization of pregnant women with group B streptococcal type III capsular polysaccharide-tetanus toxoid conjugate vaccine. Vaccine. 2003;21(24):3468–3472 . doi: 10.1016/s0264-410x(03)00353-0
  17. Baker CJ, Paoletti LC, Wessels MR, et al. Safety and immunogenicity of capsular polysaccharide-tetanus toxoid conjugate vaccines for group B streptococcal types IA and IB . J Infect Dis . 1999;179(1):142–150. doi: 10.1086/314574
  18. Baker CJ, Paoletti LC, Rench MA, et al. Immune response of healthy women to 2 different group B streptococcal type V capsular polysaccharide-protein conjugate vaccines. J Infect Dis. 2004;189(6):1103–1112. doi: 10.1086/382193
  19. Heath PT. An update on vaccination against group B streptococcus. Expert Rev Vaccines. 2011;10(5):685–694. doi: 10.1586/erv.11.61
  20. Larsson C, Stålhammar-Carlemalm M, Lindahl G. Protection against experimental infection with group B streptococcus by immunization with a bivalent protein vaccine. Vaccine. 1999;17(5):454–458. doi: 10.1016/s0264-410x(98)00218-7
  21. Madhi SA, Anderson AS, Absalon J, et al. Potential for maternally administered vaccine for infant group B streptococcus. N Engl J Med. 2023;389(3):215–227. doi: 10.1056/NEJMoa2116045
  22. Fischer P, Pawlowski A, Cao D, et al. Safety and immunogenicity of a prototype recombinant alpha-like protein subunit vaccine (GBS-NN) against Group B Streptococcus in a randomised placebo-controlled double-blind phase 1 trial in healthy adult women. Vaccine. 2021;39(32):4489–4499. doi: 10.1016/j.vaccine.2021.06.046
  23. Gavi.org [Internet]. Available from: https://www.gavi.org/vaccineswork/routine-vaccines-extraordinary-impact-group-b-streptococcus-gbs . Accessed: 2024 Dec 25.
  24. Larsson C, Lindroth M, Nordin P, et al. Association between low concentrations of antibodies to protein alpha and Rib and invasive neonatal group B streptococcal infection. Arch Dis Child Fetal Neonatal Ed . 2006;91(6):F403–408. doi: 10.1136/adc.2005.090472
  25. Santi I, Maione D, Galeotti CL, et al. BibA induces opsonizing antibodies conferring in vivo protection against group B Streptococcus . J Infect Dis. 2009;200(4):564–570. doi: 10.1086/603540
  26. Brodeur BR, Boyer M, Charlebois I, et al. Identification of group B streptococcal Sip protein, which elicits cross-protective immunity. Infect Immun. 2000;68(10):5610–5618. doi: 10.1128/IAI.68.10.5610-5618.2000
  27. Kramskaya TA, Leontyeva GF, Grabovskaya KB, et al. Study of the protective mechanisms of action of a polyvalent recombinant vaccine based on conservative proteins for the prevention of infections caused by group B streptococci. Medical alphabet. 2015;1(6):30–33. (In Russ.) EDN: UCMAUP
  28. Felgner S, Spöring I, Pawar V, et al. The immunogenic potential of bacterial flagella for Salmonella -mediated tumor therapy. Int J Cancer. 2020;147(2):448–460. doi: 10.1002/ijc.32807
  29. Filimonova VYu, Dukhovlinov IV, Kramskaya TA, et al. Chimeric proteins based on immunogenic epitopes of surface pathogenicity factors of streptococci as a vaccine for the prevention of infection caused by group B streptococci. Medical Academic Journal. 2016;16(3):82–90. EDN: XDNAAZ
  30. Suvorov A, Dukhovlinov I, Leontieva G, et al. Chimeric Protein PSPF, a potential vaccine for prevention streptococcus pneumonia infection. Vaccines and Vaccination. 2015;2015(6):1–8. doi: 10.4172/2157-7560.10000304
  31. Majumder K. Ligation-free gene synthesis by PCR: synthesis and mutagenesis at multiple loci of a chimeric gene encoding OmpA signal peptide and hirudin. Gene. 1992;110(1):89–94. doi: 10.1016/0378-1119(92)90448-x Erratum in: Gene. 1992;116(1):115–116. doi: 10.1016/0378-1119(92)90638-6 Erratum in: Gene. 1992;122(2):389.
  32. Dzanibe S, Kwatra G, Adrian PV, et al. Association between antibodies against group B Streptococcus surface proteins and recto-vaginal colonisation during pregnancy. Sci Rep. 2017;7(1):16454. doi: 10.1038/s41598-017-16757-9
  33. Procter SR, Gonçalves BP, Paul P, et al. Maternal immunisation against Group B Streptococcus: A global analysis of health impact and cost-effectiveness. PLoS Med. 2023;20(3):e1004068. doi: 10.1371/journal.pmed.1004068
  34. Gupalova T, Leontieva G, Kramskaya T, et al. Development of experimental GBS vaccine for mucosal immunization. PloS One. 2018;13(5):e0196564. doi: 10.1371/journal.pone.0196564
  35. Furfaro LL, Chang BJ, Payne MS. Perinatal Streptococcus agalactiae epidemiology and surveillance targets. Clin Microbiol Rev. 2018;31(4):e00049–18. doi: 10.1128/CMR.00049-18
  36. Bambini S, Rappuoli R. The use of genomics in microbial vaccine development. Drug Discov Today . 2009;14(5–6):252–260. doi: 10.1016/j.drudis.2008.12.007
  37. Suvorov A, Ustinovitch I, Meringova L, et al. Construction of recombinant polypeptides based on beta antigen C (Bac) protein & their usage for protection against group B streptococcal infection. Indian J Med Res. 2004;119 Suppl:228–232.
  38. Vorobieva EI, Meringova LF, Leontieva GF, et al. Analysis of recombinant group B streptococcal protein ScaAB and evaluation of its immunogenicity. Folia Microbiol (Praha). 2005;50(2):172–176 . doi: 10.1007/BF02931468
  39. Schrag SJ, Zywicki S, Farley MM, et al. Group B streptococcal disease in the era of intrapartum antibiotic prophylaxis. N Engl J Med. 2000;342(1):15–20. doi: 10.1056/NEJM200001063420103
  40. Michel JL, Madoff LC, Kling DE, et al. Cloned alpha and beta C-protein antigens of group B streptococci elicit protective immunity. Infect Immun. 1991;59(6):2023–2028. doi: 10.1128/iai.59.6.2023-2028.1991
  41. Navarre WW, Schneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev. 1999;63(1):174–229. doi: 10.1128/MMBR.63.1.174-229.1999
  42. Santillan DA, Rai KK, Santillan MK, et al. Efficacy of polymeric encapsulated C5a peptidase-based group B streptococcus vaccines in a murine model. Am J Obstet Gynecol . 2011;205(3):249.e1–8. doi: 10.1016/j.ajog.2011.06.024
  43. Hajam IA, Dar PA, Shahnawaz I, et al. Bacterial flagellin – a potent immunomodulatory agent. Exp Mol Med. 2017;49(9):e373. doi: 10.1038/emm.2017.172
  44. Scheiblhofer S, Laimer J, Machado Y, et al. Influence of protein fold stability on immunogenicity and its implications for vaccine design. Expert Rev Vaccines . 2017;16(5):479–489. doi: 10.1080/14760584.2017.1306441
  45. Toellner KM, Luther SA, Sze DM, et al. T helper 1 (Th1) and Th2 characteristics start to develop during T cell priming and are associated with an immediate ability to induce immunoglobulin class switching. J Exp Med. 1998;187(8):1193–1204. doi: 10.1084/jem.187.8.1193
  46. Urban JF Jr, Noben-Trauth N, Donaldson DD, et al. IL-13, IL-4Ralpha , and Stat6 are required for the expulsion of the gastrointestinal nematode parasite Nippostrongylus brasiliensis . Immunity. 1998;8(2):255–264. doi: 10.1016/s1074-7613(00)80477-x
  47. Cunningham AF, Khan M, Ball J, et al. Responses to the soluble flagellar protein FliC are Th2, while those to FliC on Salmonella are Th1. Eur J Immunol. 2004;34(11):2986–2995. doi: 10.1002/eji.200425403
  48. Bretscher PA. On the mechanism determining the TH1/TH2 phenotype of an immune response, and its pertinence to strategies for the prevention, and treatment, of certain infectious diseases. Scand J Immunol. 2014;79(6):361–376. doi: 10.1111/sji.12175
  49. Wang G, de Jong RN, van den Bremer ET, et al. Molecular basis of assembly and activation of complement component C1 in complex with immunoglobulin G1 and antigen. Mol Cell . 2016;63:135–145. doi: 10.1016/j.molcel.2016.05.016
  50. Cheng Q, Carlson B, Pillai S, et al. Antibody against surface-bound C5a peptidase is opsonic and initiates macrophage killing of group B streptococci. Infect Immun. 2001;69(4):2302–2308. doi: 10.1128/IAI.69.4.2302-2308.2001
  51. Arlian BM, Tinker JK. Mucosal immunization with a Staphylococcus aureus IsdA-cholera toxin A2/B chimera induces antigen-specific Th2-type responses in mice. Clin Vaccine Immunol. 2011;18(9):1543–1551. doi: 10.1128/CVI.05146-11
  52. Zhang L. Multi-epitope vaccines: a promising strategy against tumors and viral infections. Cell Mol Immunol. 2018;15(2):182–184 . doi: 10.1038/cmi.2017.92
  53. Ma C, Li Y, Wang L, et al. Intranasal vaccination with recombinant receptor-binding domain of MERS-CoV spike protein induces much stronger local mucosal immune responses than subcutaneous immunization: Implication for designing novel mucosal MERS vaccines. Vaccine. 2014;32(18):2100–2108. doi: 10.1016/j.vaccine.2014.02.004
  54. Nimmerjahn F, Ravetch JV. Divergent immunoglobulin G subclass activity through selective Fc receptor binding. Science. 2005;310:1510–1512. doi: 10.1126/science.1118948
  55. Nimmerjahn F, Ravetch JV. Fc gamma receptors as regulators of immune responses. Nat Rev Immunol. 2008;8:34–47. doi: 10.1038/nri2206
  56. Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5:520. doi: 10.3389/fimmu.2014.00520

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation and sequence alignment of fragments Bac, CspA, ScpB (C5a peptidase), ScaAB, and SspB1 within the hybrid protein molecules Su2 and Su4

Download (60KB)
3. Fig. 2. IgG levels in blood serum: on day 20 following a single injection of Su4 protein ( а ); after repeated administration of Su4 protein ( b ). * Statistically significant differences, p < 0.05

Download (186KB)
4. Fig. 3. Ratio of IgG1 to IgG2a subclass antibody levels following subcutaneous immunization of mice with the Su4 protein

Download (58KB)
5. Fig. 4. Antibody levels against recombinant proteins incorporated into the chimeric protein Su4. * Statistically significant differences, p < 0.05

Download (67KB)
6. Fig. 5. Quantification of group B streptococcus GBS in the lungs after intranasal challenge in groups of mice immunized via subcutaneous ( a ), intranasal ( b ), and intravaginal ( c ) routes. * Statistically significant differences, p < 0.05

Download (155KB)
7. Fig. 6. Quantification of group B streptococcus in vaginal lavages at 3, 24, and 48 hours post-vaginal infection. * Statistically significant differences, p < 0.05

Download (91KB)

Copyright (c) 2024 Eco-Vector



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».