Антимикробная активность системы комплемента
- Авторы: Егорова Е.В.1,2, Кренев И.А.1, Оборин Н.Н.1,2, Берлов М.Н.1
-
Учреждения:
- Институт экспериментальной медицины
- Санкт-Петербургский государственный университет
- Выпуск: Том 23, № 2 (2023)
- Страницы: 31-45
- Раздел: Аналитический обзор
- URL: https://journals.rcsi.science/MAJ/article/view/253866
- DOI: https://doi.org/10.17816/MAJ322841
- ID: 253866
Цитировать
Аннотация
Система комплемента играет ключевую роль в гомеостазе и защите от патогенов. Антимикробную активность сыворотки в отношении грамотрицательных бактерий обычно связывают с действием мембраноатакующего комплекса. Однако появляется все больше сведений, что некоторые другие компоненты системы комплемента и продукты ее активации тоже способны к прямому киллингу как грамотрицательных, так и грамположительных бактерий. В ходе активации комплемента происходит выработка анафилатоксинов C3a, C4a, C5a, которые наряду с выполнением главной функции способны проявлять бактерицидное действие и разрушать мембрану бактерий. Недавние исследования показали, что у рыб факторы комплемента D, I, а также фрагмент Bа фактора B способны нейтрализовать патогены. Запуск и амплификация комплемента обычно происходят на поверхности клеток патогенов, поэтому локальная выработка антимикробных компонентов потенциально может вносить значимый вклад в их элиминацию. Цель данного обзора — проследить роль отдельных участников комплемента в уничтожении патогенов за счет прямого антибиотического действия. Рассматривается вопрос антимикробной защиты в контексте терапевтического ингибирования комплемента.
Полный текст
Открыть статью на сайте журналаОб авторах
Екатерина Васильевна Егорова
Институт экспериментальной медицины; Санкт-Петербургский государственный университет
Email: egorova.ekaterina@internet.ru
практикант лаборатории общей патологии отдела общей патологии и патологической физиологии; студент бакалавриата биологического факультета
Россия, Санкт-Петербург; Санкт-ПетербургИлья Анатольевич Кренев
Институт экспериментальной медицины
Email: il.krenevv13@yandex.ru
младший научный сотрудник лаборатории общей патологии отдела общей патологии и патологической физиологии, аспирант
Россия, Санкт-ПетербургНикита Николаевич Оборин
Институт экспериментальной медицины; Санкт-Петербургский государственный университет
Email: obnn29@gmail.com
лаборант лаборатории противоопухолевых пептидных препаратов отдела общей патологии и патологической физиологии; студент магистратуры биологического факультета
Россия, Санкт-Петербург; Санкт-ПетербургМихаил Николаевич Берлов
Институт экспериментальной медицины
Автор, ответственный за переписку.
Email: berlov.mn@iemspb.ru
ORCID iD: 0000-0001-5191-0467
SPIN-код: 9006-6127
Scopus Author ID: 6505880084
ResearcherId: O-1283-2014
канд. биол. наук, старший научный сотрудник лаборатории общей патологии отдела общей патологии и патологической физиологии
Россия, Санкт-ПетербургСписок литературы
- Merle N.S., Church S.E., Fremeaux-Bacchi V., Roumenina L.T. Complement system Part I: Molecular mechanisms of activation and regulation // Front. Immunol. 2015. Vol. 6. P. 262. doi: 10.3389/fimmu.2015.00262
- Merle N.S., Noe R., Halbwachs-Mecarelli L. et al. Complement system Part II: Role in immunity // Front. Immunol. 2015. Vol. 6. P. 257. doi: 10.3389/fimmu.2015.00257
- Xie C.B., Jane-Wit D., Pober J.S. Complement membrane attack complex: new roles, mechanisms of action, and therapeutic targets // Am. J. Pathol. 2020. Vol. 190, No. 6. P. 1138–1150. doi: 10.1016/j.ajpath.2020.02.006
- Venkatraman Girija U., Gingras A.R., Marshall J.E. et al. Structural basis of the C1q/C1s interaction and its central role in assembly of the C1 complex of complement activation // Proc. Natl. Acad. Sci. USA. 2013. Vol. 110, No. 34. P. 13916–13920. doi: 10.1073/pnas.1311113110
- Goldberg B.S., Ackerman M.E. Antibody-mediated complement activation in pathology and protection // Immunol. Cell Biol. 2020. Vol. 98, No. 4. P. 305–317. doi: 10.1111/imcb.12324
- Matsushita M., Endo Y., Fujita T. Structural and functional overview of the lectin complement pathway: its molecular basis and physiological implication // Arch. Immunol. Ther. Exp. (Warsz). 2013. Vol. 61, No. 4. P. 273–283. doi: 10.1007/s00005-013-0229-y
- Harrison R.A. The properdin pathway: an “alternative activation pathway” or a “critical amplification loop” for C3 and C5 activation? // Semin. Immunopathol. 2018. Vol. 40, No. 1. P. 15–35. doi: 10.1007/s00281-017-0661-x
- Windfuhr J.P., Alsenz J., Loos M. The critical concentration of C1-esterase inhibitor (C1-INH) in human serum preventing auto-activation of the first component of complement (C1) // Mol. Immunol. 2005. Vol. 42, No. 6. P. 657–663. doi: 10.1016/j.molimm.2004.09.025
- Paréj K., Dobó J., Závodszky P., Gál P. The control of the complement lectin pathway activation revisited: both C1-inhibitor and antithrombin are likely physiological inhibitors, while α2-macroglobulin is not // Mol. Immunol. 2013. Vol. 54, No. 3–4. P. 415–422. doi: 10.1016/j.molimm.2013.01.009
- Noris M., Remuzzi G. Overview of complement activation and regulation // Semin. Nephrol. 2013. Vol. 33, No. 6. P. 479–492. doi: 10.1016/j.semnephrol.2013.08.001
- Bayly-Jones C., Bubeck D., Dunstone M.A. The mystery behind membrane insertion: a review of the complement membrane attack complex // Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017. Vol. 372, No. 1726. P. 20160221. doi: 10.1098/rstb.2016.0221
- Кокряков В.Н. Очерки о врожденном иммунитете. Санкт-Петербург: Наука, 2006.
- Luo Y., Song Y. Mechanism of antimicrobial peptides: antimicrobial, anti-inflammatory and antibiofilm activities // Int. J. Mol. Sci. 2021. Vol. 22, No. 21. P. 11401. doi: 10.3390/ijms222111401
- Stapels D.A., Geisbrecht B.V., Rooijakkers S.H. Neutrophil serine proteases in antibacterial defense // Curr. Opin. Microbiol. 2015. Vol. 23. P. 42–48. doi: 10.1016/j.mib.2014.11.002
- Korkmaz B., Horwitz M.S., Jenne D.E., Gauthier F. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases // Pharmacol. Rev. 2010. Vol. 62, No. 4. P. 726–759. doi: 10.1124/pr.110.002733
- Ram S., Lewis L.A., Rice P.A. Infections of people with complement deficiencies and patients who have undergone splenectomy // Clin. Microbiol. Rev. 2010. Vol. 23, No. 4. P. 740–780. doi: 10.1128/CMR.00048-09
- Nagata M., Hara T., Aoki T. et al. Inherited deficiency of ninth component of complement: an increased risk of meningococcal meningitis // J. Pediatr. 1989. Vol. 114, No. 2. P. 260–264. doi: 10.1016/s0022-3476(89)80793-0
- Joiner K.A., Warren K.A., Hammer C., Frank M.M. Bactericidal but not nonbactericidal C5b-9 is associated with distinctive outer membrane proteins in Neisseria gonorrhoeae // J. Immunol. 1985. Vol. 134, No. 3. P. 1920–1925. doi: 10.4049/jimmunol.134.3.1920
- Harriman G.R., Esser A.F., Podack E.R. et al. The role of C9 in complement-mediated killing of Neisseria // J. Immunol. 1981. Vol. 127, No. 6. P. 2386–2390. doi: 10.4049/jimmunol.127.6.2386
- Niculescu F., Rus H. Mechanisms of signal transduction activated by sublytic assembly of terminal complement complexes on nucleated cells // Immunol. Res. 2001. Vol. 24, No. 2. P. 191–199. doi: 10.1385/ir:24:2:191
- Heesterbeek D.A., Bardoel B.W., Parsons E.S. et al. Bacterial killing by complement requires membrane attack complex formation via surface-bound C5 convertases // EMBO J. 2019. Vol. 38, No. 4. P. e99852. doi: 10.15252/embj.201899852
- Hadders M.A., Bubeck D., Roversi P. et al. Assembly and regulation of the membrane attack complex based on structures of C5b6 and sC5b9 // Cell Rep. 2012. Vol. 1, No. 3. P. 200–207. doi: 10.1016/j.celrep.2012.02.003
- Parsons E.S., Stanley G.J., Pyne A.L.B. et al. Single-molecule kinetics of pore assembly by the membrane attack complex // Nat. Commun. 2019. Vol. 10, No. 1. P. 2066. doi: 10.1038/s41467-019-10058-7
- Bhakdi S., Tranum-Jensen J. C5b-9 assembly: average binding of one C9 molecule to C5b-8 without poly-C9 formation generates a stable transmembrane pore // J. Immunol. 1986. Vol. 136, No. 8. P. 2999–3005. doi: 10.4049/jimmunol.136.8.2999
- Sharp T.H., Koster A.J., Gros P. Heterogeneous MAC initiator and pore structures in a lipid bilayer by phase-plate cryo-electron tomography // Cell Rep. 2016. Vol. 15, No. 1. P. 1–8. doi: 10.1016/j.celrep.2016.03.002
- Menny A., Serna M., Boyd C.M. et al. CryoEM reveals how the complement membrane attack complex ruptures lipid bilayers // Nat. Commun. 2018. Vol. 9, No. 1. P. 5316. doi: 10.1038/s41467-018-07653-5
- Franc V., Yang Y., Heck A.J. Proteoform profile mapping of the human serum complement component C9 revealing unexpected new features of N-, O-, and C-Glycosylation // Anal. Chem. 2017. Vol. 89, No. 6. P. 3483–3491. doi: 10.1021/acs.analchem.6b04527
- Doorduijn D.J., Rooijakkers S.H.M., Heesterbeek D.A.C. How the membrane attack complex damages the bacterial cell envelope and kills gram-negative bacteria // Bioessays. 2019. Vol. 41, No. 10. P. e1900074. doi: 10.1002/bies.201900074
- Hoover D.L., Berger M., Nacy C.A. et al. Killing of Leishmania tropica amastigotes by factors in normal human serum // J. Immunol. 1984. Vol. 132, No. 2. P. 893–897. doi: 10.4049/jimmunol.132.2.893
- Berends E.T., Dekkers J.F., Nijland R. et al. Distinct localization of the complement C5b-9 complex on Gram-positive bacteria // Cell Microbiol. 2013. Vol. 15, No. 12. P. 1955–1968. doi: 10.1111/cmi.12170
- Nakamura M., Okada H., Sasaki H. et al. Quantification of the CD55 and CD59, membrane inhibitors of complement on HIV-1 particles as a function of complement-mediated virolysis // Microbiol. Immunol. 1996. Vol. 40, No. 8. P. 561–567. doi: 10.1111/j.1348-0421.1996.tb01109.x
- Kim S.H., Carney D.F., Hammer C.H., Shin M.L. Nucleated cell killing by complement: effects of C5b-9 channel size and extracellular Ca2+ on the lytic process // J. Immunol. 1987. Vol. 138, No. 5. P. 1530–1536. doi: 10.4049/jimmunol.138.5.1530
- Nauta A.J., Daha M.R., Tijsma O. et al. The membrane attack complex of complement induces caspase activation and apoptosis // Eur. J. Immunol. 2002. Vol. 32, No. 3. P. 783–792. doi: 10.1002/1521-4141(200203)32:3<783::AID-IMMU783>3.0.CO;2-Q
- Kim S.H., Carney D.F., Papadimitriou J.C., Shin M.L. Effect of osmotic protection on nucleated cell killing by C5b-9: cell death is not affected by the prevention of cell swelling // Mol. Immunol. 1989. Vol. 26, No. 3. P. 323–331. doi: 10.1016/0161-5890(89)90087-4
- Pilzer D., Fishelson Z. Mortalin/GRP75 promotes release of membrane vesicles from immune attacked cells and protection from complement-mediated lysis // Int. Immunol. 2005. Vol. 17, No. 9. P. 1239–1248. doi: 10.1093/intimm/dxh300
- Brown E.J. Interaction of gram-positive microorganisms with complement // Curr. Top. Microbiol. Immunol. 1985. Vol. 121. P. 159–187. doi: 10.1007/978-3-642-45604-6_8
- Berends E.T., Kuipers A., Ravesloot M.M. et al. Bacteria under stress by complement and coagulation // FEMS Microbiol. Rev. 2014. Vol. 38, No. 6. P. 1146–1171. doi: 10.1111/1574-6976.12080
- Morgan B.P., Boyd C., Bubeck D. Molecular cell biology of complement membrane attack // Semin. Cell Dev. Biol. 2017. Vol. 72. P. 124–132. doi: 10.1016/j.semcdb.2017.06.009
- O’Hara A.M., Moran A.P., Würzner R., Orren A. Complement-mediated lipopolysaccharide release and outer membrane damage in Escherichia coli J5: requirement for C9 // Immunology. 2001. Vol. 102, No. 3. P. 365–372. doi: 10.1046/j.1365-2567.2001.01198.x
- Wang Y., Bjes E.S., Esser A.F. Molecular aspects of complement-mediated bacterial killing. Periplasmic conversion of C9 from a protoxin to a toxin // J. Biol. Chem. 2000. Vol. 275, No. 7. P. 4687–4692. doi: 10.1074/jbc.275.7.4687
- Dankert J.R., Esser A.F. Complement-mediated killing of Escherichia coli: dissipation of membrane potential by a C9-derived peptide // Biochemistry. 1986. Vol. 25, No. 5. P. 1094–1100. doi: 10.1021/bi00353a023
- Dankert J.R., Esser A.F. Bacterial killing by complement. C9-mediated killing in the absence of C5b-8 // Biochem. J. 1987. Vol. 244, No. 2. P. 393–399. doi: 10.1042/bj2440393
- Doorduijn D.J., Heesterbeek D.A.C., Ruyken M. et al. Polymerization of C9 enhances bacterial cell envelope damage and killing by membrane attack complex pores // PLoS Pathog. 2021. Vol. 17, No. 11. P. e1010051. doi: 10.1371/journal.ppat.1010051
- Heesterbeek D.A.C., Martin N.I., Velthuizen A. et al. Complement-dependent outer membrane perturbation sensitizes Gram-negative bacteria to Gram-positive specific antibiotics // Sci. Rep. 2019. Vol. 9, No. 1. P. 3074. doi: 10.1038/s41598-019-38577-9
- Murray G.L., Attridge S.R., Morona R. Inducible serum resistance in Salmonella typhimurium is dependent on wzz(fepE)-regulated very long O antigen chains // Microbes Infect. 2005. Vol. 7, No. 13. P. 1296–1304. doi: 10.1016/j.micinf.2005.04.015
- Grossman N., Schmetz M.A., Foulds J. et al. Lipopolysaccharide size and distribution determine serum resistance in Salmonella Montevideo // J. Bacteriol. 1987. Vol. 169, No. 2. P. 856–863. doi: 10.1128/jb.169.2.856-863.1987
- Schneider M.C., Exley R.M., Ram S. et al. Interactions between Neisseria meningitidis and the complement system // Trends Microbiol. 2007. Vol. 15, No. 5. P. 233–240. doi: 10.1016/j.tim.2007.03.005
- Pramoonjago P., Kaneko M., Kinoshita T. et al. Role of TraT protein, an anticomplementary protein produced in Escherichia coli by R100 factor, in serum resistance // J. Immunol. 1992. Vol. 148, No. 3. P. 827–836. doi: 10.4049/jimmunol.148.3.827
- Hallström T., Siegel C., Mörgelin M. et al. CspA from Borrelia burgdorferi inhibits the terminal complement pathway // mBio. 2013. Vol. 4, No. 4. P. e00481–13. doi: 10.1128/mBio.00481-13
- Sjölinder H., Eriksson J., Maudsdotter L. et al. Meningococcal outer membrane protein NhhA is essential for colonization and disease by preventing phagocytosis and complement attack // Infect. Immun. 2008. Vol. 76, No. 11. P. 5412–5420. doi: 10.1128/IAI.00478-08
- Blom A.M., Hallström T., Riesbeck K. Complement evasion strategies of pathogens-acquisition of inhibitors and beyond // Mol. Immunol. 2009. Vol. 46, No. 14. P. 2808–2817. doi: 10.1016/j.molimm.2009.04.025
- Singh B., Su Y.C., Riesbeck K. Vitronectin in bacterial pathogenesis: a host protein used in complement escape and cellular invasion // Mol. Microbiol. 2010. Vol. 78, No. 3. P. 545–560. doi: 10.1111/j.1365-2958.2010.07373.x
- Wat J.M., Foley J.H., Krisinger M.J. et al. Polyphosphate suppresses complement via the terminal pathway // Blood. 2014. Vol. 123, No. 5. P. 768–776. doi: 10.1182/blood-2013-07-515726
- Zhang Q., Li Y., Tang C.M. The role of the exopolyphosphatase PPX in avoidance by Neisseria meningitidis of complement-mediated killing // J. Biol. Chem. 2010. Vol. 285, No. 44. P. 34259–34268. doi: 10.1074/jbc.M110.154393
- Умнякова Е.С., Пашинская Л.Д., Кренев И.А. и др. Заболевания, связанные с дисрегуляцией системы комплемента, и перспективы их лечения // Медицинский академический журнал. 2018. Т. 18, № 3. С. 7–16. doi: 10.17816/MAJ1837-16
- Alper C.A. A history of complement genetics // Exp. Clin. Immunogenet. 1998. Vol. 15, No. 4. P. 203–212. doi: 10.1159/000019074
- Wessels M.R., Butko P., Ma M. et al. Studies of group B streptococcal infection in mice deficient in complement component C3 or C4 demonstrate an essential role for complement in both innate and acquired immunity // Proc. Natl. Acad. Sci. USA. 1995. Vol. 92, No. 25. P. 11490–11494. doi: 10.1073/pnas.92.25.11490
- Xu Y., Yu Y., Zhang X., et al. Molecular characterization and expression analysis of complement component 3 in dojo loach (Misgurnus anguillicaudatus) // Fish Shellfish Immunol. 2018. Vol. 72. P. 484–493. doi: 10.1016/j.fsi.2017.11.022
- Kerr A.R., Paterson G.K., Riboldi-Tunnicliffe A., Mitchell T.J. Innate immune defense against pneumococcal pneumonia requires pulmonary complement component C3 // Infect. Immun. 2005. Vol. 73, No. 7. P. 4245–4252. doi: 10.1128/IAI.73.7.4245-4252.2005
- Shokal U., Eleftherianos I. Evolution and function of thioester-containing proteins and the complement system in the innate immune response // Front. Immunol. 2017. Vol. 8. P. 759. doi: 10.3389/fimmu.2017.00759
- Najafpour B., Cardoso J.C.R., Canário A.V.M., Power D.M. Specific evolution and gene family expansion of complement 3 and regulatory factor H in fish // Front. Immunol. 2020. Vol. 11. P. 568631. doi: 10.3389/fimmu.2020.568631
- Poole A.Z., Kitchen S.A., Weis V.M. The role of complement in cnidarian-dinoflagellate symbiosis and immune challenge in the sea anemone aiptasia pallida // Front. Microbiol. 2016. Vol. 7. P. 519. doi: 10.3389/fmicb.2016.00519
- Wang Z., Liang X., Li G. et al. Molecular characterization of complement component 3 (C3) in the Pearl Oyster Pinctada fucata improves our understanding of the primitive complement system in bivalve // Front. Immunol. 2021. Vol. 12. P. 652805. doi: 10.3389/fimmu.2021.652805
- Peronato A., Drago L., Rothbächer U. et al. Complement system and phagocytosis in a colonial protochordate // Dev. Comp. Immunol. 2020. Vol. 103. P. 103530. doi: 10.1016/j.dci.2019.103530
- Elvington M., Liszewski M.K., Atkinson J.P. Evolution of the complement system: from defense of the single cell to guardian of the intravascular space // Immunol. Rev. 2016. Vol. 274, No. 1. P. 9–15. doi: 10.1111/imr.12474
- Nordahl E.A., Rydengård V., Nyberg P. et al. Activation of the complement system generates antibacterial peptides // Proc. Natl. Acad. Sci. USA. 2004. Vol. 101, No. 48. P. 16879–16884. doi: 10.1073/pnas.0406678101
- Wu M., Jia B.B., Li M.F. Complement C3 and activated fragment C3a are involved in complement activation and anti-bacterial immunity // Front. Immunol. 2022. Vol. 13. P. 813173. doi: 10.3389/fimmu.2022.813173
- Hugli T.E. Human anaphylatoxin (C3a) from the third component of complement. Primary structure // J. Biol. Chem. 1975. Vol. 250, No. 21. P. 8293–8301. doi: 10.1016/s0021-9258(19)40758-8
- Klos A., Tenner A.J., Johswich K.O. et al. The role of the anaphylatoxins in health and disease // Mol. Immunol. 2009. Vol. 46, No. 14. P. 2753–2766. doi: 10.1016/j.molimm.2009.04.027
- Peng Q., Li K., Sacks S.H., Zhou W. The role of anaphylatoxins C3a and C5a in regulating innate and adaptive immune responses // Inflamm. Allergy Drug Targets. 2009. Vol. 8, No. 3. P. 236–246. doi: 10.2174/187152809788681038
- Zipfel P.F., Reuter M. Complement activation products C3a and C4a as endogenous antimicrobial peptides // Int. J. Pept. Res. Ther. 2009. Vol. 15. P. 87–95. doi: 10.1007/s10989-009-9180-5
- Zhang X.J., Zhong Y.Q., Ma Z.Y. et al. Insights into the antibacterial properties of complement peptides C3a, C4a, and C5a across vertebrates // J. Immunol. 2022. Vol. 209, No. 12. P. 2330–2340. doi: 10.4049/jimmunol.2101019
- Pasupuleti M., Walse B., Nordahl E.A. et al. Preservation of antimicrobial properties of complement peptide C3a, from invertebrates to humans // J. Biol. Chem. 2007. Vol. 282, No. 4. P. 2520–2528. doi: 10.1074/jbc.M607848200
- Sonesson A., Ringstad L., Nordahl E.A. et al. Antifungal activity of C3a and C3a-derived peptides against Candida // Biochim. Biophys. Acta. 2007. Vol. 1768, No. 2. P. 346–353. doi: 10.1016/j.bbamem.2006.10.017
- Pasupuleti M., Walse B., Svensson B. et al. Rational design of antimicrobial C3a analogues with enhanced effects against Staphylococci using an integrated structure and function-based approach // Biochemistry. 2008. Vol. 47, No. 35. P. 9057–9070. doi: 10.1021/bi800991e
- Ringstad L., Andersson Nordahl E., Schmidtchen A., Malmsten M. Composition effect on peptide interaction with lipids and bacteria: variants of C3a peptide CNY21 // Biophys. J. 2007. Vol. 92, No. 1. P. 87–98. doi: 10.1529/biophysj.106.088161
- Gao S., Cui Z., Zhao M.H. The complement C3a and C3a receptor pathway in kidney diseases // Front. Immunol. 2020. Vol. 11. P. 1875. doi: 10.3389/fimmu.2020.01875
- Ganu V.S., Müller-Eberhard H.J., Hugli T.E. Factor C3f is a spasmogenic fragment released from C3b by factors I and H: the heptadeca-peptide C3f was synthesized and characterized // Mol. Immunol. 1989. Vol. 26, No. 10. P. 939–948. doi: 10.1016/0161-5890(89)90112-0
- Позолотин В.А., Умнякова Е.С., Копейкин П.М. и др. Оценка антимикробной активности пептида C3f — производного белка C3 человека // Биоорганическая химия. 2021. Т. 47, № 3. С. 373–381. doi: 10.31857/S0132342321030155
- Wang H., Liu M. Complement C4, Infections, and autoimmune diseases // Front. Immunol. 2021. Vol. 12. P. 694928. doi: 10.3389/fimmu.2021.694928
- Coss S.L., Zhou D., Chua G.T. et al. The complement system and human autoimmune diseases // J. Autoimmun. 2022. P. 102979. doi: 10.1016/j.jaut.2022.102979
- Zhou D., King E.H., Rothwell S. et al. Low copy numbers of complement C4 and C4A deficiency are risk factors for myositis, its subgroups and autoantibodies // Ann. Rheum. Dis. 2023. Vol. 82, No. 2. P. 235–245. doi: 10.1136/ard-2022-222935
- Yang Y., Chung E.K., Zhou B. et al. The intricate role of complement component C4 in human systemic lupus erythematosus // Curr. Dir. Autoimmun. 2004. Vol. 7. P. 98–132. doi: 10.1159/000075689
- Nonaka M., Kimura A. Genomic view of the evolution of the complement system // Immunogenetics. 2006. Vol. 58, No. 9. P. 701–713. doi: 10.1007/s00251-006-0142-1
- Gorski J.P., Hugli T.E., Müller-Eberhard H.J. C4a: the third anaphylatoxin of the human complement system // Proc. Natl. Acad. Sci. USA. 1979. Vol. 76, No. 10. P. 5299–5302. doi: 10.1073/pnas.76.10.5299
- Barnum S.R. C4a: an anaphylatoxin in name only // J. Innate Immun. 2015. Vol. 7, No. 4. P. 333–339. doi: 10.1159/000371423
- Laursen N.S., Magnani F., Gottfredsen R.H. et al. Structure, function and control of complement C5 and its proteolytic fragments // Curr. Mol. Med. 2012. Vol. 12, No. 8. P. 1083–1097. doi: 10.2174/156652412802480925
- Schatz-Jakobsen J.A., Yatime L., Larsen C. et al. Structural and functional characterization of human and murine C5a anaphylatoxins // Acta Crystallogr. D Biol. Crystallogr. 2014. Vol. 70, No. Pt 6. P. 1704–1717. doi: 10.1107/S139900471400844X
- Hughes A.L. Phylogeny of the C3/C4/C5 complement-component gene family indicates that C5 diverged first // Mol. Biol. Evol. 1994. Vol. 11, No. 3. P. 417–425. doi: 10.1093/oxfordjournals.molbev.a040123
- Xu Y., Narayana S.V., Volanakis J.E. Structural biology of the alternative pathway convertase // Immunol. Rev. 2001. Vol. 180. P. 123–135. doi: 10.1034/j.1600-065x.2001.1800111.x
- Li X., Sun L. A teleost complement factor Ba possesses antimicrobial activity and inhibits bacterial infection in fish // Dev. Comp. Immunol. 2017. Vol. 71. P. 49–58. doi: 10.1016/j.dci.2017.01.021
- Volanakis J.E., Narayana S.V. Complement factor D, a novel serine protease // Protein Sci. 1996. Vol. 5, No. 4. P. 553–564. doi: 10.1002/pro.5560050401
- Fishelson Z., Pangburn M.K., Müller-Eberhard H.J. C3 convertase of the alternative complement pathway. Demonstration of an active, stable C3b, Bb (Ni) complex // J. Biol. Chem. 1983. Vol. 258, No. 12. P. 7411–7415. doi: 10.1016/s0021-9258(18)32194-x
- Ding M., Fan J., Wang W. et al. Molecular characterization, expression and antimicrobial activity of complement factor D in Megalobrama amblycephala // Fish Shellfish Immunol. 2019. Vol. 89. P. 43–51. doi: 10.1016/j.fsi.2019.03.031
- Lachmann P.J. The story of complement factor I // Immunobiology. 2019. Vol. 224, No. 4. P. 511–517. doi: 10.1016/j.imbio.2019.05.003
- Lachmann P.J., Müller-Eberhard H.J. The demonstration in human serum of “conglutinogen-activating factor” and its effect on the third component of complement // J. Immunol. 1968. Vol. 100, No. 4. P. 691–698. doi: 10.4049/jimmunol.100.4.691
- Nakao M., Hisamatsu S., Nakahara M. et al. Molecular cloning of the complement regulatory factor I isotypes from the common carp (Cyprinus carpio) // Immunogenetics. 2003. Vol. 54, No. 11. P. 801–806. doi: 10.1007/s00251-002-0518-9
- Xiang J., Li X., Chen Y. et al. Complement factor I from flatfish half-smooth tongue (Cynoglossus semilaevis) exhibited anti-microbial activities // Dev. Comp. Immunol. 2015. Vol. 53, No. 1. P. 199–209. doi: 10.1016/j.dci.2015.06.010
- Jia B.B., Jin C.D., Li M.F. The trypsin-like serine protease domain of Paralichthys olivaceus complement factor I regulates complement activation and inhibits bacterial growth // Fish Shellfish Immunol. 2020. Vol. 97. P. 18–26. doi: 10.1016/j.fsi.2019.12.019
- Rother R.P., Rollins S.A., Mojcik C.F. et al. Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria // Nat. Biotechnol. 2007. Vol. 25, No. 11. P. 1256–1264. doi: 10.1038/nbt1344
- Konar M., Granoff D.M. Eculizumab treatment and impaired opsonophagocytic killing of meningococci by whole blood from immunized adults // Blood. 2017. Vol. 130, No. 7. P. 891–899. doi: 10.1182/blood-2017-05-781450
- McNamara L.A., Topaz N., Wang X. et al. High Risk for invasive meningococcal disease among patients receiving eculizumab (soliris) despite receipt of meningococcal vaccine // MMWR Morb. Mortal. Wkly. Rep. 2017. Vol. 66, No. 27. P. 734–737. doi: 10.15585/mmwr.mm6627e1
- Barnum SR. Therapeutic inhibition of complement: well worth the risk // Trends Pharmacol. Sci. 2017. Vol. 38, No. 6. P. 503–505. doi: 10.1016/j.tips.2017.03.009
Дополнительные файлы
