Nonimmune binding of human immunoglobulins G and A by Streptococcus pyogenes: the role of this phenomenon in pathology

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

M and M-like proteins are key pathogenicity factors of Streptococcus pyogenes, a widely prevalent and potentially lethal bacterium. These proteins confer resistance to the host’s innate and adaptive immune response by attracting specific human proteins to the streptococcal surface. The nonimmune binding of host immunoglobulins G (IgG) and A (IgA) to M and M-like proteins via their Fc domains was first described over 50 years ago, but its role in the pathogenicity of S. pyogenes remains unclear. This discovery has had a significant impact on the development of innovative diagnostic approaches, technologies, and tools in microbiology, immunology, and molecular biology. The nonimmune binding of immunoglobulins has been suggested to play a role in immune conditions on mucosal surfaces and their secretions, but not in blood plasma, while other studies suggest it protects microbes from phagocytosis in the host’s nonimmune blood. The Fc-binding effect has been shown to increase the pathogenicity of streptococci, contributing to the development of autoimmune diseases and tissue damage in experimental animals. The experimental autoimmune process can be prevented by administering purified Fc fragments of immunoglobulins to animals. Streptococcal diseases play a significant role in the pathogenesis of IgA-nephropathy (IgAN), a mesangial proliferative process caused by initial IgA-Fcα deposition in renal mesangium cells. Literature suggests a relevance of recent ideas about the important role of nonimmune Ig binding in streptococcal diseases, and further efforts are required to study the binding of Fc fragments of IgG and IgA to M and M-like proteins of S. pyogenes, with the aim of developing preventive and potentially therapeutic applications. The paper speculates on the role of nonimmune Ig binding in streptococcal diseases, including cases with various mechanisms of development. These studies also focuses on preventive and potentially therapeutic applications of Fc fragments of IgG to M or M-like proteins of S. pyogenes.

About the authors

Larisa A. Burova

Institute of Experimental Medicine

Author for correspondence.
Email: lburova@yandex.ru
ORCID iD: 0000-0001-7687-2348
SPIN-code: 6084-1255
Scopus Author ID: 7003982261
ResearcherId: E-5270-2014

MD, Dr. Sci. (Med.), Leading Research Associate, Department of Molecular Microbiology

Russian Federation, Saint Petersburg

Alexander N. Suvorov

Institute of Experimental Medicine; Saint Petersburg State University

Email: alexander_suvorov1@hotmail.com
ORCID iD: 0000-0003-2312-5589
SPIN-code: 8062-5281
Scopus Author ID: 7101829979
ResearcherId: J-6921-2013

MD, Dr. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences, Head Department of Molecular Microbiology; Head Department of Fundamental Medicine and Medical Technologies

Russian Federation, Saint Petersburg; Saint Petersburg

Peter V. Pigarevsky

Institute of Experimental Medicine

Email: pigarevsky@mail.ru
ORCID iD: 0000-0002-5906-6771
SPIN-code: 8636-4271
Scopus Author ID: 55404484800
ResearcherId: C-3425-2014

Dr. Sci. (Biol.), Head Department of General Morphology

Russian Federation, Saint Petersburg

Artem A. Totolian

Institute of Experimental Medicine

Email: totolyan@hotmail.com
ORCID iD: 0000-0002-3310-9294
SPIN-code: 1741-9171
Scopus Author ID: 7004990713
ResearcherId: J-4218-2014

MD, Dr. Sci. (Med.), Professor, Academician RAS, Chief Research Associate, Department of Molecular Microbiology

Russian Federation, Saint Petersburg

References

  1. Carapetis JR, Beaton A, Cunningham MW, et al. Acute rheumatic fever and rheumatic heart disease. Nat Rev Dis Primers. 2016;2:15084. doi: 10.1038/nrdp.2015.84
  2. Carapetis JR, Steer AC, Mulholland EK, Weber M. The global burden of group A streptococcal diseases. Lancet Infect Dis. 2005;5(11):685–694. doi: 10.1016/S1473-3099(05)70267-X
  3. Watkins DA, Johnson CO, Colquhoun SM, et al. Global, regional, and national burden of rheumatic heart disease, 1990–2015. N Engl J Med. 2017;377(8):713–722. doi: 10.1056/NEJMoa1603693
  4. Cunningham MW. Pathogenesis of group A streptococcal infections. Clin Microbiol Rev. 2000;13(3):470–511. doi: 10.1128/cmr.13.3.470
  5. Ghosh P. Variation, indispensability, and masking in the M protein. Trends Microbiol. 2018;26(2):132–144. doi: 10.1016/j.tim.2017.08.002
  6. Phillips GNJr, Flicker PF, Cohen C, et al. Streptococcal M protein: alpha-helical coiled-coil structure and arrangement on the cell surface. Proc Natl Acad Sci USA. 2018;78(8):4689–4693. doi: 10.1073/pnas.78.8.4689
  7. McMillan DJ, Dreze PA, Vu T, et al. Updated model of group A Streptococcus M proteins based on a comprehensive worldwide study. Clin Microbiol Infect. 2013;19(5):E222–229. doi: 10.1111/1469-0691.12134
  8. Mills JO, Ghosh P. Nonimmune antibody interactions of Group A Streptococcus M and M-like proteins. PLoS Pathog. 2021;17(2):e1009248. doi: 10.1371/journal.ppat.1009248
  9. Haanes EJ, Heath DG, Cleary PP. Architecture of the vir regulons of group A streptococci parallels opacity factor phenotype and M protein class. J Bacteriol. 1992;174(15):4967–4976. doi: 10.1128/jb.174.15.4967-4976.1992
  10. Hollingshead SK, Readdy TL, Yung DL, Bessen DE. Structural heterogeneity of the emm gene cluster in group A streptococci. Mol Microbiol. 1993;8(4):707–717. doi: 10.1111/j.1365-2958.1993.tb01614.x
  11. Flores AR, Olsen RJ, Wunsche A, et al. Natural variation in the promoter of the gene encoding the Mga regulator alters host-pathogen interaction in group A Streptococcus carrier strains. Infect Immun. 2013;81(11):4128–4138. doi: 10.1128/IAI.00405-13
  12. Facklam R, Beall B, Efstratiou A, et al. emm typing and validation of provisional M types for group A streptococci. Emerg Infect Dis. 1999;5(2):247–253. doi: 10.3201/eid0502.990209
  13. Ringdahl U, Svensson HG, Kotarsky H, et al. A role for the fibrinogen-binding regions of streptococcal M proteins in phagocytosis resistance. Mol Microbiol. 2000;37(6):1318–1326. doi: 10.1046/j.1365-2958.2000.02062.x
  14. Carlsson F, Sandin C, Lindahl G. Human fibrinogen bound to Streptococcus pyogenes M protein inhibits complement deposition via the classical pathway. Mol Microbiol. 2005;56(1):28–39. doi: 10.1111/j.1365-2958.2005.04527.x
  15. Macheboeuf P, Buffalo C, Fu CY, et al. Streptococcal M1 protein constructs a pathological host fibrinogen network. Nature. 2011;472(7341):64–68. doi: 10.1038/nature09967
  16. Thern A, Stenberg L, Dahlback B, Lindahl G. Ig-binding surface proteins of Streptococcus pyogenes also bind human C4b-binding protein (C4BP), a regulatory component of the complement system. J Immunol. 1995;154(1):375–386.
  17. Berggard K, Johnsson E, Morfeldt E, et al. Binding of human C4BP to the hypervariable region of M protein: a molecular mechanism of phagocytosis resistance in Streptococcus pyogenes. Mol Microbiol. 2001;42(2):539–551. doi: 10.1046/j.1365-2958.2001.02664.x
  18. Buffalo CZ, Bahn-Suh AJ, Hirakis SP, et al. Conserved patterns hidden within group A Streptococcus M protein hypervariability recognize human C4b-binding protein. Nat Microbiol. 2016;1:16155. doi: 10.1038/nmicrobiol.2016.155
  19. Sandin C, Carlsson F, Lindahl G. Binding of human plasma proteins to Streptococcus pyogenes M protein determines the location of opsonic and non-opsonic epitopes. Mol Microbiol. 2006;59(1):20–30. doi: 10.1111/j.1365-2958.2005.04913.x
  20. Akesson P, Schmidt KH, Cooney J, Björck L. M1 protein and protein H: IgGFc- and albumin-binding streptococcal surface proteins encoded by adjacent genes. Biochem J. 1994;300(Pt 3):877–886. doi: 10.1042/bj3000877
  21. Nilson BH, Frick IM, Akesson P, et al. Structure and stability of protein H and the M1 protein from Streptococcus pyogenes. Implications for other surface proteins of grampositive bacteria. Biochemistry. 1995;34(41):13688–13698. doi: 10.1021/bi00041a051
  22. Ermert D, Weckel A, Agarwal V, et al. Binding of complement inhibitor C4b-binding protein to a highly virulent Streptococcus pyogenes M1 strain is mediated by protein H and enhances adhesion to and invasion of endothelial cells. J Biol Chem. 2013;288(45):32172–32183. doi: 10.1074/jbc.M113.502955
  23. Berge A, Sjobring U. PAM, a novel plasminogen-binding protein from Streptococcus pyogenes. J Biol Chem. 1993;268(34):25417–25424.
  24. Wistedt AC, Ringdahl U, Muller-Esterl W, Sjobring U. Identification of a plasminogen-binding motif in PAM, a bacterial surface protein. Mol Microbiol. 1995;18(3):569–578. doi: 10.1111/j.1365-2958.1995.mmi_18030569.x
  25. Rios-Steiner JL, Schenone M, Mochalkin I, et al. Structure and binding determinants of the recombinant kringle-2 domain of human plasminogen to an internal peptide from a group a Streptococcal surface protein. Mol Biol. 2001;308(4):705–719. doi: 10.1006/jmbi.2001.4646
  26. Sun H, Ringdahl U, Homeister JW, et al. Plasminogen is a critical host pathogenicity factor for group A streptococcal infection. Science. 2004;305(5688):1283–1286. doi: 10.1126/science.1101245
  27. Ly D, Taylor JM, Tsatsaronis JA, et al. Plasmin(ogen) acquisition by group A Streptococcus protects against C3b-mediated neutrophil killing. J Innate Immun. 2014;6(2):240–250. doi: 10.1159/000353754
  28. Cole JN, McArthur JD, McKay FC, et al. Trigger for group A streptococcal M1T1 invasive disease. FASEB J. 2006;20(10):1745–1747. doi: 10.1096/fj.06-5804fje
  29. Kronvall G. A surface component in group A, C and G streptococci with non-immune reactivity for immunoglobulin G. J Immunol. 1973;111(5):1401–1406.
  30. Lindahl G, Akerstrom B. Receptor for IgA in group A streptococci: cloning of the gene and characterization of the protein expressed in Escherichia coli. Mol Microbiol. 1989;3(2):239–247. doi: 10.1111/j.1365-2958.1989.tb01813.x
  31. Lindahl G, Stenberg L. Binding of IgA and/or IgG is a common property among clinical isolates of group A streptococci. Epidemiol Infect. 1990;105(1):87–93. doi: 10.1017/s0950268800047683
  32. Johnsson E, Andersson G, Lindahl G, Heden LO. Identification of the IgA-binding region in streptococcal protein Arp. J Immunol. 1994;153(8):3557–3564.
  33. Bessen DE. Localization of immunoglobulin A-binding sites within M or M-like proteins of group A streptococci. Infect Immun. 1994;62(5):1968–1974. doi: 10.1128/iai.62.5.1968-1974.1994
  34. Lindahl G. An Odyssey in word of M proteins. In: Perspectives on receptins and resistance. Ed. by G. Kronvall. Stockholm; 2013. P. 13–23.
  35. Horton RE, Vidarsson G. Antibodies and their receptors: different potential roles in mucosal defense. Front Immunol. 2013;4:200. doi: 10.3389/fimmu.2013.00200
  36. Cedervall T, Akesson P, Stenberg L, et al. Allosteric and temperature effects on the plasma protein binding by streptococcal M protein family members. Scand J Immunol. 1995;42(4):433–441. doi: 10.1111/j.1365-3083.1995.tb03677.x
  37. Grov A, Myklestd B, Oeding F. Immunochemical studies on antigen preparations from Staphylococcus aureus. I. Isolation and chemical characterization of antigen A. Acta Pathol Microbiol Scand. 1964;61:588–596. doi: 10.1111/apm.1964.61.4.588
  38. Forsgren A, Sjoquist J. “Protein A” from S. aureus. I. Pseudoimmune reaction with human gamma-globulin. J Immunol. 1966;97(6):822–827.
  39. Myhre EB, Kronvall G. Immunoglobulin binding to group A, C and G streptococci. In: Pathogenic streptococci. Ed. by M.T. Parker. Reedbooks Ltd, England; 1979. P. 76–78.
  40. Myhre EB, Kronvall G. Heterogeneity of nonimmune immunoglobulin Fc reactivity among gram-positive cocci. Description of three major types of receptors for human immunoglobulin G. Infect Immun. 1977;17(3):475–482. doi: 10.1128/IAI.17.3.475-482.1977
  41. Christensen P, Sramec J, Zatterstrom U. Binding of aggregated IgG in the presence of fresh serum: strong association with type 12 group A streptococci. Acta Pathol Microbiol Scand B. 1981;89(2):87–91. doi: 10.1111/j.1699-0463.1981.tb00158_89b.x
  42. Schalen C, Kurl DN, Christensen P. Independent binding of native and aggregated IgG in group A streptococci. APMIS. 1986;94(5):333–338. doi: 10.1111/j.1699-0463.1986.tb03062.x
  43. Burova L, Pigarevsky P, Duplik N, et al. Immune complex binding Streptococcus pyogenes type M12/emm12 in experimental glomerulonephritis. J Med Microbiol. 2013;62(Pt 9):1272–1280. doi: 10.1099/jmm.0.059196-0
  44. Burova L, Therne A, Pigarevsky P, et al. Role of group A streptococcal IgG-binding proteins in triggering experimental glomerulonephritis in the rabbit. APMIS. 2003;111(10):955–962. doi: 10.1034/j.1600-0463.2003.1111007.x
  45. Burova LA, Nagornev VA, Pigarevsky PV, et al. Myocardial tissue damage in rabbits injected with group A streptococci, types M1 and M22. Role of bacterial immunoglobulin G-binding surface proteins. APMIS. 2005;113(1):21–30. doi: 10.1111/j.1600-0463.2005.apm1130104.x
  46. Heath DG, Cleary PP. Fc-receptor and M protein genes of group A streptococci are products of gene duplication. Proc Natl Acad Sci USA. 1989;86(12):4741–4745. doi: 10.1073/pnas.86.12.4741
  47. Stenberg L, O’Toole P, Lindahl G. Many group A streptococcal strains express two different immunoglobulin-binding proteins, encoded by closely linked genes: characterization of the proteins expressed by four strains of different M-type. Mol Microbiol. 1992;6(9):1185–1194. doi: 10.1111/j.1365-2958.1992.tb01557.x
  48. Hollingshead SK, Arnold J, Readdy TL, Bessen DE. Molecular evolution of a multigene family in group A Streptococci. Mol Biol Evol. 1994;11(2):208–219. doi: 10.1093/oxfordjournals.molbev.a040103
  49. Schroder AK, Nardella FA, Mannik M, et al. Identification of the site on IgG Fc for interaction with streptococci of groups A, C and G. Immunology. 1987;62(4):523–527.
  50. Christensen P, Oxelius V-A. A reaction between some streptococci and IgA myeloma proteins. Acta Pathol Microbiol Scand C Immunol. 1975;83C(3):184–188. doi: 10.1111/j.1699-0463.1975.tb01624.x
  51. Kronvall G, Björck L, Myhre EB, Wannamaker LW. Binding of aggregated β2-microglobulin, IgG, IgA and fibrinogen to group A, C and G streptococci with special reference to streptococcal M protein. In: Pathogenic streptococci. Ed. by M.T. Parker. Reedbooks Ltd, England; 1979. P. 74–76.
  52. Lebrun L, Pillot J, Grangeot-Keros L. Significance of anti-IgG antibodies obtained by immunization of rabbits with same streptococcal strains. Ann Immunol (Paris). 1982;133C(1):45–56. doi: 10.1016/0769-2625(82)90005-8
  53. Grubb R, Burova L, Hultguist R, et al. Anti-IgG-allotypic specifities of spontaneously occurring anti-immunoglobulins. In: Antibodies-protective, destructive and regulatory role. F. Milgrome, C. Abeyounis, B. Albini (Eds.). Karger, Basel; 1985. P. 224–233.
  54. Burova LA, Christensen P, Grubb R, et al. Anti-immunoglobulins in experimental streptococcal immunization: relation to bacterial growth conditions and Fc-receptors. Acta Pathol Microbiol Immunol Scand C. 1985;93(1):19–23. doi: 10.1111/j.1699-0463.1985.tb02916.x
  55. Barabas AZ, Cole CD, Lafreniere R, Weir DM. Immunopathological events initiated and maintained by pathogenic IgG autoantibodies in an experimental autoimmune kidney disease. Autoimmunity. 2012;45(7):495–509. doi: 10.3109/08916934.2012.702812
  56. Rodriguez-Iturbe B. Autoimmunity in acute poststreptococcal GN: A neglected aspect of the disease. JASN. 2021;32(3):534–542. doi: 10.1681/ASN.2020081228
  57. Rodriguez-Iturbe B, Haas M. Post-Streptococcal Glomerulonephritis. In: Streptococcus pyogenes: Basic Biology to Clinical Manifestations. J.J. Ferretti, D.L. Stevens, V.A. Fischetti (Eds.) [Internet]. Oklahoma City: University of Oklahoma, Health Sciences Center; 2016.
  58. Barnham M, Thornton TJ, Lange K. Nephritis caused by Streptococcus zooepidemicus (Lancefield group C). Lancet. 1983;1(8331):945–948. doi: 10.1016/s0140-6736(83)92078-0
  59. Balter S, Benin A, Pinto SW, et al. Epidemic nephritis in Nova Serrana, Brazil. Lancet. 2000;355(9217):1776–1780. doi: 10.1016/s0140-6736(00)02265-0
  60. Taylor SN, Sanders CV. Unusual manifestations of invasive pneumococcal infection. Am J Med. 1999;107(1A):12S–27S. doi: 10.1016/s0002-9343(99)00103-5
  61. Phillips J, Palmer A, Baliga R. Glomerulonephritis associated with acute pneumococcal pneumonia: a case report. Pediatr Nephrol. 2005;20(10):1494–1495. doi: 10.1007/s00467-005-1994-6
  62. Almroth G, Lindell A, Aselius H, et al. Acute glomerulonephritis associated with Streptococcus pyogenes with concomitant spread of Streptococcus constellatus in four rural families. Ups J Med Sci. 2005;110(3):217–231. doi: 10.3109/2000-1967-067
  63. Maharaj S, Seegobin K, Chrzanowski S, Chang S. Acute glomerulonephritis secondary to Streptococcus anginosus. BMJ Case Rep. 2018;2018: bcr2017223314. doi: 10.1136/bcr-2017-223314
  64. Nordstrand A, Norgren M, Ferretti JJ, Holm SE. Streptokinase as a mediator of acute post-streptococcal glomerulonephritis in an experimental mouse model. Infect Immun. 1998;66(1):315–321. doi: 10.1128/IAI.66.1.315-321.1998
  65. Nordstrand A, McShan WM, Ferretti JJ, et al. Allele substitution of the streptokinase gene reduces the nephritogenic capacity of group A streptococcal strain NZ131. Infect Immun. 2000;68(3):1019–1025. doi: 10.1128/iai.68.3.1019-1025.2000
  66. Yoshizawa N, Yamakami K, Fujino M, et al. Nephritis-associated plasmin receptor and acute poststreptococcal glomerulonephritis: characterization of the antigen and associated immune response. J Am Soc Nephrol. 2004;15(7):1785–1793. doi: 10.1097/01.asn.0000130624.94920.6b
  67. Luo YH, Kuo CF, Huang KJ, et al. Streptococcal pyrogenic exotoxin B antibodies in a mouse model of glomerulonephritis. Kidney Int. 2007;72(6):716–724. doi: 10.1038/sj.ki.5002407
  68. Honda-Ogawa M, Ogawa T, Terao Y, et al. Cysteine proteinase from Streptococcus pyogenes enables evasion of innate immunity via degradation of complement factors. J Biol Chem. 2013;288(22):15854–15864. doi: 10.1074/jbc.M113.469106
  69. Rodriguez-Iturbe B, Musser JM. The current state of poststreptococcal glomerulonephritis. J Am Soc Nephrol. 2008;19(10):1855–1864. doi: 10.1681/ASN.2008010092
  70. Nordstrand A, Norgren M, Holm SE. An experimental model for acute glomerulonephritis in mice. APMIS. 1996;104(11):805–816. doi: 10.1111/j.1699-0463.1996.tb04946.x
  71. Burova LA, Gavrilova EA, Pigarevsky PV, Totolian AA. Role of streptokinase in experimental streptococcal glomerulonephritis. Russian Journal of Infection and Immunity. 2021;11(5):853–864. (In Russ.) doi: 10.15789/2220-7619-ARO-1594
  72. Oda T, Yoshizawa N, Yamakami K, et al. Localization of nephritis-associated plasmin receptor in acute poststreptococcal glomerulonephritis. Hum Pathol. 2010;41(9):1276–1285. doi: 10.1016/j.humpath.2010.02.006
  73. McIntosh RM, Allen JE, Rabideua D, et al. The role of interaction between streptococcal products and immunoglobulins in the pathogenesis of glomerular and vascular injure. In: Streptococcal diseases and the immune response. S.E. Read, J.B. Zabriskie (Eds.). New York, London Academic Press; 1980. P. 585–596.
  74. McIntosh RM, Kaufman DB, McIntosh JR, Griswold W. Glomerular lesions produced in rabbits by autologous serum and autologous IgG modified by treated with a culture of a-hemolytic streptococcus. J Med Microbiol. 1972;5(1):1–7. doi: 10.1099/00222615-5-1-1
  75. Yang R, Otte MA, Hellmark T, et al. Successful treatment of experimental glomerulonephritis with IdeS and EndoS, IgG-degrading streptococcal enzymes. Nephrol Dial Transplant. 2010;25(8):2479–2486. doi: 10.1093/ndt/gfq115
  76. Segelmark M, Björck L. Streptococcal enzymes as precision tools against pathogenic IgG autoantibodies in small vessel vasculitis. Front Immunol. 2019;10:2165. doi: 10.3389/fimmu.2019.02165
  77. Collin M, Olsén A. Effect of SpeB and EndoS from Streptococcus pyogenes on human immunoglobulins. Infect Immun. 2001;69(11):7187–7189. doi: 10.1128/IAI.69.11.7187-7189.2001
  78. Collin M, Olsén A. EndoS, a novel secreted protein from Streptococcus pyogenes with endoglycosidase activity on human IgG. EMBO J. 2001;20(12):3046–3055. doi: 10.1093/emboj/20.12.3046
  79. Burova LA, Schalen C, Koroleva IV, Svensson M-L. Role of group A streptococcal IgG Fc-receptor in induction of anti-IgG by immunization in rabbit. FEMS Microbiol Immunol. 1989;1(8–9):443–448. doi: 10.1111/j.1574-6968.1989.tb02435.x
  80. Burova LA, Koroleva IV, Ogurtzov RP, et al. Role of streptococcal IgG Fc-receptor in tissue deposition of IgG in rabbits immunized with Streptococcus pyogenes. APMIS. 1992;100(6):567–574. doi: 10.1111/j.1699-0463.1992.tb00912.x
  81. Burova LA, Nagornev VA, Pigarevsky PV, et al. Triggering of renal tissue damage in the rabbit by IgGFc-receptor positive group A streptococci. APMIS. 1998;106(2):277–287. doi: 10.1111/j.1699-0463.1998.tb01347.x
  82. Burova LA, Pigarevsky PV, Seliverstova VG, et al. Experimental poststreptococcal glomerulonephritis elicited by IgG Fc-binding M family proteins and blocked by IgG Fc-fragment. APMIS. 2012;120(3):221–230. doi: 10.1111/j.1600-0463.2011.02826.x
  83. Burova LA, Gavrilova EA, Gupalova TV, et al. Inhibition of experimental post-streptococcal glomerulonephritis in rabbits by IgG Fc fragments. In: Streptococci – New Insights into an Old Enemy. Ed. by K.S. Sriprakash. Published by Elsevier, ICS. 2006;1289:359–362. doi: 10.1016/j.ics.2005.11.005
  84. Gomes-Guerrero C, Duque N, Casado MT, et al. Administration of IgGFc-fragments prevents glomerular injury in experimental immune complex nephritis. J Immunol. 2000;164(4):2092–2101. doi: 10.4049/jimmunol.164.4.2092
  85. Cunningham MW. Molecular mimicry, autoimmunity, and infection: the cross-reactive antigens of group A Streptococci and their sequelae. Microbiol Spectr. 2019;7(4):10.1128/microbiolspec.GPP3-0045-2018. doi: 10.1128/microbiolspec.GPP3-0045-2018
  86. Rafeek RAM, Sikder S, Hamlin AS, et al. Requirements for a robust animal model to investigate the disease mechanism of autoimmune complications associated with ARF/RHD. Front Cardiovasc Med. 2021;8:675339. doi: 10.3389/fcvm.2021.675339
  87. Rafeek RAM, Hamlin AS, Andronicos NM, et al. Characterization of an experimental model to determine streptococcal M protein-induced autoimmune cardiac and neurobehavioral abnormalities. Immunol Cell Biol. 2022;100(8):653–666. doi: 10.1111/imcb.12571
  88. Burova LA, Nagornev VA, Pigarevsky PV, et al. Induction of myocarditis in rabbits injected with group A streptococci. Indian J Med Res. 2004;119 Suppl:183–185.
  89. Li Y, Heuser JS, Kosanke SD, et al. Cryptic epitope identified in rat and human cardiac myosin S2 region induces myocarditis in the Lewis rat. J Immunol. 2004;172(5):3225–3234. doi: 10.4049/jimmunol.172.5.3225
  90. Gorton D, Sikder S, Williams NL, et al. Repeat exposure to group A streptococcal M protein exacerbates cardiac damage in a rat model of rheumatic heart disease. Autoimmunity. 2016;49(8):563–570. doi: 10.1080/08916934.2016.1217999
  91. Wyatt RJ, Julian BA. IgA Nephropathy. N Engl J Med. 2013;368(25):2402–2414. doi: 10.1056/NEJMra1206793
  92. Moriyama T, Tanaka K, Iwasaki C, et al. Prognosis in IgA nephropathy: 30-year analysis of 1012 patients at a single center in Japan. PLoS One. 2014;9(3):e91756. doi: 10.1371/journal.pone.0091756
  93. Maixnerova D, Reily C, Bian Q, et al. Markers for the progression of IgA nephropathy. J Nephrol. 2016;29(4):535–541. doi: 10.1007/s40620-016-0299-0
  94. Suzuki H, Kiryluk K, Novak J, et al. The Pathophysiology of IgA Nephropathy. J Am Soc Nephrol. 2011;22(10):1795–1803. doi: 10.1681/ASN.2011050464
  95. Boyd JK, Cheung CK, Molyneux K, et al. An update on the pathogenesis and treatment of IgA nephropathy. Kidney Int. 2012;81(9):833–843. doi: 10.1038/ki.2011.501
  96. Tomana M, Matousovic K, Julian BA, et al. Galactose-deficient IgA1 in sera of IgA nephropathy patients is present in complexes with IgG. Kidney Int. 1997;52(2):509–516. doi: 10.1038/ki.1997.361
  97. Suzuki H, Fan R, Zhang Z, et al. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest. 2009;119(6):1668–1677. doi: 10.1172/JCI38468
  98. Coppo R. The intestine-renal connection in IgA nephropathy. Nephrol Dial Transplant. 2015;30(3):360–366. doi: 10.1093/ndt/gfu343
  99. Tanaka M, Seki G, Someya T, et al. Aberrantly glycosylated IgA1 as a factor in the pathogenesis of IgA nephropathy. Clin Dev Immunol. 2011;2011:470803. doi: 10.1155/2011/470803
  100. Piccolo M, De Angelis M, Lauriero G, et al. Salivary microbiota associated with immunoglobulin A nephropathy. Microb Ecol. 2015;70(2):557–565. doi: 10.1007/s00248-015-0592-9
  101. Meng H, Ohtake H, Ishida A, et al. IgA production and tonsillar focal infection in IgA nephropathy. J Clin Exp Hematop. 2012;52(3):161–170. doi: 10.3960/jslrt.52.161
  102. Nakata J, Suzuki Y, Suzuki H, et al. Changes in nephritogenic serum galactose-deficient IgA1 in IgA nephropathy following tonsillectomy and steroid therapy. PloS One. 2014;9(2):e89707. doi: 10.1371/journal.pone.0089707
  103. Schmitt R, Carlsson F, Mörgelin M, et al. Tissue deposits of IgA-binding streptococcal M proteins in IgA nephropathy and Henoch-Schonlein purpura. Am J Pathol. 2010;176(2):608–618. doi: 10.2353/ajpath.2010.090428
  104. Schmitt R, Ståhl A, Olin A, et al. The combined role of galactose-deficient IgA1 and streptococcal IgA-Binding M protein in inducing IL-6 and C3 secretion from human mesangial cells: Implications for IgA nephropathy. J Immunol. 2014;193(1):317–326. doi: 10.4049/jimmunol.1302249
  105. Burova LA, Pigarevsky PV, Snegova VA, et al. Nephritogenic activity of IgA-binding Streptococcus pyogenes. An experimental model of IgA glomerulonephritis. Medical Immunology. 2016;18(3):221–230. (In Russ.) doi: 10.15789/1563-0625-2016-3-221-230
  106. Hashimoto A, Suzuki Y, Suzuki H, et al. Determination of severity of murine IgA nephropathy by glomerular complement activation by aberrantly glycosylated IgA and immune complexes. Am J Pathol. 2012;181(4):1338–1347. doi: 10.1016/j.ajpath.2012.06.038
  107. Kovalenko P, Fujinaka H, Yoshida Y, et al. Fc receptor-mediated accumulation of macrophages in crescentic glomerulonephritis induced by antiglomerular basement membrane antibody administration in WKY rats. Int Immunol. 2004;16(5):625–634. doi: 10.1093/intimm/dxh058
  108. Tian J, Wang Y, Zhou X, et al. Rapamycin slows IgA nephropathy progression in the rat. Am J Nephrol. 2014;39(3):218–229. doi: 10.1159/000358844
  109. Jessen RH, Emancipator SN, Jacobs GH, Nedrud JG. Experimental IgA-IgG nephropathy induced by a viral respiratory pathogen. Dependence on antigen form and immune status. Lab Invest. 1992;67(3):379–386.
  110. Okazaki K, Suzuki Y, Otsuji M, et al. Development of a model of early-onset IgA nephropathy. J Am Soc Nephrol. 2012;23(8):1364–1374. doi: 10.1681/ASN.2011121160
  111. Suzuki H, Suzuki Y, Novak J, Tomino Y. Development of animal models of human IgA nephropathy. Drug Discov Today Dis Models. 2014;11:5–11. doi: 10.1016/j.ddmod.2014.07.002
  112. Berthelot L, Monteiro RC. Formation of IgA deposits in Berger’s disease: what we learned from animal models. Biol Aujourdhui. 2013;207(4):241–247. (In French) doi: 10.1051/jbio/2013022
  113. Berthelot L, Papista C, Maciel TT, et al. Transglutaminase is essential for IgA nephropathy development acting through IgA receptors. J Exp Med. 2012;209(4):793–806. doi: 10.1084/jem.20112005
  114. Barratt J, Smith AC, Feehally J. The pathogenic role of IgA1 O-linked glycosylation in the pathogenesis of IgA nephropathy. Nephrology (Carlton). 2007;12(3):275–284. doi: 10.1111/j.1440-1797.2007.00797.x
  115. Liu H, Peng Y, Liu F, et al. Expression of IgA class switching gene in tonsillar mononuclear cells in patients with IgA nephropathy. Inflamm Res. 2011;60(9):869–878. doi: 10.1007/s00011-011-0347-0

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Immunomorphological changes in cortical and medullary layers of the rabbit kidney, induced by Streptococcus pyogenes strain emm12 [43]: a — the expression of TNF-α by glomeruli mesangial cells (arrow); b — IgG deposition in the wall of the proximal tubule (arrow); c — deposition of C3 component of complement in the cells of the distal tubules (arrows); d — atrophy of the tissues of the renal glomeruli, the abundance of red blood cells in the cavity. a–c — immunohistochemical staining, ×750; d — staining with hematoxylin-eosin, ×550

Download (464KB)
3. Fig. 2. Membranous-proliferative glomerulonephritis in a rabbit after injection of IgGFc-positive GAS strain of type M1 [81]: a — thickening of the basement membrane and interposition of mesangium cells, ×8000; b — fusion of podocyte and membrane, disintegration of endothelium, ×8500; c — interposition of mesangium and degranulation of basophils in capillaries, ×8000; d — hypertrophy and disintegration of podocytes, endothelium, fragments of cells in vessels, ×13500

Download (878KB)
4. Fig. 3. Morphological changes in cortex and medullar substances of the rabbit renal tissue induced by Streptococcus pyogenes of genotype emm1 [82]: a — the capsular cavities of the glomeruli strongly expanded, in the capillary loops of the glomeruli necrosis and atrophy are observed, in the wall of the proximal tubules of the cortex desquamation of epithelial cells is revealed (shown by arrows); b — swelling and thickening of the membranes of the wall of distal tubules in the medulla with the simultaneous proliferation of the fibrous interstitial tissue; c, d — absence of pathological changes in the cortex and the medulla of the kidney obtained from rabbits treated with Fc fragments of IgG. Staining with hematoxylin-eosin, ×750

Download (587KB)
5. Fig. 4. Histological changes detected in rabbit kidney after injection of a recombinant Fcγ-protein from the GAS strain genotype emm12 (our new unpublished data): a — pathologically altered glomeruli are visible in the cortical layer, capsule cavities are expanded or compressed, necrosis and atrophy in capillary loops, destruction is observed in the proximal tubules; b — the wall of the tubules is thickened and edematous or atrophic. Epithelial cells of the lumen of the tubules with signs of necrosis; protein masses are detected; c — lymphocytic infiltrates are detected; they are dominated by small and medium lymphocytes, immature and mature plasma cells. a, b — staining with hematoxylin-eosin, a — ×250, b — ×500; c — immunohistochemical staining, ×750

Download (275KB)
6. Fig. 5. Morphological changes (shown by arrows) in the myocardium of the rabbit after injection of Streptococcus pyogenes type M1, binding the Fc fragment of human or rabbit IgG [45]: a–c — the destruction of mitochondria and myofibrils (ТЕМ ×16000, 16000 and 24000, respectively); d — the morphology of the normal rabbit myocardium, which received injection of control IgG Fc-negative strain (ТЕМ ×16000)

Download (705KB)
7. Fig. 6. Immunomorphological changes in the cortical and medullary substances of the rabbit kidney induced by Streptococcus pyogenes type M60 [105]: a, b — deposits of IgA in the mesangial cells of the renal glomeruli (arrows); c — deposition of C3-complement components in the cells of the tubules (arrows) of the medullary layer of the kidney; d — deposits of C3 component complement in the cells of the proximal tubules (arrows) surrounding the renal glomerulus in the cortical substance. Immunohistochemical staining, ×750

Download (414KB)

Copyright (c) 2023 Eco-Vector



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».