Effect of long-term emotional-painful stress on the leukocyte composition of blood in rats with different levels of excitability of the nervous system

Cover Page

Cite item

Full Text

Abstract

Post-stress states in animals and humans are accompanied by the development of neuro- and peripheral inflammation. The mechanisms of such immune dysfunctions, their contribution to the pathogenesis of stress-related diseases, as well as the dependence of the intensity of poststress inflammation on genetically determined features of the nervous system, have not been clarified.

Aim: to assess the dynamics of the development of poststress inflammation depending on the genetically determined level of excitability of the nervous system in rats.

Materials and methods. The study was carried out on male rats of two lines, selected by the threshold of excitability of the nervous system-the line HT (high threshold of excitability) and LT (low threshold of excitability). As a model of chronic stress, the Protocol of long-term emotional and pain exposure according to Hecht was used. To investigate the dynamics of changes in the leukocyte formula, three time points were selected: 24 hours, 7 days and 24 days after the stressor. Morphological analysis of blood was carried out to determine the leukogram, for which the leukocytes were counted in a blood smear stained by Romanovsky-Gimza.

Results. Chronic stress leads to an increase in the leukocyte shift index only in the experimental group of highly excitable rats of the LT line compared with control animals of the same line. The significance of the differences is confirmed on day 7 after the end of the stressor. No interline differences in neutrophil/lymphocyte ratios were found in intact animals of LT and HT lines.

Conclusion. In rats with a genetically determined high level of excitability of the nervous system, post-stressor systemic inflammation appears 7 days after the end of the stressor. Animals with a low level of excitability of the nervous system had no signs of post-stress inflammation throughout the observations. The article discusses the possible mechanisms of detected immune dysfunctions in animals due to high excitability of the central nervous system.

About the authors

Irina G. Shalaginova

Immanuel Kant Baltic Federal University

Author for correspondence.
Email: shalaginova_i@mail.ru
ORCID iD: 0000-0002-0140-3077
SPIN-code: 1160-1915
Scopus Author ID: 57202052229
ResearcherId: J-3626-2018

Senior Lecturer, School of Life Science

Russian Federation, Kaliningrad

Vera V. Sheremet

Immanuel Kant Baltic Federal University

Email: VSHeremet@kantiana.ru

Senior Lecturer, School of Life Science

Russian Federation, Kaliningrad

Diana A. Khlebaeva

Pavlov Institute of Physiology of the RAS

Email: khlebaevad@infran.ru

senior scientists, Laboratory Genetics of High Nervous Activity

Russian Federation, Saint Petersburg

Alexander I. Vaido

Pavlov Institute of Physiology of the RAS

Email: vaidoai@infran.ru
ORCID iD: 0000-0002-6209-9902
SPIN-code: 1323-5153

Dr. Sci. (Biol.), Chief Research Scientist, Laboratory Genetics of High Nervous Activity

Russian Federation, Saint Petersburg

Natalia A. Dyuzhikova

Pavlov Institute of Physiology of the RAS

Email: dyuzhikova@mail.ru
ORCID iD: 0000-0002-7550-118X
SPIN-code: 6206-3889

Head of Laboratory Genetics of High Nervous Activity

Russian Federation, Saint Petersburg

References

  1. Deslauriers J, Powell S, Risbrough VB. Immune signaling mechanisms of PTSD risk and symptom development: insights from animal models. Curr Opin Behav Sci. 2017;14:123-132. https://doi.org/10.1016/j.cobeha.2017. 01.005.
  2. DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. J Neurochem. 2016;139 Suppl 2:136-153. https://doi.org/10.1111/jnc.13607.
  3. Calcia MA, Bonsall DR, Bloomfield PS, et al. Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology (Berl). 2016;233(9):1637-1650. https://doi.org/10.1007/s00213-016-4218-9.
  4. Reus GZ, Fries GR, Stertz L, et al. The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience. 2015;300:141-154. https://doi.org/10.1016/j.neuroscience.2015.05.018.
  5. Fleshner M, Frank M, Maier SF. Danger signals and inflammasomes: stress-evoked sterile inflammation in mood disorders. Neuropsychopharmacology. 2017;42(1):36-45. https://doi.org/10.1038/npp.2016.125.
  6. Speer K, Upton D, Semple S, McKune A. Systemic low-grade inflammation in post-traumatic stress disorder: a systematic review. J Inflamm Res. 2018;11:111-121. https://doi.org/10.2147/JIR.S155903.
  7. Вайдо А.И., Ширяева Н.В., Павлова М.Б., и др. Селектированные линии крыс с высоким и низким порогом возбудимости: модель для изучения дезадаптивных состояний, зависимых от уровня возбудимости нервной системы // Лабораторные животные для научных исследований. – 2018. – № 3. – С. 12–22. [Vaido AI, Shiryaeva NV, Pavlova MB, et al. Selected rat strains HT, LT as a model for the study of dysadaptation states dependent on the level of excitability of the nervous system. Laboratornye zhivotnye dlya nauchnykh issledovaniy. 2018;(3):12-22. (In Russ.)]. https://doi.org/10.29926/2618723X-2018- 03-02.
  8. Дюжикова Н.А., Даев Е.В. Геном и стресс-реакция у животных и человека // Экологическая генетика. – 2018. – Т. 16. – № 1. – С. 4–26. [Dyuzhikova NA, Daev EV. Genome and stress-reaction in animals and humans. Ecological genetics. 2018;16(1):4-26. (In Russ.)]. https://doi.org/10.17816/ecogen1614-26.
  9. Яблучанский Н.И., Пилипенко В.А., Кондратенко П.Г. Индекс сдвига лейкоцитов крови как маркер реактивности организма при остром воспалении // Лабораторное дело. – 1983. – № 1. – С. 60–61. [Yabluchanskiy NI, Pilipenko VA, Kondratenko PG. Indeks sdviga leykotsitov krovi kak marker reaktivnosti organizma pri ostrom vospalenii. Laboratornoe delo. 1983;(1):60-61. (In Russ.)]
  10. Swan MP, Hickman DL. Evaluation of the neutrophil-lymphocyte ratio as a measure of distress in rats. Lab Anim (NY). 2014;43(8):276-282. https://doi.org/10.1038/laban.529.
  11. Christensen UB, Mauricio D, Reimers JI, et al. Linomide increases plasma corticosterone in normal rats, but does not prevent the inhibitory action of IL-1 on beta-cells in vivo or ex vivo. Autoimmunity. 1996;23(4):257-268. https://doi.org/10.3109/08916939608995348.
  12. Wright HL, Moots RJ, Bucknall RC, Edwards SW. Neutrophil function in inflammation and inflammatory diseases. Rheumatology (Oxford). 2010;49(9):1618-1631. https://doi.org/10.1093/rheumatology/keq045.
  13. Cassatella MA, Ostberg NK, Tamassia N, Soehnlein O. Biological roles of neutrophil-derived granule proteins and cytokines. Trends Immunol. 2019;40(7):648-664. https://doi.org/10.1016/j.it.2019.05.003.
  14. Leliefeld PH, Wessels CM, Leenen LP, et al. The role of neutrophils in immune dysfunction during severe inflammation. Crit Care. 2016;20:73. https://doi.org/10.1186/s13054-016-1250-4.
  15. Ley K, Hoffman HM, Kubes P, et al. Neutrophils: New insights and open questions. Sci Immunol. 2018;3(30). https://doi.org/10.1126/sciimmunol.aat4579.
  16. Davis AK, Maney DL, Maerz JC. The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Funct Ecol. 2008;22(5):760-772. https://doi.org/10.1111/j.1365-2435.2008.01467.x.
  17. Bustan Y, Drapisz A, Ben Dor DH, et al. Elevated neutrophil to lymphocyte ratio in non-affective psychotic adolescent inpatients: Evidence for early association between inflammation and psychosis. Psychiatry Res. 2018;262:149-153. https://doi.org/10.1016/j.psychres.2018.02.002.
  18. Mazza MG, Lucchi S, Tringali AGM, et al. Neutrophil/lymphocyte ratio and platelet/lymphocyte ratio in mood disorders: A meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry. 2018;84(Pt A):229-236. https://doi.org/10.1016/j.pnpbp.2018.03.012.
  19. Davis AK, Maney DL, Leder E. The use of glucocorticoid hormones or leucocyte profiles to measure stress in vertebrates: What’s the difference? Methods Ecol Evol. 2018;9(6):1556-1568. https://doi.org/10.1111/2041-210x.13020.
  20. Inagaki R, Moriguchi S, Fukunaga K. Aberrant amygdala-dependent fear memory in corticosterone-treated mice. Neuroscience. 2018;388:448-459. https://doi.org/10.1016/ j.neuroscience.2018.08.004.
  21. Ордян Н.Э., Вайдо А.И., Ракицкая В.В., и др. Функционирование гипофизарно-адренокортикальной системы у крыс, селектированных по порогу чувствительности к электрическому току // Бюллетень экспериментальной биологии и медицины. – 1998. – Т. 125. – № 4. – С. 443–445. [Ordyan NE, Vaido AI, Rakitskaya VV, et al. Funktsionirovanie gipofizarno-adrenokortikal’noy sistemy u krys, selektirovannykh po porogu chuvstvitel’nosti k elektricheskomu toku. Biull Eksp Biol Med. 1998;125(4):443-445. (In Russ.)]

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Values of the leukocyte shift index in intact animals of two lines HT and LT (the graphs show the values of medians, quartile boundaries, and maximum and minimum values in the analyzed samples)

Download (64KB)
3. Fig. 2. Values of leukocyte shift index in rats of HT and LT lines in different terms after long-term emotional and pain stressor. The symbols are the same as in Fig. 1. There are significant differences between the groups * p < 0.05 (criteria Kruskal – Wallis and Mann – Whitney)

Download (173KB)

Copyright (c) 2020 Shalaginova I.G., Sheremet V.V., Khlebaeva D.A., Vaido A.I., Dyuzhikova N.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».