Impact of beta-D-glucan on survival and hematopoietic parameters of mice after exposure to X-rays

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: There is a high need for drugs to reduce the side effects of radiation exposure on people in extreme, military, marine, space medicine, at nuclear facilities, in hematology and oncology.

AIM: To evaluate the antiradiation efficacy of beta-D-glucan derived from Oyster mushroom (Pleurotus ostreatus) after total body irradiation of mice in terms of survival and hematopoiesis.

MATERIALS AND METHODS: The study was conducted on a mouse model of the acute radiation hematopoietic syndrome caused by exposure to X-rays. Radioprotective effect of intragastrically administered beta-D-glucan derived from Pleurotus ostreatus at a dose of 500 mg/kg was studied. The parameters of the 30-day survival of irradiated mice were analyzed using the Kaplan–Meyer method. Dose reduction factor of X-ray radiation was calculated to evaluate the radiomodifying effect. The hematopoiesis was assessed by the endogenous colony formation test and hematological parameters in irradiated mice. Statistical analysis was performed using the Statistica 8.0 software.

RESULTS: The antiradiation efficacy of orally administered beta-D-glucan has been shown. DRF was 1.16 when the drug was administered 0.5 hours before irradiation and 1.06 during therapeutic use (after 1 or 2 hours). There was a decrease in weight loss in lethally irradiated mice and its faster recovery. Single oral administration of beta-D-glucan at a dose of 500 mg/kg stimulated the growth of splenic endogenous colony-forming units in mice on day 9 after total body irradiation at doses of 7 and 7.8 Gy, contributed to a decrease in the severity of leukopenia and thrombocytopenia. The antiradiation effect of beta-D-glucan was associated with an increase in the viability of bone marrow stem cells and a faster restoration of hematopoiesis.

CONCLUSIONS: The results obtained indicate the possibility of using beta-D-glucan from P. ostreatus both before irradiation to increase the radioresistance and for early therapy of the hematopoietic syndrome of acute radiation sickness.

About the authors

Elena V. Murzina

Kirov Military Medical Academy

Email: elenmurzina@mail.ru
ORCID iD: 0000-0001-7052-3665
SPIN-code: 5188-0797

Cand. Sci. (Biol.), Senior Research Associate of the Research Department of Experimental Medicine, Research Center

Russian Federation, Saint Petersburg

Genrikh A. Sofronov

Kirov Military Medical Academy; Институт экспериментальной медицины

Author for correspondence.
Email: gasofronov@mail.ru
ORCID iD: 0000-0002-8587-1328
SPIN-code: 7334-4881
Scopus Author ID: 7003953555
ResearcherId: G-4791-2015

MD, Dr. Sci. (Med.), Professor, Academician of the Russian Academy of Sciences, Head of the Research Laboratory of Medicinal and Environmental Toxicology of the Research Department of Experimental Medicine, Research Center; Scientific Director of the Institute

Russian Federation, Saint Petersburg; Saint Petersburg

Andrey S. Simbirtsev

Institute of Experimental Medicine

Email: simbas@mail.ru
ORCID iD: 0000-0002-8228-4240
SPIN-code: 2064-7584
Scopus Author ID: 7003758888
ResearcherId: K-5061-2014

MD, Dr. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences, Chief Research Associate of the Department of General Pathology and Pathological Physiology

Russian Federation, Saint Petersburg

Natalia V. Aksenova

Kirov Military Medical Academy

Email: nataaks@mail.ru
ORCID iD: 0000-0002-5645-7072
SPIN-code: 6821-6887

MD, Cand. Sci. (Med.), Statistician of the Research Department (All-Army Medical Register of the Ministry of Defense of the Russian Federation), Research Center

Russian Federation, Saint Petersburg

Gennady G. Zagorodnikov

Kirov Military Medical Academy

Email: gen73zag@mail.ru
ORCID iD: 0000-0002-4859-0519
SPIN-code: 4465-5572

MD, Dr. Sci. (Med.), Head of the Research Department (All-Army Medical Register of the Ministry of Defense of the Russian Federation), Research Center

Russian Federation, Saint Petersburg

Olga M. Veselova

Kirov Military Medical Academy

Email: veselova28@mail.ru
SPIN-code: 4864-8391

Research Associate of the Research Department of Experimental Medicine, Research Center

Russian Federation, Saint Petersburg

Natalya A. Zhirnova

Kirov Military Medical Academy

Email: ji65@yandex.ru
ORCID iD: 0000-0002-9948-6260
SPIN-code: 8308-2139
ResearcherId: I-4804-2016

Cand. Sci. (Biol.), Research Associate of the Research Department of Experimental Medicine, Research Center

Russian Federation, Saint Petersburg

Elena V. Dmitrieva

Kirov Military Medical Academy

Email: ev.dmitrieva@yandex.ru
ORCID iD: 0000-0001-6514-7837
SPIN-code: 6759-2407

Junior Research Associate of the Research Department of Experimental Medicine, Research Center

Russian Federation, Saint Petersburg

Nicolay A. Klimov

Institute of Experimental Medicine

Email: nklimov@mail.ru
SPIN-code: 6093-7430

MD, Cand. Sci. (Med.), Leading Research Associate of the Department of General Pathology and Pathological Physiology

Russian Federation, Saint Petersburg

Evgeniy V. Vorobeychikov

Saint-Petersburg State Institute of Technology; Research and Production Company “BIOS”

Email: evorobeychikov@gmail.com
SPIN-code: 3756-7955

MD, Cand. Sci. (Med.), Senior Research Associate of the Department of Technology of Microbiological Synthesis; Deputy General Director

Russian Federation, Saint-Petersburg; Saint Petersburg

References

  1. Obrador E, Rosario S, Villaescusa JI, et al. Radioprotection and radiomitigation: from the bench to clinical practice. Biomedicines. 2020;8(11):461. doi: 10.3390/biomedicines8110461
  2. Kryukov EV, Chekhovsky YS, Karamullin MA, et al. Military medical organizations capability in delivery specialized medical care in radiation emergencies. Bulletin of the Russian Military Medical Academy. 2021;23(1):153–162. (In Russ.) doi: 10.17816/brmma63632
  3. Basharin VA, Karamullin MA, Zatsepin VV, Chekhovskih YuS. Actual issues of an improvement of the medical aid delivery system in case of acute radiopathology in the Armed Forces of the Russian Federation. Military Medical Journal. 2016;337(11):11–20. (In Russ.)
  4. McBride WH, Schaue D. Radiation-induced tissue damage and response. J Pathol. 2020;250(5):647–655. doi: 10.1002/path.5389
  5. Ponomareva TV, Kalnitsky SA, Vishnjakova NM. Medical exposure and strategy of its prophylaxis. Radiation hygiene. 2008;1(1): 63–68. (In Russ.)
  6. Ushakov IB. Space. Radiation. Human (radiation barrier in interplanetary flights). Moscow: Nauchnaya kniga; 2021. 352 p. (In Russ.)
  7. Liu Z, Lei X, Li X, et al. Toll-like receptors and radiation protection. Eur Rev Med Pharmacol Sci. 2018;22(1):31–39. doi: 10.26355/eurrev_201801_14097
  8. Singh VK, Seed TM. Entolimod as a radiation countermeasure for acute radiation syndrome. Drug Discov Today. 2021;26(1):17–30. doi: 10.1016/j.drudis.2020.10.003
  9. Shivappa P, Bernhardt GV. Natural radioprotectors on current and future perspectives: a mini-review. J Pharm Bioallied Sci. 2022;14(2):57–71. doi: 10.4103/jpbs.jpbs_502_21
  10. Wang W, Xue C, Mao X. Radioprotective effects and mechanisms of animal, plant and microbial polysaccharides. Int J Biol Macromol. 2020;19(153):373–384. doi: 10.1016/j.ijbiomac.2020.02.203
  11. Chugh RM, Mittal P, Mp N, et al. Fungal mushrooms: a natural compound with therapeutic applications. Front Pharmacol. 2022;13:925387. doi: 10.3389/fphar.2022.925387
  12. Venturella G, Ferraro V, Cirlincione F, et al. Medicinal mushrooms: bioactive compounds, use, and clinical trials. Int J Mol Sci. 2021;22(2):634. doi: 10.3390/ijms22020634
  13. Novak M, Vetvicka V. Glucans as biological response modifiers. Endocr Metab Immune Disord Drug Targets. 2009;9(1):67–75. doi: 10.2174/187153009787582423
  14. Sofronov GA, Murzina EV, Aksenova NV, et al. Study perspectives of the effectiveness of beta-D-glucans as an antiradiation agent. Izvestia of the Russian Military medical academy. 2020;39(S3–3):193–198. (In Russ.)
  15. Sharma A, Sharma A, Tripathi A. Biological activities of Pleurotus spp. polysaccharides: A review. J Food Biochem. 2021;45(6):e13748. doi: 10.1111/jfbc.13748
  16. Hamad D, El-Sayed H, Ahmed W, et al. GC-MS analysis of potentially volatile compounds of Pleurotus ostreatus polar extract: in vitro antimicrobial, cytotoxic, immunomodulatory, and antioxidant activities. Front Microbiol. 2022;13:834525. doi: 10.3389/fmicb.2022.834525
  17. Shnyreva AA, Shnyreva AV. Phylogenetic analysis of Pleurotus species. Russian Journal of Genetics. 2015;51(2):148–157. doi: 10.7868/S0016675815020137
  18. Bezrukova EV, Vorobejchikov EV, Konusova VG, et al. Effect of immune drugs to treat acute viral nasopharyngitis. Medical Immunology (Russia). 2021;23(5):1153–1166. (In Russ.) doi: 10.15789/1563-0625-EOI-2300
  19. Murzina EV, Sofronov GA, Simbirtsev AS, et al. Experimental evaluation of the effect of beta-D-glucan on the survival of irradiated mice. Medical Academic Journal. 2020;20(2):59–68. (In Russ.) doi: 10.17816/MAJ34161
  20. Directive 2010/63/EU of the European parliament and of the council of 22 September 2010 on the protection of animals used for scientific purposes (Text with EEA relevance). Official Journal of the European Union. 2010:33–79.
  21. Finney DJ. The median lethal dose and its estimation. Arch Toxicol. 1985;56(4):215–218. doi: 10.1007/BF00295156
  22. Till JE, McCulloch EA. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. 1961. Radiat Res. 2011;175(2):145–149. doi: 10.1667/rrxx28.1
  23. Praktikum po voennoi toksikologii, radiobiologii i meditsinskoi zashchite: P. 1. Voennaya radiobiologiya. Ed. by N.V. Butomo, G.A. Sofronov. Saint Petersburg; 1992. 110 p. (In Russ.)
  24. Borovikov VP. Populyarnoe vvedenie v sovremennyy analiz dannykh v sisteme Statistica. Uchebnoe posobie. Moscow: Goryachaya liniya–Telekom; 2013. 288 р. (In Russ.)
  25. Dicks L, Ellinger S. Effect of the intake of oyster mushrooms (Pleurotus ostreatus) on cardiometabolic parameters – a systematic review of clinical trials. Nutrients. 2020;12(4):1134. doi: 10.3390/nu12041134
  26. Gruzdev GP. Ostryi radiatsionnyi kostnomozgovoi sindrom. Moscow: Meditsina; 1988. 144 р. (In Russ.)
  27. Singh VK, Seed TM. Pharmacological management of ionizing radiation injuries: current and prospective agents and targeted organ systems. Expert Opin Pharmacother. 2020;21(3):317–337. doi: 10.1080/14656566.2019.1702968
  28. Dainiak N, Gent RN, Zhanat C, et al. First global consensus for evidence-based management of the hematopoietic syndrome resulting from exposure to ionizing radiation. Disaster Med Public Health Prep. 2011;5(3):202–212. doi: 10.1001/dmp.2011.68
  29. Sima P, Vannucci L, Vetvicka V. Effects of glucan on bone marrow. Ann Transl Med. 2014;2(2):18. doi: 10.3978/j.issn.2305-5839.2014.01.06
  30. Hofer M, Pospíšil M. Modulation of animal and human hematopoiesis by β-glucans: a review. Molecules. 2011;16(9):7969–7979. doi: 10.3390/molecules16097969
  31. Pillai TG, Devi PU. Mushroom beta-glucan: potential candidate for post irradiation protection. Mutat Res. 2013;751(2):109–115. doi: 10.1016/j.mrgentox.2012.12.005
  32. Du J, Cheng Y, Dong S, et al. Zymosan-A protects the hematopoietic system from radiation-induced damage by targeting TLR2 signaling pathway. Cell Physiol Biochem. 2017;43(2):457–464. doi: 10.1159/000480472
  33. Liu F, Wang Z, Liu J, Li W. Radioprotective effect of orally administered beta-D-glucan derived from Saccharomyces cerevisiae. Int J Biol Macromol. 2018;115:572–579. doi: 10.1016/j.ijbiomac.2018.04.098
  34. Vetvicka VC. [Beta]-Glucans as natural biological response modifiers. New York, USA: Nova Science Publishers; 2013.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dynamics of body weight of non-irradiated mice (a) and mice following 8 Gy X-rays irradiation (b) with the use of beta-D-glucan (BG; 500 mg/kg, intragastrically), Ме [Q25; Q75]. * р < 0.005 vs the group “K”; ** р < 0,01 (Mann–Whitney U test)

Download (175KB)
3. Fig. 2. Number of endogenous splenic colonies on day 9 after X-rays irradiation in mice without treatment (K) and after intragastric administration of beta-D-glucan (BG; 500 mg/kg)

Download (82KB)
4. Fig. 3. Whole white blood counts on day 9 after X-rays irradiation in mice without treatment (K) and after intragastric administration of beta-D-glucan (BG; 500 mg/kg)

Download (113KB)
5. Fig. 4. Effect of beta-D-glucan (BG; 500 mg/kg) on the number of platelets in the blood of mice on day 9 after total body X-rays irradiation, Ме [Q25; Q75]. * р < 0,005 vs the group “0 Gy”; ** р < 0,01 (Mann–Whitney U test). K – irradiation without beta-D-glucan

Download (71KB)

Copyright (c) 2023 Eco-Vector



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».