The concept of endothelial transcytosis as a theoretical prerequisite for the development of prevention and treatment of atherosclerosis
- Authors: Parfenova N.S.1, Tanyanskiy D.A.1
-
Affiliations:
- Institute of Experimental Medicine
- Issue: Vol 23, No 1 (2023)
- Pages: 41-51
- Section: Analytical reviews
- URL: https://journals.rcsi.science/MAJ/article/view/134195
- DOI: https://doi.org/10.17816/MAJ321958
- ID: 134195
Cite item
Abstract
Understanding how focal atherosclerotic lesions are formed in the vascular wall currently remains clearly incomplete, and primarily because the discussion of this issue is usually considered at the stage when low-density lipoproteins are already in the intima; the situation is largely clarified if attention is paid primarily to the mechanisms of intima infiltration by lipoproteins. From the modern point of view, we are talking about the molecular mechanisms of transcytosis, previously detected by the electron microscopy on endothelial cells of rat capillaries, which were injected with gold or ferritin nanoparticles to trace their path in the cytoplasm. Transcytosis as an active process, in which a number of receptors are involved, is contrasted with passive lipoproteins infiltration of the vascular wall. In addition to these concepts, the review discusses possible conditions for the implementation of low-density lipoproteins transcytosis, as well as the issues of regulation of transcytosis.
Full Text
##article.viewOnOriginalSite##About the authors
Nina S. Parfenova
Institute of Experimental Medicine
Author for correspondence.
Email: nina.parf@mail.ru
SPIN-code: 9415-0241
MD, Cand. Sci. (Med.), Senior Research Associate, Department of Biochemistry
Russian Federation, Санкт-ПетербургDmitry A. Tanyanskiy
Institute of Experimental Medicine
Email: dmitry.athero@gmail.com
ORCID iD: 0000-0002-5321-8834
SPIN-code: 9303-9445
Scopus Author ID: 53878682400
ResearcherId: G-3307-2015
MD, Dr. Sci. (Med.), Head of Department of Biochemistry
Russian Federation, Saint PetersburgReferences
- Anitschkow N. Über experimentelle Cholesterinsteatose und ihre Bedeutung für die Entstehung einiger pathologischen Prozesse. Zbl Allg Path Path Anat. 1913;24(1):1–9. (In German)
- Grotte G. Passage of dextran molecules across the blood-lymph barrier. Acta Chir Scand Suppl. 1956;211:1–84.
- Michel CC, Nanjee MN, Olszewski WL, Miller NE. LDL and HDL transfer rates across peripheral microvascular endothelium agree with those predicted for passive ultrafiltration in humans. J Lipid Res. 2015;56(1):122–128. doi: 10.1194/jlr.M055053
- Stender S, Zilversmit DB. Transfer of plasma lipoprotein components and of plasma proteins into aortas of cholesterol-fed rabbits. Molecular size as a determinant of plasma lipoprotein influx. Arteriosclerosis. 1981;1(1):38–49. doi: 10.1161/01.atv.1.1.38
- Palade GE, Bruns RR. Structural modulations of plasmalemmal vesicles. J Cell Biol. 1968;37(3):633–649. doi: 10.1083/jcb.37.3.633
- Bruns RR, Palade GE. Studies on blood capillaries. II. Transport of ferritin molecules across the wall of muscle capillaries. J Cell Biol. 1968;37(2):277–299. doi: 10.1083/jcb.37.2.277
- Snelting-Havinga I, Mommaas M, van Hinsbergh VW, et al. Immunoelectron microscopic visualization of the transcytosis of low-density lipoproteins in perfused rat arteries. Eur J Cell Biol. 1989;48(1):27–36.
- Jang E, Robert J, Rohrer L, et al. Transendothelial transport of lipoproteins. Atherosclerosis. 2020;315:111–125. DOI: 10.1016/ j.atherosclerosis.2020.09.020
- Schnitzer JE, Allard J, Oh P. NEM inhibits transcytosis, endocytosis, and capillary permeability: implication of caveolae fusion in endothelia. Am J Physiol. 1995;268(1 Pt 2):H48–55. doi: 10.1152/ajpheart.1995.268.1.H48
- Frank PG, Pavlides S, Cheung MW, et al. Role of caveolin-1 in the regulation of lipoprotein metabolism. Am J Physiol Cell Physiol. 2008;295(1):242–248. doi: 10.1152/ajpcell.00185.2008
- Frank PG, Lee H, Park DS, et al. Genetic ablation of caveolin-1 confers protection against atherosclerosis. Arterioscler Thromb Vasc Biol. 2004;24(1):98–105. doi: 10.1161/01.ATV.0000101182.89118.E5
- Fernández-Hernando C, Yu J, Suárez Y, et al. Genetic evidence supporting a critical role of endothelial caveolin-1 during the progression of atherosclerosis. Cell Metab. 2009;10(1):48–54. doi: 10.1016/j.cmet.2009.06.003
- Armstrong SM, Sugiyama MG, Fung KY, et al. A novel assay uncovers an unexpected role for SR-BI in LDL transcytosis. Cardiovasc Res. 2015;108(2):268–277. doi: 10.1093/cvr/cvv218
- Rohrer L, Ohnsorg PM, Lehner M, et al. High-density lipoprotein transport through aortic endothelial cells involves scavenger receptor BI and ATP-binding cassette transporter G1. Circ Res. 2009;104(10):1142–1150. doi: 10.1161/CIRCRESAHA.108.190587
- Fung KY, Wang C, Nyegaard S, et al. SR-BI mediated transcytosis of HDL in brain microvascular endothelial cells is independent of caveolin, clathrin, and PDZK1. Front Physiol. 2017;8:1–16. doi: 10.3389/fphys.2017.00841
- Lim HY, Thiam CH, Yeo KP, et al. Lymphatic vessels are essential for the removal of cholesterol from peripheral tissues by SR-BI-Mediated transport of HDL. Cell Metab. 2013;17(5):671–684. doi: 10.1016/j.cmet.2013.04.002
- Schubert W, Frank PG, Woodman SE, et al. Microvascular hyperpermeability in caveolin-1 (-/-) knockout mice. J Biol Chem. 2002;277(42):40091–40098. doi: 10.1074/jbc.M205948200
- Goldberg D, Khatib S. Atherogenesis, Transcytosis, and the Transmural Cholesterol Flux: A Critical Review. Oxid Med Cell Longev. 2022;2022:2253478. doi: 10.1155/2022/2253478
- Dehouck B, Fenart L, Dehouck MP, et al. A new function for the LDL receptor: transcytosis of LDL across the blood-brain barrier. J Cell Biol. 1997;138(4):877–889. doi: 10.1083/jcb.138.4.877
- Zakharova FM, Damgaard D, Mandelshtam MY, et al. Familial hypercholesterolemia in St-Petersburg: the known and novel mutations found in the low density lipoprotein receptor gene in Russia. BMC Med Genet. 2005;6:6. doi: 10.1186/1471-2350-6-6
- Kraehling JR, Chidlow JH, Rajagopal C, et al. Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells. Nat Commun. 2016;7:1–15. doi: 10.1038/ncomms13516
- Tao B, Kraehling JR, Ghaffari S, et al. BMP-9 and LDL crosstalk regulates ALK-1 endocytosis and LDL transcytosis in endothelial cells. J Biol Chem. 2020;295(52):18179–18188. doi: 10.1074/jbc.RA120.015680
- Tan JT, Prosser HC, Dunn LL, et al. High-density lipoproteins rescue diabetes-impaired angiogenesis via scavenger receptor Class B Type I. Dibetes. 2016;65(10):3091–3103. doi: 10.2337/db15-1668
- Zhu W, Saddar S, Seetharam D, et al. PDZK1 maintains endothelial monolayer integrity. Сirc Res. 2008;102(4):480–487. doi: 10.1161/CIRCRESAHA.107.159079
- Kimura T, Tomura H, Mogi C, et al. Role of scavenger receptor class B type I and sphingosine 1-phosphate receptors in high density lipoprotein-induced inhibition of adhesion molecule expression in endothelial cells. J Biol Chem. 2006;281(49):37457–37467. doi: 10.1074/jbc.M605823200
- Lu SM, Fairn GD. Mesoscale organization of domains in the plasma membrane – beyond the lipid raft. Crit Rev Biochem Mol Biol. 2018;53(2):192–207. doi: 10.1080/10409238.2018.1436515
- Wang DX, Pan YQ, Liu B, Dai L. Cav-1 promotes atherosclerosis by activating JNK-associated signaling. Biochem Biophys Res Commun. 2018;503(2):513–520. doi: 10.1016/j.bbrc.2018.05.036
- Fernández-Hernando C, Yu J, Dávalos A, et al. Endothelial-specific overexpression of caveolin-1 accelerates atherosclerosis in apolipoprotein E-deficient mice. Am J Pathol. 2010;177(2):998–1003. doi: 10.2353/ajpath.2010.091287
- Ramírez CM, Zhang X, Bandyopadhyay C, et al. Caveolin-1 regulates atherogenesis by attenuating low density lipoprotein transcytosis and vascular inflammation independently of endothelial nitric oxide synthase activation. Circulation. 2019;140(3):225–239. doi: 10.1161/CIRCULATIONAHA.118.038571
- Huang L, Chambliss KL, Gao X, et al. SR-B1 drives endothelial cell LDL transcytosis via DOCK4 to promote atherosclerosis. Nature. 2019;569(7757):565–569. doi: 10.1038/s41586-019-1140-4
- Armstrong SM, Khajoee V, Wang C, et al. Co-regulation of transcellular and paracellular leak across microvascular endothelium by dynamin and Rac. Am J Pathol. 2012;180(3):1308–1323. doi: 10.1016/j.ajpath.2011.12.002
- Sverdlov M, Shinin V, Place AT, et al. Filamin A regulates caveolae internalization and trafficking in endothelial cells. Mol Biol Cell. 2009;20(21):4531–4540. doi: 10.1091/mbc.e08-10-0997
- Tuma PL, Hubbard AL. Transcytosis: crossing cellular barriers. Physiol Rev. 2003;83(3)871–932. doi: 10.1152/physrev.00001.2003
- Fung KYY, Fairn GD, Lee WL. Transcellular vesicular transport in epithelial and endothelial cells: challenges and opportunities. Traffic. 2018;19(1):5–18. doi: 10.1111/tra.12533
- Villaseñor R, Schilling M, Sundaresan J, et al. Sorting tubules regulate blood-brain barrier transcytosis. Cell Rep. 2017;21(11):3256–3270. doi: 10.1016/j.celrep.2017.11.055
- Denisenko AD. Modified lipoproteins and atherosclerosis. In: Aleksandrova GI, Aleshina GM, Burova LA, et al. Institute of experimental medicine on the eve of new millenium. Achievements in the field of experimental biology and medicine. Ed. by B.I. Tkachenko. Saint Petersburg: Nauka; 2000. P. 264–285. (In Russ.)
- Schnitzer JE, Liu J, Oh P. Endothelial caveolae have the molecular transport machinery for vesicle budding, docking, and fusion including VAMP, NSF, SNAP, annexins, and GTPases. J Biol Chem. 1995;270(24):14399–14404. doi: 10.1074/jbc.270.24.14399
- Predescu SA, Predescu DN, Palade GE. Endothelial transcytotic machinery involves supramolecular protein-lipid complexes. Mol Biol Cell. 2001;12(4):1019–1033. doi: 10.1091/mbc.12.4.1019
- Villablanca AC, Jayachandran M, Banka C. Atherosclerosis and sex hormones: current concepts. Clin Sci (Lond). 2010;119(12):493–513. doi: 10.1042/CS20100248
- Ghaffari S, Naderi Nabi F, Sugiyama MG, Lee WL. Estrogen inhibits LDL (low density lipoprotein) transcytosis by human coronary artery endothelial cells via GPER (G-protein-coupled estrogen receptor) and SR-BI (scavenger receptor class B type 1). Arterioscler Thromb Vasc Biol. 2018;38(10):2283–2294. doi: 10.1161/ATVBAHA.118.310792
- Bobryshev YuV, Nagornev VA, Klimov AN. Stereological analysis of nonspecific endocytic capture of lipoproteins by the aortic endothelium in the initial stages of experimental atherosclerosis in rabbits. Arch Pathol. 1984;46(10):36–42. (In Russ.)
- Bartels ED, Christoffersen C, Lindholm MW, Nielsen LB. Altered metabolism of LDL in the arterial wall precedes atherosclerosis regression. Circ Res. 2015;117(11):933–942. doi: 10.1161/CIRCRESAHA.115.307182
- Navab M, Hough GP, Berliner JA, et al. Rabbit beta-migration very low density lipoprotein increases endothelial macromolecular transport without altering electrical resistance. J Clin Invest. 1986;78(2):389–397. doi: 10.1172/JCI112589
- Christoffersen C, Nielsen LB. Apolipoprotein M: bridging HDL and endothelial function. Curr Opin Lipidol. 2013;24(4):295–300. doi: 10.1097/MOL.0b013e328361f6ad
- Wilkerson BA, Argraves KM. The role of sphingosine-1-phosphate in endothelial barrier function. Biochim Biophys Acta. 2014;1841(10):1403–1412. doi: 10.1016/j.bbalip.2014.06.012
- Feuerborn R, Besser M, Potì F, et al. Elevating endogenous sphingosine-1-phosphate (S1P) levels improves endothelial function and ameliorates atherosclerosis in low density lipoprotein receptor-deficient (LDL-R -/-) mice. Thromb Haemost. 2018;118(8):1470–1480. doi: 10.1055/s-0038-1666870
- Velagapudi S, Rohrer L, Poti F, et al. Apolipoprotein M and Sphingosine-1-Phosphate Receptor 1 Promote the Transendothelial Transport of High-Density Lipoprotein. Arterioscler Thromb Vasc Biol. 2021;41(10):e468–e479. doi: 10.1161/ATVBAHA.121.316725
- Kornerup K, Nordestgaard BG, Feldt-Rasmussen B, et al. Transvascular low-density lipoprotein transport in patients with diabetes mellitus (type 2): a noninvasive in vivo isotope technique. Arterioscler Thromb Vasc Biol. 2002;22(7):1168–1174. doi: 10.1161/01.atv.0000022849.26083.fa
- Bai X, Yang X, Jia X, et al. CAV1-CAVIN1-LC3B-mediated autophagy regulates high glucose stimulated LDL transcytosis. Autophagy. 2020;16(6):1111–1129. doi: 10.1080/15548627.2019.1659613
- Zhao Y, Jia X, Yang X, et al. Deacetylation of Caveolin-1 by Sirt6 induces autophagy and retards high glucose-stimulated LDL transcytosis and atherosclerosis formation. Metabolism. 2022;131:155162. doi: 10.1016/j.metabol.2022.155162
- Libby P, Ridker PM, Hansson GK; Leducq Transatlantic Network on Atherothrombosis. Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol. 2009;54(23):2129–2138. doi: 10.1016/j.jacc.2009.09.009
- Nazarov PG, Maltseva ON, Tanyansky DA, et al. Influence of inflammatory factors on transendothelial transport of serum lipoproteins in vitro. Cytokines and inflammation. 2015;14(4):59–64. (In Russ.)
- Nazarov PG, Maltseva ON, Tanyanskiy DA, et al. Mast Cells and Control of Transendothelial Transport: the Role of Histamine. Cell Tiss Biol. 2021;15:402–408. doi: 10.1134/S1990519X21040052
- Zhang Y, Yang X, Bian F, et al. TNF-α promotes early atherosclerosis by increasing transcytosis of LDL across endothelial cells: crosstalk between NF-κB and PPAR-γ. J Mol Cell Cardiol. 2014;72:85–94. doi: 10.1016/j.yjmcc.2014.02.012
- Jia X, Liu Z, Wang Y, et al. Serum amyloid A and interleukin-1β facilitate LDL transcytosis across endothelial cells and atherosclerosis via NF-κB/caveolin-1/cavin-1 pathway. Atherosclerosis. 2023. doi: 10.1016/j.atherosclerosis.2023.03.004. Epub ahead of print.
- Kiseleva EP, Krylov AV, Starikova EhA, Kuznetsova SA. Faktor rosta sosudistogo ehndoteliya i immunnaya sistema. Uspekhi sovremennoi biologii. 2009;129(4):336–347. (In Russ.)
- Lee YT, Lin HY, Chan YW, et al. Mouse models of atherosclerosis: a historical perspective and recent advances. Lipids Health Dis. 2017;16(1):1–11. doi: 10.1186/s12944-016-0402-5
- Zadelaar S, Kleemann R, Verschuren L, et al. Mouse models for atherosclerosis and pharmaceutical modifiers. Arterioscler Thromb Vasc Biol. 2007;27(8):1706–1721. doi: 10.1161/ATVBAHA.107.142570
- Daugherty A. Mouse models of atherosclerosis. Am J Med Sci. 2002;323(1):3–10. doi: 10.1097/00000441-200201000-00002
- Parfenova NS. The role of endothelium in atherogenesis: dependence of atherosclerosis development on the properties of vessel endothelium. Medical Academic Journal. 2020;20(1):23–36. (In Russ.) doi: 10.17816/MAJ25755
Supplementary files
