Роль микробиоты кишечника в патогенезе рассеянного склероза. Часть 2. Кишечная микробиота как фактор предрасположенности к развитию рассеянного склероза

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В данной части обзора уделено внимание предполагаемому участию кишечной микробиоты в реализации генетического риска рассеянного склероза, формированию кишечного микробиома в ранней жизни, а также приводятся данные, поддерживающие гипотезу, что аберрантное формирование кишечной микробиоты на ранних этапах жизни может быть предрасполагающим фактором рассеянного склероза.

Об авторах

Ирина Николаевна Абдурасулова

Институт экспериментальной медицины

Автор, ответственный за переписку.
Email: i_abdurasulova@mail.ru
ORCID iD: 0000-0003-1010-6768
SPIN-код: 5019-3940
Scopus Author ID: 22233604700

канд. биол. наук, заведующая Физиологическим отделом им. И.П. Павлова

Россия, Санкт-Петербург

Список литературы

  1. Jostins L., Ripke S., Weersma R.K. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease // Nature. 2012. Vol. 491, No. 7422. P. 119–124. doi: 10.1038/nature11582
  2. Knights D., Silverberg M.S., Weersma R.K. et al. Complex host genetics influence the microbiome in inflammatory bowel disease // Genome Med. 2014. Vol. 6, No. 12. P. 107. doi: 10.1186/s13073-014-0107-1
  3. Brestoff J.R., Artis D. Commensal bacteria at the interface of host metabolism and the immune system // Nat. Immunol. 2013. Vol. 14, No. 7. P. 676–684. doi: 10.1038/ni.2640
  4. Grise E.A., Serge J.A. The human microbiome: our second genome // Annu. Rev. Genomics Hum. Genet. 2012. Vol. 13. P. 151–170. doi: 10.1146/annurev-genom-090711-163814
  5. Benson A.K., Kelly S.A., Legge R. et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors // Proc. Natl. Acad. Sci. USA. 2010. Vol. 107, No. 44. P. 18933–18938. doi: 10.1073/pnas.1007028107
  6. Rothschild D., Weissbrod O., Barkan E. et al. Environment dominates over host genetics in shaping human gut microbiota // Nature. 2018. Vol. 555, No. 7695. P. 210–215. doi: 10.1038/nature25973
  7. Goodrich J.K., Waters J.L., Poole A.C. et al. Human genetics shape the gut microbiome // Cell. 2014. Vol. 159, No. 4. P. 789–799. doi: 10.1016/j.cell.2014.09.053
  8. Davenport E.R., Cusanovich D.A., Michelini K. et al. Genome-wide association studies of the human gut microbiota // PLoS One. 2015. Vol. 10, No. 11. P. e0140301. doi: 10.1371/journal.pone.0140301
  9. Goodrich J.K., Davenport E.R., Waters J.L. et al. Cross-species comparisons of host genetic associations with the microbiome // Science. 2016. Vol. 352, No. 6285. P. 532–535. doi: 10.1126/science.aad9379
  10. Goodrich J.K., Davenport E.R., Beaumont M. et al. Genetic determinants of the gut microbiome in UK twins // Cell Host Microbe. 2016. Vol. 19, No. 5. P. 731–743. doi: 10.1016/j.chom.2016.04.017
  11. Goodrich J.K., Davenport E.R., Clark A.G., Ley R.E. The relationship between the human genome and microbiome comes into view // Annu. Rev. Genet. 2017. Vol. 51. P. 413–433. doi: 10.1146/annurev-genet-110711-155532
  12. Turpin W., Espin-Garcia O., Xu W. et al. Association of host genome with intestinal microbial composition in a large healthy cohort // Nat. Genet. 2016. Vol. 48, No. 11. P. 1413–1417. doi: 10.1038/ng.3693
  13. Lim M.Y., You H.J., Yoon H.S. et al. The effect of heritability and host genetics on the gut microbiota and metabolic syndrome // Gut. 2017. Vol. 66, No. 6. P. 1031–1038. doi: 10.1136/gutjnl-2015-311326
  14. Wells P.M., Williams F.M.K., Matey-Hernandez M.L. et al. RA and the Microbiome: Do host genetic factors provide the link? // J. Autoimmun. 2019. Vol. 99. P. 104–115. doi: 10.1016/j.jaut.2019.02.004
  15. He Z., Shao T., Li H. et al. Alterations of the gut microbiome in Chinese patients with systemic lupus erythematosus // Gut Pathog. 2016. Vol. 8. P. 64. doi: 10.1186/s13099-016-0146-9
  16. Kwon Y.-C., Chun S., Kim K., Mak A. Update on the genetics of systemic lupus erythematosus: genome-wide association studies and beyond // Cells. 2019. Vol. 8, No. 10. P. 1180. doi: 10.3390/cells8101180
  17. Blekhman R., Goodrich J.K., Huang K. et al. Host genetic variation impacts microbiome composition across human body sites // Genome Biol. 2015. Vol. 16, No. 1. P. 191. doi: 10.1186/s13059-015-0759-1
  18. Rawls J.F., Mahowald M.A., Ley R.E., Gordon J.I. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection // Cell. 2006. Vol. 127, No. 2. P. 423–433. doi: 10.1016/j.cell.2006.08.043
  19. Zoetendal E.G., Akkermans A.D.L., Akkermans-van Vliet W.M. et al. The host genotype affects the bacterial community in the human gastrointestinal tract // Microb. Ecol. Health Dis. 2001. Vol. 13, No. 3. P. 129–134. doi: 10.1080/089106001750462669
  20. Stewart J.A., Chadwick V.S., Murray A. Investigations into the influence of host genetics on the predominant eubacteria in the faecal microflora of children // J. Med. Microbiol. 2005. Vol. 54, No. Pt 12. P. 1239–1242. doi: 10.1099/jmm.0.46189-0
  21. Xie H., Guo R., Zhong H. et al. Shotgun metagenomics of 250 adult twins reveals genetic and environmental impacts on the gut microbiome // Cell Syst. 2016. Vol. 3, No. 6. P. 572–584. doi: 10.1016/j.cels.2016.10.004
  22. Dicksved J., Halfvarson J., Rosenquist M. et al. Molecular analysis of the gut microbiota of identical twins with Crohn’s disease // ISME J. 2008. Vol. 2, No. 7. P. 716–727. doi: 10.1038/ismej.2008.37
  23. Turnbaugh P.J., Ridaura V.K., Faith J.J. et al. The effect of diet on the human gut microbiome: A metagenomic analysis in humanized gnotobiotic mice // Sci. Transl. Med. 2009. Vol. 1, No. 6. P. 6–14. doi: 10.1126/scitranslmed.3000322
  24. Sandoval-Motta S., Aldana M., Martínez-Romero E., Frank A. The human microbiome and the missing heritability problem // Front. Genet. 2017. Vol. 8. P. 80. doi: 10.3389/fgene.2017.00080
  25. Rakoff-Nahoum S., Paglino J., Eslami-Varzaneh F. et al. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis // Cell. 2004. Vol. 118, No. 2. P. 229–241. doi: 10.1016/j.cell.2004.07.002
  26. Petnicki-Ocwieja T., Hrncir T., Liu Y.J. et al. Nod2 is required for the regulation of commensal microbiota in the intestine // Proc. Natl. Acad. Sci. USA. 2009. Vol. 106, No. 37. P. 15813–15818. doi: 10.1073/pnas.0907722106
  27. Carvalho F.A., Koren O., Goodrich J.K. et al. Transient inability to manage Proteobacteria promotes chronic gut inflammation in TLR5-deficient mice // Cell Host Microbe. 2012. Vol. 12, No. 2. P. 139–152. doi: 10.1016/j.chom.2012.07.004
  28. Fulde M., Sommer F., Chassaing B. et al. Neonatal selection by Toll-like receptor 5 influences long-term gut microbiota composition // Nature. 2018. Vol. 560, No. 7719. P. 489–493. doi: 10.1038/s41586-018-0395-5
  29. Rehman A., Sina C., Gavrilova O. et al. Nod2 is essential for temporal development of intestinal microbial communities // Gut. 2011. Vol. 60, No. 10. P. 1354–1362. doi: 10.1136/gut.2010.216259
  30. Mondot S., Barreau F., Al Nabhani Z. et al. Altered gut microbiota composition in immune-impaired Nod2(-/-) mice // Gut. 2012. Vol. 61, No. 4. P. 634–635. doi: 10.1136/gutjnl-2011-300478
  31. Gulati A.S., Kruek L., Sartor R.B. Influence of NOD 2 on the protective intestinal commensal bacterium Faecalibacterium prausnitzii // Gastroenterology. 2010. Vol. 138, No. 5. P. S–14. doi: 10.1016/s0016-5085(10)60064-9
  32. Wen L., Ley R.E., Volchkov P.Y. et al. Innate immunity and intestinal microbiota in the development of type 1 diabetes // Nature. 2008. Vol. 455, No. 7216. P. 1109–1113. doi: 10.1038/nature07336
  33. Salzman N.H., Hung K., Haribhai D. et al. Enteric defensins are essential regulators of intestinal microbial ecology // Nat. Immunol. 2010. Vol. 11, No. 1. P. 76–83. doi: 10.1038/ni.1825
  34. McFall-Ngai M. Adaptive immunity: care for the community // Nature. 2007. Vol. 445, No. 7124. P. 153. doi: 10.1038/445153a
  35. De Palma G., Capilla A., Nadal I. et al. Interplay between Human Leukocyte Antigen genes and the microbial colonization process of the newborn intestine // Curr. Issues Mol. Biol. 2010. Vol. 12, No. 1. P. 1–10. doi: 10.2174/1871528113666140330201056
  36. Vijay-Kumar M., Aitken J.D., Carvalho F.A. et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5 // Science. 2010. Vol. 328, No. 5975. P. 228–231. doi: 10.1126/science.1179721
  37. Shulzhenko N., Morgun A., Hsiao W. et al. Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut // Nat. Med. 2011. Vol. 17, No. 12. P. 1585–1593. doi: 10.1038/nm.2505
  38. Wang J., Thingholm L.B., Skiecevièienë J. et al. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota // Nat. Genet. 2016. Vol. 48, No. 11. P. 1396–1406. doi: 10.1038/ng.3695
  39. Kolde R., Franzosa E.A., Rahnavard G. et al. Host genetic variation and its microbiome interactions within the Human Microbiome Project // Genome Med. 2018. Vol. 10, No. 1. P 6. doi: 10.1186/s13073-018-0515-8
  40. Wacklin P., Mäkivuokko H., Alakulppi N. et al. Secretor genotype (FUT2 gene) is strongly associated with the composition of Bifidobacteria in the human intestine // PLoS One. 2011. Vol. 6, No. 5. P. e20113. doi: 10.1371/journal.pone.0020113
  41. Su D., Nie Y., Zhu A. et al. Vitamin D signaling through induction of paneth cell defensins maintains gut microbiota and improves metabolic disorders and hepatic steatosis in animal models // Front. Physiol. 2016. Vol. 7. P. 498. doi: 10.3389/fphys.2016.00498
  42. Awany D., Allali I., Dalvie S. et al. Host and microbiome genome-wide association studies: current state and challenges // Front. Genet. 2019. Vol. 9. P. 637. doi: 10.3389/fgene.2018.00637
  43. Maglione A., Zuccalà M., Tosi M. et al. Host genetics and gut microbiome: perspectives for multiple sclerosis // Genes (Basel). 2021. Vol. 12, No. 8. P. 1181. doi: 10.3390/genes12081181
  44. Абдурасулова И.Н. Роль микробиоты кишечника в патогенезе рассеянного склероза. Часть 1. Клинические и экспериментальные доказательства вовлечения микробиоты кишечника в развитие рассеянного склероза // Медицинский академический журнал. 2022. Т. 22, № 2. C. 9–36. doi: 10.17816/MAJ108241
  45. Hall A.B., Tolonen A.C., Xavier R.J. Human genetic variation and the gut microbiome in disease // Nat. Rev. Genet. 2017. Vol. 18, No. 11. P. 690–699. doi: 10.1038/nrg.2017.63
  46. Imhann F., Vich Vila A., Bonder M.J. et al. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease // Gut. 2018. Vol. 67, No. 1. P. 108–119. doi: 10.1136/gutjnl-2016-312135
  47. Miller P.G., Bonn M.B., Franklin C.L. et al. TNFR2 deficiency acts in concert with gut microbiota to precipitate spontaneous sex-biased central nervous system demyelinating autoimmune disease // J. Immunol. 2015. Vol. 195, No. 10. P. 4668–4684. doi: 10.4049/jimmunol.1501664
  48. Abdollahzadeh R., Fard M.S., Rahmani F. et al. Predisposing role of vitamin D receptor (VDR) polymorphisms in the development of multiple sclerosis: A case-control study // J. Neurol. Sci. 2016. Vol. 367. P. 148–151. doi: 10.1016/j.jns.2016.05.053
  49. Imani D., Razi B., Motallebnezhad M., Rezaei R. Association between vitamin D receptor (VDR) polymorphisms and the risk of multiple sclerosis (MS): an updated meta-analysis // BMC Neurol. 2019. Vol. 19, No. 1. P. 339. doi: 10.1186/s12883-019-1577-y
  50. Bakke D., Sun J. Ancient Nuclear Receptor VDR with new functions: microbiome and inflammation // Inflamm. Bowel. Dis. 2018. Vol. 24, No. 6. P. 1149–1154. doi: 10.1093/ibd/izy092
  51. Haussler M.R., Haussler C.A, Bartik L. et al. Vitamin D receptor: molecular signaling and actions of nutritional ligands in disease prevention // Nutr. Rev. 2008. Vol. 66, Suppl. 2. P. S98–S112. doi: 10.1111/j.1753-4887.2008.00093.x
  52. Makishima M., Lu T.T, Xie W. et al. Vitamin D receptor as an intestinal bile acid sensor // Science. 2002. Vol. 296, No. 5571. P. 1313–1316. doi: 10.1126/science.1070477
  53. Han S., Li T., Ellis E. et al. A novel bile acid-activated vitamin D receptor signaling in human hepatocytes // Mol. Endocrinol. 2010. Vol. 24, No. 6. P. 1151–1164. doi: 10.1210/me.2009-0482
  54. Wang K., Liao M., Zhou N. et al. Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids // Cell Rep. 2019. Vol. 25. P. 222–235. doi: 10.1016/j.celrep.2018.12.028
  55. Tremlett H., Fadrosh D.W., Faruqi A.A. et al. Gut microbiota in early pediatric multiple sclerosis: a case-control study // Eur. J. Neurol. 2016. Vol. 23, No. 8. P. 1308–1321. doi: 10.1111/ene.13026
  56. Reynders T., Devolder L., Valles-Colomer M. et al. Gut microbiome variation is associated to Multiple Sclerosis phenotypic subtypes // Ann. Clin. Transl. Neurol. 2020. Vol. 7, No. 4. P. 406–419. doi: 10.1002/acn3.51004
  57. Pellizoni F.P., Leite A.Z., de Campos Rodrigues N. et al. Detection of dysbiosis and increased intestinal permeability in Brazilian patients with relapsing-remitting multiple sclerosis // Int. J. Environ. Res. Public Health. 2021. Vol. 18, No. 9. P. 4621. doi: 10.3390/ijerph18094621
  58. Oezguen N., Yalcinkaya N., Kücükali C.I. et al. Microbiota stratification identifies disease-specific alterations in neuro-Behçet’s disease and multiple sclerosis // Clin. Exp. Rheumatol. 2019. Vol. 37, Suppl 121, No. 6. P. 58–66.
  59. Bhargava P., Smith M.D., Mische L. et al. Bile acid metabolism is altered in multiple sclerosis and supplementation ameliorates neuroinflammation // J. Clin. Invest. 2020. Vol. 130, No. 7. P. 3467–3482. doi: 10.1172/JCI129401
  60. Belkaid Y., Hand T.W. Role of the microbiota in immunity and inflammation // Cell. 2014. Vol. 157, No. 1. P. 121–141. doi: 10.1016/j.cell.2014.03.011
  61. Schirmer M., Smeekens S.P., Vlamakis H. et al. Linking the human gut microbiome to inflammatory cytokine production capacity // Cell. 2016. Vol. 167, No. 4. P. 1125–1136. doi: 10.1016/j.cell.2016.10.020
  62. Bevins C.L., Salzman N.H. The potter’s wheel: the host’s role in sculpting its microbiota // Cell. Mol. Life Sci. 2011. Vol. 68, No. 22. P. 3675–3685. doi: 10.1007/s00018-011-0830-3
  63. Kozhieva M., Naumova N., Alikina T. et al. Primary progressive multiple sclerosis in a Russian cohort: relationship with gut bacterial diversity // BMC Microbiol. 2019. Vol. 19, No. 1. P. 309. doi: 10.1186/s12866-019-1685-2
  64. Fujiwara M., Anstadt E.J., Flynn B. et al. Enhanced TLR2 responses in multiple sclerosis // Clin. Exp. Immunol. 2018. Vol. 193, No. 3. P. 313–326. doi: 10.1111/cei.13150
  65. Farez M.F., Quintana F.J., Gandi R. et al. Toll-like receptor 2 and poly(ADP-ribose) polymerase 1 promote central nervous system neuroinflammation in progressive EAE // Nat. Immunol. 2009. Vol. 10, No. 9. P. 958–964. doi: 10.1038/ni.1775
  66. Miranda-Hernandez S., Gerlach N., Fletcher J.M. et al. Role for MyD88, TLR2 and TLR9 but not TLR1, TLR4 or TLR6 in experimental autoimmune encephalomyelitis // J. Immunol. 2011. Vol. 187, No. 2. P. 791–804. doi: 10.4049/jimmunol.1001992
  67. Prinz M., Garbe F., Schmidt H. et al. Innate immunity mediated by TLR9 modulates pathogenicity in an animal model of multiple sclerosis // J. Clin. Invest. 2006. Vol. 116, No. 2. P. 456–464. doi: 10.1172/JCI26078
  68. Horton M.K., McCauley K., Fadrosh D. et al. Gut microbiome is associated with multiple sclerosis activity in children // Ann. Clin. Transl. Neurol. 2021. Vol. 8, No. 9. P. 1867–1883. doi: 10.1002/acn3.51441
  69. Rezende R.M., Oliveira R.P., Medeiros S.R. et al. Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4+LAP+ regulatory T cells // J. Autoimmun. 2013. Vol. 40. P. 45–57. doi: 10.1016/j.jaut.2012.07.012
  70. Cox L.M., Maghzi A.H., Liu S. et al. The gut microbiome in progressive multiple sclerosis // Ann. Neurol. 2021. Vol. 89, No. 6. P. 1195–1211. doi: 10.1002/ana.26084
  71. Абдурасулова И.Н., Тарасова Е.А., Ермоленко Е.И. и др. При рассеянном склерозе изменяется качественный и количественный состав микробиоты кишечника // Медицинский академический журнал. 2015. Т. 15, № 3. С. 55–67. doi: 10.17816/MAJ15355-67
  72. Cekanaviciute E., Yoo B.B., Runia T.F. et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models // Proc. Natl. Acad. Sci. USA. 2017. Vol. 114, No. 40. P. 10713–10718. doi: 10.1073/pnas.1711235114
  73. Chiurchiù V., Leuti A., Cencioni M. et al. Modulation of monocytes by bioactive lipid anandamide in multiple sclerosis involves distinct Toll-like receptors // Pharmacol. Res. 2016. Vol. 113, Pt A. P. 313–319. doi: 10.1016/j.phrs.2016.09.003
  74. Hughes L., Smith P., Bonell S. et al. Cross-reactivity between related sequences found in Acinetobacter sp., Pseudomonas aeruginosa, myelin basic protein and myelin oligodendrocyte glycoprotein in multiple sclerosis // J. Neuroimmunol. 2003. Vol. 144, No. 1–2. P. 105–115. doi: 10.1016/s0165-5728(03)00274-1
  75. Ebringer A., Hughes L., Rashid T., Wilson C. Acinetobacter immune responses in multiple sclerosis etiopathogenetic role and its possible use as a diagnostic marker // Arch. Neurol. 2005. Vol. 62, No. 1. P. 33–36. doi: 10.1001/archneur.62.1.33
  76. Ebringer A., Rashid T., Wilson C. The role of Acinetobacter in the pathogenesis of multiple sclerosis examined by using Popper sequences // Med. Hypotheses. 2012. Vol. 78, No. 6. P. 763–769. doi: 10.1016/j.mehy.2012.02.026
  77. Cuesta C.M., Pascual M., Pérez-Moraga R. et al. TLR4 deficiency affects the microbiome and reduces intestinal dysfunctions and inflammation in chronic alcohol-fed mice // Int. J. Mol. Sci. 2021. Vol. 22, No. 23. P. 12830. doi: 10.3390/ijms222312830
  78. Forbes J.D., Chen C.-Y., Knox N.C. et al. A comparative study of the gut microbiota in immune-mediated inflammatory diseases – does a common dysbiosis exist? // Microbiome. 2018. Vol. 6, No. 1. P. 221. doi: 10.1186/s40168-018-0603-4
  79. Cantoni С., Lin Q., Dorsett Y. et al. Alterations of host-gut microbiome interactions in multiple sclerosis // EBioMedicine. 2022. Vol. 76. P. 103798. doi: 10.1016/j.ebiom.2021.103798
  80. Miyake S., Kim S., Suda W. et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belondind to Clostridia XIVa and IV clusters // PLoS One. 2015. Vol. 10, No. 9. P. e0137429. doi: 10.1371/journal.pone.0137429
  81. Cantarel B.L., Waubant E., Chehoud C. et al. Gut microbiota in multiple sclerosis: possible influence of immunomodulators // J. Investig. Med. 2015. Vol. 63, No. 5. P. 729–734. doi: 10.1097/JIM.0000000000000192
  82. Storm-Larsen C., Myhr K.-M., Farbu E. et al. Gut microbiota composition during a 12-week intervention with delayed-release dimethyl fumarate in multiple sclerosis – a pilot trial // Mult. Scler. J. Exp. Transl. Clin. 2019. Vol. 5, No. 4. P. 2055217319888767. doi: 10.1177/2055217319888767
  83. Ling Z., Cheng Y., Yan X. et al. Alterations of the fecal microbiota in Chinese patients with multiple sclerosis // Front. Immunol. 2020. Vol. 11. P. 590783. doi: 10.3389/fimmu.2020.590783
  84. Takewaki D., Suda W., Sato W. et al. Alterations of the gut ecological and functional microenvironment in different stages of multiple sclerosis // PNAS. 2020. Vol. 117, No. 36. P. 22402–22412. doi: 10.1073/pnas.2011703117
  85. Castillo-Álvarez F., Pérez-Matute P., Oteo J.A., Marzo-Sola M.E. The influence of interferon β-1b on gut microbiota composition in patients with multiple sclerosis // Neurologia (Engl Ed). 2021. Vol. 36, No. 7. P. 495–503. doi: 10.1016/j.nrleng.2020.05.006
  86. Marta M., Andersson A., Isaksson M. et al. Unexpected regulatory roles of TLR4 and TLR9 in experimental autoimmune encephalomyelitis // Eur. J. Immunol. 2008. Vol. 38, No. 2. P. 565–575. doi: 10.1002/eji.200737187
  87. Zhang Y., Han J., Wu M. et al. Toll-like receptor 4 promotes Th17 lymphocyte infiltration via CCL25/CCR9 in pathogenesis of experimental autoimmune encephalomyelitis // J. Neuroimmune Pharmacol. 2019. Vol. 14, No. 3. P. 493–502. doi: 10.1007/s11481-019-09854-1
  88. Carrillo-Salinas F.J., Mestre L., Mecha M. et al. Gut dysbiosis and neuroimmune responses to brain infection with Theiler’s murine encephalomyelitis virus // Sci. Rep. 2017. Vol. 7. P. 44377. doi: 10.1038/srep44377
  89. Абдурасулова И.Н., Тарасова Е.А., Мацулевич А.В. и др. Влияние бифидобактерий в составе кишечной микробиоты на течение рассеянного склероза // Проблемы медицинской микологии. 2022. Т. 24, № 2. С. 38.
  90. Tan T.G., Sefik E., Geva-Zatorsky N. et al. Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice // Proc. Natl. Acad. Sci. USA. 2016. Vol. 113, No. 50. P. E8141–E8150. doi: 10.1073/pnas.1617460113
  91. Bouskra D., Brézillon C., Bérard M. et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis // Nat. Lett. 2008. Vol. 456, No. 7221. P. 507–510. doi: 10.1038/nature07450
  92. Chen G.Y., Núñez G. Gut Immunity: a NOD to the commensals // Curr. Biol. 2009. Vol. 19, No. 4. P. R171–R174. doi: 10.1016/j.cub.2008.12.027
  93. Galluzzo P., Capri F.C., Vecchioni L. et al. Comparison of the intestinal microbiome of Italian patients with multiple sclerosis and their household relatives // Life (Basel). 2021. Vol. 11, No. 7. P. 620. doi: 10.3390/life11070620
  94. Ventura R.E., Iizumi1 T., Battaglia T. et al. Gut microbiome of treatment-naïve MS patients of different ethnicities early in disease course // Sci. Rep. 2019. Vol. 9, No. 1. P. 16396. doi: 10.1038/s41598-019-52894-z
  95. Cekanaviciute E., Pröbstel A.-K., Thomann A. et al. Multiple sclerosis-associated changes in the composition and immune functions of spore-forming bacteria // mSystems. 2018. Vol. 3, No. 6. P. e00083–18. doi: 10.1128/mSystems.00083-18
  96. Shaw P.J., Barr M.J., Lukens J.R. et al. Signaling via the RIP2 adaptor protein in central nervous system-infiltrating dendritic cells promotes inflammation and autoimmunity // Immunity. 2011. Vol. 34, No. 1. P. 75–84. doi: 10.1016/j.immuni.2010.12.015
  97. Rumah K.R., Linden J., Fischetti V.A., Vartanian T. Isolation of clostridium perfringens type B in an individual at first clinical presentation of multiple sclerosis provides clues for environmental triggers of the disease // PLoS One. 2013. Vol. 8, No. 10. P. e76359. doi: 10.1371/journal.pone.0076359
  98. Ochoa-Repáraz J., Mielcarz D.W., Wang Y. et al. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease // Mucosal Immunol. 2010. Vol. 3, No. 5. P. 487–495. doi: 10.1038/mi.2010.29
  99. Gulati A.S., Kreuk L., Sartor R.B. 69 Influence of NOD2 on the Protective Intestinal Commensal Bacterium Faecalibacterium prausnitzii // Gastroenterology. 2010. Vol. 138. P. S–14. doi: 10.1016/S0016-5085(10)60064-9
  100. Chen J., Chia N., Kalari K.R. et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls // Sci. Rep. 2016. Vol. 6. P. 28484. doi: 10.1038/srep28484
  101. Taras D., Simmering R., Collins M.D. et al. Reclassification of Eubacterium formicigenerans Holdeman and Moore 1974 as Dorea formicigenerans gen. nov., comb. nov., and description of Dorea longicatena sp. nov., isolated from human faeces // Int. J. Syst. Evol. Microbiol. 2002. Vol. 52, No. Pt 2. P. 423–428. doi: 10.1099/00207713-52-2-423
  102. Schirmer M., Smeekens S.P., Vlamakis H. et al. Linking the human gut microbiome to inflammatory cytokine production capacity // Cell. 2016. Vol. 167, No. 4. P. 1897. doi: 10.1016/j.cell.2016.10.020
  103. Al K.F., Craven L.J., Gibbons S. et al. Fecal microbiota transplantation is safe and tolerable in patients with multiple sclerosis: A pilot randomized controlled trial // Mult. Scler. J. Exp. Transl. Clin. 2022. Vol. 8, No. 2. P. 20552173221086662. doi: 10.1177/20552173221086662
  104. Chen L., Wilson J.E., Koenigsknecht M.J. et al. NLRP12 attenuates colon inflammation by maintaining colonic microbial diversity and promoting protective commensal bacterial growth // Nat. Immunol. 2017. Vol. 18, No. 5. P. 541–551. doi: 10.1038/ni.3690
  105. Swidsinski A., Dörffel Y., Loening-Baucke V. et al. Reduced mass and diversity of the colonic microbiome in patients with multiple sclerosis and their improvement with ketogenic diet // Front. Microbiol. 2017. Vol. 8. P. 1141. doi: 10.3389/fmicb.2017.01141
  106. Vilariño-Güell C., Zimprich A., Martinelli-Boneschi F. et al. Exome sequencing in multiple sclerosis families identifies 12 candidate genes and nominates biological pathways for the genesis of disease // PLoS Genet. 2019. Vol. 15, No. 6. P. e1008180. doi: 10.1371/journal.pgen.1008180
  107. Gharagozloo M., Mahvelati T.M., Imbeault E. et al. The nod-like receptor, Nlrp12, plays an anti-inflammatory role in experimental autoimmune encephalomyelitis // J. Neuroinflammation. 2015. Vol. 12. P. 198. doi: 10.1186/s12974-015-0414-5
  108. Gharagozloo M., Mahmoud S., Simard C. et al. The dual immunoregulatory function of Nlrp12 in T cell-mediated immune response: lessons from experimental autoimmune encephalomyelitis // Cells. 2018. Vol. 7, No. 9. P. 119. doi: 10.3390/cells7090119
  109. Lukens J.R., Gurung P., Shaw P.J. et al. The NLRP12 sensor negatively regulates autoinflammatory disease by modulating interleukin-4 production in T cells // Immunity. 2015. Vol. 42, No. 4. P. 654–664. doi: 10.1016/j.immuni.2015.03.006
  110. Vacca M., Celano G., Calabrese F.M. et al. The controversial role of human gut Lachnospiraceae // Microorganisms. 2020. Vol. 8, No. 4. P. 573. doi: 10.3390/microorganisms8040573
  111. Tye H., Yu C.-H., Simms L.A. et al. NLRP1 restricts butyrate producing commensals to exacerbate inflammatory bowel disease // Nat. Commun. 2018. Vol. 9, No. 1. P. 3728. doi: 10.1038/s41467-018-06125-0
  112. Popplewell L.F., Encarnacion M., Bernales C.Q. et al. Genetic analysis of nucleotide-binding leucine-rich repeat (NLR) receptors in multiple sclerosis // Immunogenetics. 2020. Vol. 72, No. 6–7. P. 381–385. doi: 10.1007/s00251-020-01170-w
  113. Maver A., Lavtar P., Ristić S. et al. Identification of rare genetic variation of NLRP1 gene in familial multiple sclerosis // Sci. Rep. 2017. Vol. 7, No. 1. P. 3715. doi: 10.1038/s41598-017-03536-9
  114. Bernales C.Q., Encarnacion M., Criscuoli M.G. et al. Analysis of NOD-like receptor NLRP1 in multiple sclerosis families // Immunogenetics. 2017. Vol. 70, No. 3. P. 205–207. doi: 10.1007/s00251-017-1034-2
  115. Venkatesh M., Mukherjee S., Wang H. et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4 // Immunity. 2014. Vol. 41, No. 2. P. 296–310. doi: 10.1016/j.immuni.2014.06.014
  116. Vascellari S., Palmas V., Melis M. et al. Gut microbiota and metabolome alterations associated with Parkinson’s disease // mSystems. 2020. Vol. 15, No. 5. P. e00561–20. doi: 10.1128/mSystems.00561-20
  117. Bell A., Brunt J., Crost E. et al. Elucidation of a sialic macid metabolism pathway in mucus-foraging Ruminococcus gnavus unravels mechanisms of bacterial adaptation to the gut // Nat. Microbiol. 2019. Vol. 4, No. 12. P. 2393–2404. doi: 10.1038/s41564-019-0590-7
  118. Zhang Y., Huang R., Cheng M. et al. Gut microbiota from NLRP3-deficient mice ameliorates depressive-like behaviors by regulating astrocyte dysfunction via circHIPK2 // Microbiome. 2019. Vol. 7, No. 1. P. 116. doi: 10.1186/s40168-019-0733-3
  119. Jha S., Srivastava S.Y., Brickey W.J. et al. The inflammasome sensor, NLRP3, regulates CNS inflammation and demyelination via caspase-1 and interleukin-18 // J. Neurosci. 2010. Vol. 30, No. 47. P. 15811–15820. doi: 10.1523/JNEUROSCI.4088-10.2010
  120. Inoue M., Williams K.L., Gunn M.D., Shinohara M.L. NLRP3 inflammasome induces chemotactic immune cell migration to the CNS in experimental autoimmune encephalomyelitis // Proc. Natl. Acad. Sci. USA. 2012. Vol. 109, No. 26. P. 10480–10485. doi: 10.1073/pnas.1201836109
  121. Malhotra S., Rio J., Urcelay E. et al. NLRP3 inflammasome is associated with the response to IFN-β in patients with multiple sclerosis // Brain. 2015. Vol. 138, No. 3. P. 644–652. doi: 10.1093/brain/awu388
  122. Gris D., Ye Z., Iocca H.A. et al. NLRP3 plays a critical role in the development of experimental autoimmune encephalomyelitis by mediating Th1 and Th17 responses // J. Immunol. 2010. Vol. 185, No. 2. P. 974–981. doi: 10.4049/jimmunol.0904145
  123. Farrokhi V., Nemati R., Nichols F.C. Bacterial lipodipeptide, Lipid 654, is a microbiome-associated biomarker for multiple sclerosis // Clin. Transl. Immunol. 2013. Vol. 2, No. 11. P. e8. doi: 10.1038/cti.2013.11
  124. Haghikia A., Jörg S., Duscha A. et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine // Immunity. 2015. Vol. 43, No. 4. P. 817–829. doi: 10.1016/j.immuni.2015.09.007
  125. Nomura K., Ishikawa D., Okahara K. et al. Bacteroidetes species are correlated with disease activity in ulcerative colitis // J. Clin. Med. 2021. Vol. 10, No. 8. P. 1749. doi: 10.3390/jcm10081749
  126. Elgendy S.G., Abd-Elhameed R., Daef E. et al. Gut microbiota in forty cases of egyptian relapsing remitting multiple sclerosis // Iran J. Microbiol. 2021. Vol. 13, No. 5. P. 632–641. doi: 10.18502/ijm.v13i5.7428
  127. Shahi S.K., Jensen S.N., Murra A.C. et al. Human commensal Prevotella histicola ameliorates disease as effectively as interferon-beta in the experimental autoimmune encephalomyelitis // Front. Immunol. 2020. Vol. 11. P. 578648. doi: 10.3389/fimmu.2020.578648
  128. Scher J.U., Sczesnak A., Longman R.S. et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis // Elife. 2013. Vol. 2. P. e01202. doi: 10.7554/eLife.01202
  129. Ghaly S., Kaakoush N.O., Lloyd F. et al. Ultraviolet irradiation of skin alters the faecal microbiome independently of vitamin D in mice // Nutrients. 2018. Vol. 10, No. 8. P. 1069. doi: 10.3390/nu10081069
  130. Elinav E., Strowig T., Kau A.L. et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis // Cell. 2011. Vol. 145, No. 5. P. 745–757. doi: 10.1016/j.cell.2011.04.022
  131. Ratsimandresy R.A., Dorfleutner A., Stehlik C. An update on PYRIN domain-containing pattern recognition receptors: from immunity to pathology // Front. Immunol. 2013. Vol. 4, No. 440. P. 153–171. doi: 10.3389/fimmu.2013.00440
  132. Bernard N.J. Rheumatoid arthritis: Prevotella copri associated with new-onset untreated RA // Nat. Rev. Rheumatol. 2014. Vol. 10, No. 1. P. 2. doi: 10.1038/nrrheum.2013.187
  133. Illescas O., Rodriguez-Sosa M., Gariboldi M. Mediterranean diet to prevent the development of colon diseases: a meta-analysis of gut microbiota studies // Nutrients. 2021. Vol. 13, No 7. P. 2234. doi: 10.3390/nu13072234
  134. Lavasani S., Dzhambazov B., Nouri M. et al. A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells // PLoS One. 2010. Vol. 5, No. 2. P. e9009. doi: 10.1371/journal.pone.0009009
  135. Yamashita M., Ukibe K., Matsubara Y. et al. Lactobacillus helveticus SBT2171 attenuates experimental autoimmune encephalomyelitis in mice // Front. Microbiol. 2018. Vol. 8. P. 2596. doi: 10.3389/fmicb.2017.02596
  136. Larsson E., Tremaroli V., Lee Y.S. et al. Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88 // Gut. 2012. Vol. 61, No. 8. P. 1124–1131. doi: 10.1136/gutjnl-2011-301104
  137. Gandy K., Zhang J., Nagarkatti P., Nagarkatti M. The role of gut microbiota in shaping the relapse-remitting and chronic-progressive forms of multiple sclerosis in mouse models // Sci. Rep. 2019. Vol. 9, No. 1. P. 6923. doi: 10.1038/s41598-019-43356-7
  138. Lin X., Singh A., Shan X. et al. Akkermansia muciniphila-mediated degradation of host mucin expands the tryptophan utilizer alistipes and exacerbates autoimmunity by promoting Th17 immune responses // Cell Press. 2022. doi: 10.2139/ssrn.4065073
  139. Olsen I., Lambris J.D., Hajishengallis G. Porphyromonas gingivalis disturbs host–commensal homeostasis by changing complement function // J. Oral Microbiol. 2017. Vol. 9, No. 1. P. 1340085. doi: 10.1080/20002297.2017.1340085
  140. Amano A. Disruption of epithelial barrier and impairment of cellular function by Porphyromonas gingivalis // Front. Biosci. 2007. Vol. 12. P. 3965–3974. doi: 10.2741/2363
  141. Lee Y.-K., Menezes J.S., Umesaki Y., Mazmanian S.K. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis // Proc. Natl. Acad. Sci. USA. 2011. Vol. 108, No. Suppl 1. P. 4615–4622. doi: 10.1073/pnas.1000082107
  142. Toivanen P., Vaahtovuo J., Eerola E. Influence of major histocompatibility complex on bacterial composition of fecal flora. Infect // Immunity. 2001. Vol. 69, No. 4. P. 2372–2377. doi: 10.1128/IAI.69.4.2372-2377.2001
  143. Kubinak J.L., Zac Stephens W., Soto R. et al. MHC variation sculpts individualized microbial communities that control susceptibility to enteric infection // Nat. Commun. 2015. Vol. 6. P. 8642. doi: 10.1038/ncomms9642
  144. Gavalas E., Kountouras J., Boziki M. et al. Relationship between Helicobacter pylori infection and multiple sclerosis // Ann. Gastroenterol. 2015. Vol. 28, No. 3. P. 353–356.
  145. Lincoln M.R., Montpetit A., Cader M.Z. et al. A predominant role for the HLA class II region in the association of the MHC region with multiple sclerosis // Nat. Genet. 2005. Vol. 37, No. 10. P. 1108–1112. doi: 10.1038/ng1647
  146. Goris A., Pauwels I., Dubois B. Progress in multiple sclerosis genetics // Curr. Genomics. 2012. Vol. 13, No. 8. P. 646–663. doi: 10.2174/138920212803759695
  147. Alcina A., Abad-Grau Mdel M., Fedetz M. et al. Multiple sclerosis risk variant HLA-DRB1*1501 associates with high expression of DRB1 gene in different human populations // PLoS One. 2012. Vol. 7, No. 1. e29819. doi: 10.1371/journal.pone.0029819
  148. Shahi S.K., Soham A., Jaime C.M. et al. HLA class II polymorphisms modulate gut microbiota and EAE phenotype // Immunohorizons. 2022. Vol. 5, No. 8. P. 627–646. doi: 10.4049/immunohorizons.2100024
  149. Li W., Minohara M., Su J.J. et al. Helicobacter pylori infection is a potential protective factor against conventional multiple sclerosis in the Japanese population // J. Neuroimmunol. 2007. Vol. 184, No. 1–2. P. 227–231. doi: 10.1016/j.jneuroim.2006.12.010
  150. Pedrini M.J., Seewann A., Bennett K.A. et al. Helicobacter pylori infection as a protective factor against multiple sclerosis risk in females // J. Neurol. Neurosurg. Psychiatry. 2015. Vol. 86, No. 6. P. 603–607. doi: 10.1136/jnnp-2014-309495
  151. Cook K.W., Crooks J., Hussain K. et al. Helicobacter pylori infection reduces disease severity in an experimental model of multiple sclerosis // Front. Microbiol. 2015. Vol. 6. P. 52. doi: 10.3389/fmicb.2015.00052
  152. Bonder M.J., Kurilshikov A., Tigchelaar E.F. et al. The effect of host genetics on the gut microbiome // Nat. Genet. 2016. Vol. 48, No. 11. P. 1407–1412. doi: 10.1038/ng.3663
  153. Kurilshikov A., Medina-Gomez C., Bacigalupe R. et al. Large-scale association analyses identify host factors influencing human gut microbiome composition // Nat. Genet. 2021. Vol. 53, No. 2. P. 156–165. doi: 10.1038/s41588-020-00763-1
  154. Абдурасулова И.Н., Тарасова Е.А., Кудрявцев И.В. и др. Состав микробиоты кишечника и популяций циркулирующих Th-клеток у пациентов с рассеянным склерозом // Инфекция и иммунитет. 2019. Т. 9, № 3-4. С. 504–522. doi: 10.15789/2220-7619-2019-3-4-504-522
  155. Zhang Z., Wang M., Yuan S. et al. Genetically predicted milk intake and risk of neurodegenerative diseases // Nutrients. 2021. Vol. 13, No. 8. P. 2893. doi: 10.3390/nu13082893
  156. Hall A.B., Tolonen A.C., Xavier R.J. Human genetic variation and the gut microbiome in disease // Nat. Rev. Genet. 2017. Vol. 18, No. 11. P. 690–699. doi: 10.1038/nrg.2017.63
  157. Gampa A., Engen P.A., Shobar R., Mutli E.A. Relationships between gastrointestinal microbiota and blood group antigens // Physiol. Genomics. 2017. Vol. 49, No. 9. P. 473–483. doi: 10.1152/physiolgenomics.00043.2017
  158. Cosorich I., Dalla-Costa G., Sorini C. et al. High frequency of intestinal TH17 cells correlates with microbiota alterations and disease activity in multiple sclerosis // Sci. Adv. 2017. Vol. 3, No. 7. P. e1700492. doi: 10.1126/sciadv.1700492
  159. Berer K., Gerdes L.A., Cekanaviciute E. et al. Gut Microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalitis in mice // Proc. Natl. Acad. Sci. USA. 2017. Vol. 114, No. 40. P. 10719–10724. doi: 10.1073/pnas.1711233114
  160. Wu R., An J., Ding T. et al. The level of peripheral regulatory T cells is associated with the changes of intestinal microbiota in patients with rheumatoid arthritis // Ann. Rheumatic. Dis. 2021. Vol. 80, No. Suppl 1. P. 427. doi: 10.1136/annrheumdis-2021-eular.2783
  161. Shahi S.K., Freedman S.N., Mangalam A.K. Gut microbiome in multiple sclerosis: The players involved and the roles they play // Gut Microbes. 2017. Vol. 8, No. 6. P. 607–615. doi: 10.1080/19490976.2017.1349041
  162. Saresella M., Marventano I., Barone M. et al. Alterations in circulating fatty acid are associated with gut microbiota dysbiosis and inflammation in multiple sclerosis // Front. Immunol. 2020. Vol. 11. P. 1390. doi: 10.3389/fimmu.2020.01390
  163. Zhang Y.-J., Zhang L., Chen S.-Y. et al. Association between VDR polymorphisms and multiple sclerosis: systematic review and updated meta-analysis of case-control studies // Neurol. Sci. 2018. Vol. 39, No. 2. P. 225–234. doi: 10.1007/s10072-017-3175-3
  164. Eftekharian M.M., Azimi T., Ghafouri-Fard S. et al. Phospholipase D1 expression analysis in relapsing-remitting multiple sclerosis patients // Neurol. Sci. 2017. Vol. 38, No. 5. P. 865–872. doi: 10.1007/s10072-017-2857-1
  165. Göbel K., Schuhmann M.K., Pankratz S. et al. Phospholipase D1 mediates lymphocyte adhesion and migration in experimental autoimmune encephalomyelitis // Eur. J. Immunol. 2014. Vol. 44, No. 8. P. 2295–2305. doi: 10.1002/eji.201344107
  166. Ahn M., Min D.S., Kang J. et al. Increased expression of phospholipase D1 in the spinal cords of rats with experimental autoimmune encephalomyelitis // Neurosci. Lett. 2001. Vol. 316, No. 2. P. 95–98. doi: 10.1016/s0304-3940(01)02383-7
  167. Derrien M., Vaughan E.E., Plugge C.M., de Vos W.M. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium // Int. J. Syst. Evol. Microbiol. 2004. Vol. 54. P. 1469–1476. doi: 10.1099/ijs.0.02873-0
  168. Levi I., Gurevich M., Perlman G. et al. Potential role of indolelactate and butirate in multiple sclerosis revealed by integrated microbiome-metabolome analysis // Cell Rep. Med. 2021. Vol. 2, No. 4. P. 100246. doi: 10.1016/j.xcrm.2021.100246
  169. Bell M.E., Bernard K.A., Harrington S.M. et al. Lawsonella clevelandensis gen. nov., sp. nov., a new member of the suborder Corynebacterineae isolated from human abscesses // Int. J. Evol. Microbiol. 2016. Vol. 66, No. 8. P. 2929–2935. doi: 10.1099/ijsem.0.001122
  170. Alonso R., Pisa D., Carrasco K. Searching for bacteria in neural tissue from amyotrophic lateral sclerosis // Front. Neurosci. 2019. Vol. 13. P. 171. doi: 10.3389/fnins.2019.00171
  171. Абдурасулова И.Н., Дмитриев А.В. Витамины группы B: От гомеостаза к патогенезу и лечению рассеянного склероза // Успехи физиологических наук. 2023. Т. 54, № 1. doi: 10.31857/S0301179823010034
  172. Montgomery T.L., Künstner A., Kennedy J.J. et al. Interactions between host genetics and gut microbiota determine susceptibility to CNS autoimmunity // Proc. Natl. Acad. Sci. USA. 2020. Vol. 117, No. 44. P. 27516–27527. doi: 10.1073/pnas.2002817117
  173. Rodríguez J.M., Murphy K., Stranton C.S. et al. The composition of the gut microbiota throughout life, with an emphasis on early life // Microb. Ecol. Health Dis. 2015. Vol. 26, No. 1. P. 26050. doi: 10.3402/mehd.v26.26050
  174. Bäckhed F., Roswall J., Peng Y. et al. Dynamics and stabilization of the human gut microbiome during the first year of life // Cell Host Microbe. 2015. Vol. 17, No. 5. P. 690–703. doi: 10.1016/j.chom.2015.04.004
  175. Köenig J.E., Spor A., Scalfone N. et al. Succession of microbial consortia in the developing infant gut microbiom // Proc. Natl. Acad. Sci. USA. 2011. Vol. 108, No. Suppl 1. P. 4578–4585. doi: 10.1073/pnas.1000081107
  176. La Rosa P.S., Warner B.B., Zhou Y. et al. Patterned progression of bacterial populations in the premature infant gut // Proc. Natl. Acad. Sci. USA. 2014. Vol. 111, No. 34. P. 12522–12527. doi: 10.1073/pnas.1409497111
  177. Falk P.G., Hooper L.V., Midtverd T., Gordon J.I. Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology // Microbiol. Mol. Biol. Rev. 1998. Vol. 62, No. 4. P. 1157–1170. doi: 10.1128/MMBR.62.4.1157-1170.1998
  178. Perez-Muñoz M.E., Arrieta M.-C., Ramer-Tait A.E., Walter J. A critical assessment of the sterile womb and in utero colonization hypotheses: implications for research on the pioneer infant microbiome // Microbiome. 2017. Vol. 5, No. 1. P. 48. doi: 10.1186/s40168-017-0268-4
  179. Cooperstock M.S.Z., Zedd A.J. Intestinal flora of infants // Human intestinal microflora in health and disease. Ed. by D.J. Hentges. 1983. Chapter 4. P. 79–99. doi: 10.1016/B978-0-12-341280-5.50010-0
  180. Aagaard K., Ma J., Antony K.M. et al. The placenta harbors a unique microbiome // Sci. Transl. Med. 2014. Vol. 6, No. 237. P. 237ra65. doi: 10.1126/scitranslmed.3008599
  181. Collado M.C., Rautava S., Aakko J. et al. Human gut colonization may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid // Sci. Rep. 2016. Vol. 6. P. 23129. doi: 10.1038/srep23129
  182. Satokari R., Gronroos T., Laitinen K. et al. Bifidobacterium and Lactobacillus DNA in the human placenta // Lett. Appl. Microbiol. 2009. Vol. 48, No. 1. P. 8–12. doi: 10.1111/j.1472-765X.2008.02475.x
  183. Parnell L.A., Briggs C.M., Cao B. et al. Microbial communities in placentas from term normal pregnancy exhibit spatially variable profiles // Sci. Rep. 2017. Vol. 7, No. 1. P. 11200. doi: 10.1038/s41598-017-11514-4
  184. Mueller N.T., Bakacs E., Combellick J. et al. The infant microbiome development: Mom matters // Trends Mol. Med. 2015. Vol. 21, No. 2. P. 109–117. doi: 10.1016/j.molmed.2014.12.002
  185. Jimenez E., Fernandez L., Marin M.L. et al. Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section // Curr. Microbiol. 2005. Vol. 51, No. 4. P. 270–274. doi: 10.1007/s00284-005-0020-3
  186. Bearfield C., Davenport E.S., Sivapathasundaram V., Allaker R.P. Possible association between amniotic fluid microorganism infection and microflora in the mouth // BJOG. 2002. Vol. 109, No. 5. P. 527–533. doi: 10.1111/j.1471-0528.2002.01349.x
  187. DiGiulio D.B. Diversity of microbes in amniotic fluid // Semin. Fetal. Neonatal. Med. 2012. Vol. 17, No. 1. P. 2–11. doi: 10.1016/j.siny.2011.10.001
  188. Rautava S., Collado M.C., Salminen S., Isolauri E. Probiotics modulate host-microbe interaction in the placenta and fetal gut: a randomized, double-blind, placebo-controlled trial // Neonatology. 2012. Vol. 102, No. 3. P. 178–184. doi: 10.1159/000339182
  189. Steel J.H., Malatos S., Kennea N. et al. Bacteria and inflammatory cells in fetal membranes do not always cause preterm labor // Pediatr. Res. 2005. Vol. 57, No. 3. P. 404–411. doi: 10.1203/01.PDR.0000153869.96337.90
  190. Vazquez-Torres A., Jones-Carson J., Baumler A.J. et al. Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes // Nature. 1999. Vol. 401, No. 6755. P. 804–808. doi: 10.1038/44593
  191. Rescigno M., Rotta G., Valzasina B., Ricciardi-Castagnoli P. Dendritic cells shuttle microbes across gut epithelial monolayers // Immunobiology. 2001. Vol. 204, No. 5. P. 572–581. doi: 10.1078/0171-2985-00094
  192. Perez P.F., Dore J., Leclerc M. et al. Bacterial imprinting of the neonatal immune system: lessons from maternal cells? // Pediatrics. 2007. Vol. 119, No. 3. P. e724–e732. doi: 10.1542/peds.2006-1649
  193. Gosalbes M.J, Abellan J.J, Durbán A. et al. Metagenomics of human microbiome: beyond 16s rDNA // Clin. Microbiol. Infect. 2012. Vol. 18 Suppl, No. 4. P. 47–49. doi: 10.1111/j.1469-0691.2012.03865.x
  194. Mold J.E., Michaëlsson J., Burt T.D. et al. Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero // Science. 2008. Vol. 322, No. 5907. P. 1562–1565. doi: 10.1126/science.1164511
  195. Koren O., Goodrich J.K., Cullender T.C. et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy // Cell. 2012. Vol. 150, No. 3. P. 470–480. doi: 10.1016/j.cell.2012.07.008
  196. Donnet-Hughes A., Perez P.F., Doré J. et al. Potential role of the intestinal microbiota of the mother in neonatal immune education // Proc. Nutr. Soc. 2010. Vol. 69, No. 3. P. 407–415. doi: 10.1017/S0029665110001898
  197. Collado M.C., Laitinen K., Salminen S., Isolauri E. Maternal weight and excessive weight gain during pregnancy modify the immunomodulatory potential of breast milk // Pediatr. Res. 2012. Vol. 72, No. 1. P. 77–85. doi: 10.1038/pr.2012.42
  198. Matamoros S., Gras-Leguen C., Le Vacon F. et al. Development of intestinal microbiota in infants and its impact on health // Trends Microbiol. 2013. Vol. 21, No. 4. P. 167–173. doi: 10.1016/j.tim.2012. 12.001
  199. Dominguez-Bello M.G., Costello E.K., Contreras M. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns // Proc. Natl. Acad. Sci. USA. 2010. Vol. 107, No. 26. P. 11971–11975. doi: 10.1073/pnas.1002601107
  200. Fernandez L., Langa S., Martin V. et al. The human milk microbiota: origin and potential roles in health and disease // Pharmacol. Res. 2013. Vol. 69. P. 1–10. doi: 10.1016/j.phrs.2012.09.001
  201. Sanz Y. Gut microbiota and probiotics in maternal and infant health // Am. J. Clin. Nutr. 2011. Vol. 94, No. Suppl. 6. P. 2000S–2005S. doi: 10.3945/ajcn.110.001172
  202. Hunt K.M., Foster J.A., Forney L.J. et al. Characterization of the diversity and temporal stability of bacterial communities in human milk // PLoS One. 2011. Vol. 6, No. 6. P. e21313. doi: 10.1371/journal.pone.0021313
  203. Cabrera-Rubio R., Collado M.C., Laitinen K. et al. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery // Am. J. Clin. Nutr. 2012. Vol. 96, No. 3. P. 544–551. doi: 10.3945/ajcn.112.037382
  204. Hyman R.W., Fukushima M., Diamond L. et al. Microbes on the human vaginal epithelium // Proc. Natl. Acad. Sci. USA. 2005. Vol. 102, No. 22. P. 7952–7957. doi: 10.1073/pnas.0503236102
  205. Zhou X., Brown C.J., Abdo Z. et al. Differences in the composition of vaginal microbial communities found in healthy Caucasian and black women // ISME J. 2007. Vol. 1, No. 2. P. 121–133. doi: 10.1038/ismej.2007.12
  206. Palmer C., Bik E.M., Di Giulio D.B. et al. Development of the human infant intestinal microbiota // PLoS Biol. 2007. Vol. 5, No. 7. P. e177. doi: 10.1371/journal.pbio.0050177
  207. Vael C., Desager K. The importance of the development of the intestinal microbiota in infancy // Curr. Opin. Pediatr. 2009. Vol. 21, No. 6. P. 794–800. doi: 10.1097/MOP.0b013e328332351b
  208. Quigley E.M.M. Gut bacteria in health and disease // Gastroenterol. Hepatol. (NY). 2013. Vol. 9, No. 9. P. 560–569.
  209. Mackie R.I., Sghir A., Gaskins H.R. Developmental microbial ecology of the neonatal gastrointestinal tract // Am. J. Clin. Nutr. 1999. Vol. 69, No. 5. P. 1035S–1045S. doi: 10.1093/ajcn/69.5.1035s
  210. O’Toole P.W., Claesson M.J. Gut microbiota: changes throughout the lifespan from infancy to elderly // Int. Dairy J. 2010. Vol. 20, No. 4. P. 281–291. doi: 10.1016/j.idairyj.2009.11.010
  211. Balmer S.E., Hanvey L.S., Wharton B.A. Diet and faecal flora in the newborn: nucleotides // Arch. Dis. Child. Fetal. Neonatal. Ed. 1994. Vol. 70, No. 2. P. F137–F140. doi: 10.1136/fn.70.2.f137
  212. Bennet R., Nord C.E. Development of the faecal anaerobic microflora after caesarean section and treatment with antibiotics in newborn infants // Infection. 1987. Vol. 15, No. 5. P. 332–336. doi: 10.1007/bf01647733
  213. Ruiz V.E., Battaglia T., Kurtz Z.D. et al. A single early-in-life macrolide course has lasting effects on murine microbial network topology and immunity // Nat. Commun. 2017. Vol. 8. P. 518. doi: 10.1038/s41467-017-00531-6
  214. Lynn M.A., Tumes D.J., Choo J.M. et al. Early-life antibiotic-driven dysbiosis leads to dysregulated vaccine immune responses in mice // Cell Host Microbe. 2018. Vol. 23. P. 653–660.e5. doi: 10.1016/j.chom.2018.04.009
  215. Dinan T.G., Cryan J.F. Gut instincts: Microbiota as a key regulator of brain development, ageing and neurodegeneration // J. Physiol. 2017. Vol. 595, No. 2. P. 489–503. doi: 10.1113/JP273106
  216. Korpela K., Salonen A., Virta L.J. et al. Intestinal microbiome is related to lifetime antibiotic use in finnish pre-school children // Nat. Commun. 2016. Vol. 7. P. 10410. doi: 10.1038/ncomms10410
  217. Maghzi A.H., Ghazavi H., Ahsan M. et al. Increasing female preponderance of multiple sclerosis in Isfahan, Iran: a population-based study // Mult. Scler. 2010. Vol. 16, No. 3. P. 359–361. doi: 10.1177/1352458509358092
  218. Di Giulio D.B., Romero R., Amogan H.P. et al. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation // PLoS One. 2008. Vol. 3, No. 8. P. e3056. doi: 10.1371/journal.pone.0003056
  219. Wahlberg J., Fredriksson J., Nikolic E. et al. Environmental factors related to the induction of beta cell autoantibodies in 1-yr-old healthy children // Pediatr. Diabetes. 2005. Vol. 6, No. 4. P. 199–205. doi: 10.1111/j.1399-543X.2005.00129.x
  220. Beijers R., Jansen J., Riksen-Walraven M., de Weerth C. Maternal prenatal anxiety and stress predict infant illnesses and health complaints // Pediatrics. 2010. Vol. 12, No. 2. e401–e409. doi: 10.1542/peds.2009-3226
  221. Aoyama K., Seaward P.G., Lapinsky S.E. Fetal outcome in the critically ill pregnant woman // Crit. Care. 2014. Vol. 18, No. 3. P. 307. doi: 10.1186/cc13895
  222. Mor G., Cardenas I. The immune system in pregnancy: a unique complexity // Am. J. Reprod. Immunol. 2010. Vol. 63, No. 6. P. 425–433. doi: 10.1111/j.1600-0897.2010.00836.x
  223. Gomes de Agüero M., Ganal-Vonarburg S.C., Fuhrer T. et al. The maternal microbiota drives early postnatal innate immune development // Science. 2016. Vol. 361, No. 6279. P. 1296–1302. doi: 10.1126/science.aad2571
  224. Kabat A.M., Srinivasan N., Maloy K.J. Modulation of immune development and function by intestinal microbiota // Trends Immunol. 2014. Vol. 35, No. 11. P. 507–517. doi: 10.1016/j.it.2014.07.010
  225. Cortessis V.K., Thomas D.C., Levine A.J. et al. Environmental epigenetics: prospects for studying epigenetic mediation of exposure-response relationships // Hum. Genet. 2012. Vol. 131, No. 10. P. 1565–1589. doi: 10.1007/s00439-012-1189-8
  226. Jirtle R.L., Skinner M.K. Environmental epigenomics and disease susceptibility // Nat. Rew. Gen. 2007. Vol. 8, No. 4. P. 253–262. doi: 10.1038/nrg2045
  227. Perera F., Herbstman J. Prenatal environmental exposures, epigenetics, and disease // Reprod. Toxicol. 2011. Vol. 31, No. 3. P. 363–373. doi: 10.1016/j.reprotox.2010.12.055
  228. Luo A., Leach S.T., Barres R. et al. The microbiota and epigenetic regulation of T helper 17 / regulatory T cells: in search of a balanced immune system // Front. Immunol. 2017. Vol. 8. P. 417. doi: 10.3389/fimmu.2017.00417
  229. Zager A., Peron J.P., Mennecier G. et al. Maternal immune activation in late gestation increases neuroinflammation and aggravates experimental autoimmune encephalomyelitis in the offspring // Brain Behav. Immun. 2015. Vol. 43. P. 159–171. doi: 10.1016/j.bbi.2014.07.021
  230. Mandal M., Donnelly R., Elkabes S. et al. Maternal immune stimulation during pregnancy shapes the immunological phenotype of offspring // Brain Behav. Immun. 2013. Vol. 33. P. 33–45. doi: 10.1016/j.bbi.2013.04.012
  231. Solati J., Asiaei M., Hoseini M.H. Using experimental autoimmune encephalomyelitis as a model to study the effect of prenatal stress on fetal programming // Neurol. Res. 2012. Vol. 34, No. 5. P. 478–483. doi: 10.1179/1743132812Y.0000000032
  232. Stanisavljević S., Čepić A., Bojić S. et al. Oral neonatal antibiotic treatment perturbs gut microbiota and aggravates central nervous system autoimmunity in Dark Agouti rats // Sci. Rep. 2019. Vol. 9, No. 1. P. 918. doi: 10.1038/s41598-018-37505-7
  233. Ochoa-Reparaz J., Mielcarz D.W., Ditrio L.E. et al. Role of gut commensal microfora in the development of experimental autoimmune encephalomyelitis // J. Immunol. 2009. Vol. 183, No. 10. P. 6041–6050. doi: 10.4049/jimmunol.0900747
  234. Ochoa-Reparaz J., Mielcarz D.W., Haque-Begum S., Kasper L.H. Induction of a regulatory B cell population in experimental allergic encephalomyelitis by alteration of the gut commensal microbiora // Gut Microbes. 2010. Vol. 1, No. 2. P. 103–108. doi: 10.4161/gmic.1.2.11515
  235. Yokote H., Miyake S., Croxford J.L. et al. NKT cell-dependent amelioration of a mouse model of multiple sclerosis by altering gut microflora // Am. J. Pathol. 2008. Vol. 173, No. 6. P. 1714–1723. doi: 10.2353/ajpath.2008.080622
  236. Graves J.S., Chitnis T., Weinstock-Guttman B. et al. Maternal and perinatal exposures are associated with risk for pediatric-onset multiple sclerosis // Pediatrics. 2017. Vol. 139, No. 4. P. e20162838. doi: 10.1542/peds.2016-2838
  237. Corsini E., Sokooti M., Galli C.L. et al. Pesticide induced immunotoxicity in humans: a comprehensive review of the existing evidence // Toxicology. 2013. Vol. 307. P. 123–135. doi: 10.1016/j.tox.2012.10.009
  238. Mokarizadeh A., Faryabi M.R., Rezvanfar M.A., Abdollahi M. A comprehensive review of pesticides and the immune dysregulation: mechanisms, evidence and consequences // Toxicol. Mech. Methods. 2015. Vol. 25, No. 4. P. 258–278. doi: 10.3109/15376516.2015.1020182
  239. Barrett E., Guinane C.M., Ryan C.A. et al. Microbiota diversity and stability of the preterm neonatal ileum and colon of two infants // Microbiologyopen. 2013. Vol. 2, No. 2. P. 215–225. doi: 10.1002/mbo3.64
  240. Barrett E., Deshpandey A.K., Ryan C.A. et al. The neonatal gut harbours distinct bifidobacterial strains // Arch. Dis. Child Fetal Neonatal. Ed. 2015. Vol. 100, No. 5. P. F405–F410. doi: 10.1136/archdischild-2014-306110
  241. Goldacre A., Pakpoor J., Goldacre M. Maternal and perinatal characteristics of infants who, later in life, developed multiple sclerosis: Record-linkage study // Mult. Scler. Relat. Disord. 2017. Vol. 13. P. 98–102. doi: 10.1016/j.msard.2017.02.004
  242. Ramagopalan S.V., Valdar W., Dyment D.A. et al. Canadian collaborative study group. no effect of preterm birth on the risk of multiple sclerosis: a population based study // BMC Neurol. 2008. Vol. 8. P. 30. doi: 10.1186/1471-2377-8-30
  243. Maghzi A.-H., Etemadifar M., Heshmat-Ghahdarijani K. et al. Cesarean delivery may increase the risk of multiple sclerosis // Mult. Scler. J. 2012. Vol. 18, No. 4. P. 468–471. doi: 10.1177/1352458511424904
  244. Conradi S., Malzahn U., Paul F. et al. Breastfeeding is associated with lower risk for multiple sclerosis // Mult. Scler. 2013. Vol. 19, No. 5. P. 553–558. doi: 10.1177/1352458512459683
  245. Norgaard M., Nielsen R.B., Jacobsen J.B. et al. Use of penicillin and other antibiotics and risk of multiple sclerosis: a population-based case-control study // Am. J. Epidemiol. 2011. Vol. 174, No. 8. P. 945–948. doi: 10.1093/aje/kwr201
  246. Zeissig S., Blumberg R.S. Life at the beginning: perturbation of the microbiota by antibiotics in early life and its role in health and disease // Nat. Immunol. 2014. Vol. 15, No. 4. P. 307–310. doi: 10.1038/ni.2847
  247. Neu J., Rushing J. Cesarean versus vaginal delivery: long-term infant outcomes and the hygiene hypothesis // Clin. Perinatol. 2011. Vol. 38, No. 2. P. 321–331. doi: 10.1016/j.clp.2011.03.008
  248. Bokulich N.A., Chung J., Battaglia T. et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life // Sci. Transl. Med. 2016. Vol. 8, No. 343. P. 343ra82. doi: 10.1126/scitranslmed.aad7121
  249. Yassour M., Vatanen T., Siljander H., et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability // Sci. Transl. Med. 2016. Vol. 8, No. 343. P. 343ra81. doi: 10.1126/scitranslmed.aad0917
  250. Salminen S., Gibson G., McCartney A., Isolauri E. Influence of mode of delivery on gut microbiota composition in seven year old children // Gut. 2004. Vol. 53, No. 9. P. 1388–1389. doi: 10.1136/gut.2004.041640
  251. Goedert J.J., Hua X., Yu G., Shi J. Diversity and composition of the adult fecal microbiome associated with history of cesarean birth or appendectomy: Analysis of the American Gut Project // EBioMedicine. 2014. Vol. 1, No. 2–3. P. 167–172. doi: 10.1016/j.ebiom.2014.11.004
  252. Blaser M.J., Dominguez-Bello M.G. The human microbiome before birth // Cell Host Microbe. 2016. Vol. 20, No. 5. P. 558–560. doi: 10.1016/j.chom.2016.10.014
  253. Dalla Costa G., Romeo M., Esposito F. et al. Caesarean section and infant formula feeding are associated with an earlier age of onset of multiple sclerosis // Mult. Scler. Relat. Disord. 2019. Vol. 33. P. 75–77. doi: 10.1016/j.msard.2019.05.010
  254. Nielsen N.M., Bager P., Stenager E. et al. Cesarean section and offspring’s risk of multiple sclerosis: a Danish nationwide cohort study // Mult. Scler. 2013. Vol. 19, No. 11. P. 1473–1477. doi: 10.1177/1352458513480010
  255. Boehm G., Moro G. Structural and functional aspects of prebiotics used in infant nutrition // J. Nutr. 2008. Vol. 138, No. 9. P. 1818S–1828S. doi: 10.1093/jn/138.9.1818S
  256. Walker A. Breast milk as the gold standard for protective nutrients // J. Pediatr. 2010. Vol. 156, No. 2 Suppl. P. S3–S7. doi: 10.1016/j.jpeds.2009.11.021
  257. Fernandez L., Langa S., Martin V. et al. The human milk microbiota: origin and potential roles in health and disease // Pharmacol. Res. 2013. Vol. 69, No. 1. P. 1–10. doi: 10.1016/j.phrs.2012.09.001
  258. Andersson B., Porras O., Hanson L.A. et al. Inhibition of attachment of Streptococcus pneumoniae and Haemophilus influenzae by human milk and receptor oligosaccharides // J. Infect. Dis. 1986. Vol. 153, No. 2. P. 232–237. doi: 10.1093/infdis/153.2.232
  259. Cravioto A., Tello A., Villafan H. et al. Inhibition of localized adhesion of enteropathogenic Escherichia coli to HEp-2 cells by immunoglobulin and oligosaccharide fractions of human colostrum and breast milk // J. Infect. Dis. 1991. Vol. 163, No. 6. P. 1247–1255. doi: 10.1093/infdis/163.6.1247
  260. Gueimonde M., Laitinen K., Salminen S., Isolauri E. Breast milk: a source of bifidobacteria for infant gut development and maturation? // Neonatology. 2007. Vol. 92, No. 1. P. 64–66. doi: 10.1159/000100088
  261. Martín R., Heilig G., Zoetendal E. et al. Diversity of the Lactobacillus group in breast milk and vagina of healthy women and potential role in the colonization of the infant gut // J. Appl. Microbiol. 2007. Vol. 103, No. 6. P. 2638–2644. doi: 10.1111/j.1365-2672.2007.03497.x
  262. Penders J., Vink C., Driessen C. et al. Quantification of Bifidobacterium spp., Escherichia coli and Clostridium difficile in faecal samples of breast-fed and formula-fed infants by real-time PCR // FEMS Microbiol. Lett. 2005. Vol. 243, No. 1. P. 141–147. doi: 10.1016/j.femsle.2004.11.052
  263. Bezirtzoglou E., Tsiotsias A., Welling G.W. Microbiota profile in feces of breast- and formula-fed newborns by using fluorescence in situ hybridization (FISH) // Anaerobe. 2011. Vol. 17, No. 6. P. 478–482. doi: 10.1016/j.anaerobe.2011.03.009
  264. Ezendam J., de Klerk A., Gremmer E.R., van Loveren H. Effects of Bifidobacterium animalis administered during lactation on allergic and autoimmune responses in rodents // Clin. Exp. Immunol. 2008. Vol. 154, No. 3. P. 424–431. doi: 10.1111/j.1365-2249.2008.03788.x
  265. Ezendam J., van Loveren H. Lactobacillus casei Shirota administered during lactation increases the duration of autoimmunity in rats and enhances lung inflammation in mice // Br. J. Nutr. 2008. Vol. 99, No. 1. P. 83–90. doi: 10.1017/S0007114507803412
  266. Conradi S., Malzahn U., Paul F. et al. Breastfeeding is associated with lower risk for multiple sclerosis // Mult. Scler. 2013. Vol. 19, No. 5. P. 553–558. doi: 10.1177/1352458512459683
  267. Brenton J.N., Engel C.E., Sohn M.W., Goldman M.D. Breastfeeding during infancy is associated with a lower future risk of pediatric multiple sclerosis // Pediart. Neurol. 2017. Vol. 77. P. 67–72. doi: 10.1016/j.pediatrneurol.2017.09.007
  268. Pisacane A., Impagliazzo N., Russo M. et al. Breast feeding and multiple sclerosis // BMJ. 1994. Vol. 308, No. 6941. P. 1411–1412. doi: 10.1136/bmj.308.6941.1411
  269. Ragnedda G., Leoni S., Parpinel M. et al. Reduced duration of breastfeeding is associated with a higher risk of multiple sclerosis in both Italian and Norwegian adult males: the EnvI MS study // J. Neurol. 2015. Vol. 262, No. 5. P. 1271–1277. doi: 10.1007/s00415-015-7704-9
  270. Simon A.K., Hollander G.A., McMichael A. Evolution of the immune system in humans from infancy to old age // Proc. Biol. Sci. 2015. Vol. 282, No. 1821. P. 20143085. doi: 10.1098/rspb.2014.3085
  271. Martin R., Nauta A.J., Ben Amor K. et al. Early life: Gut microbiota and immune development in infancy // Benef. Microbes. 2010. Vol. 1, No. 4. P. 367–382. doi: 10.3920/BM2010.0027
  272. Kamada N., Seo S.-U., Chen G.Y., Núñez G. Role of the gut microbiota in immunity and inflammatory disease // Nat. Rev. Immunol. 2013. Vol. 13, No. 5. P. 321–335. doi: 10.1038/nri3430
  273. Kamada N., Núñez G. Regulation of the immune system by the resident intestinal bacteria // Gastroenterology. 2014. Vol. 146, No. 6. P. 1477–1488. doi: 10.1053/j.gastro.2014.01.060
  274. Vatanen T., Kostic A.D., d’Hennezel E. et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans // Cell. 2016. Vol. 165, No. 4. P. 842–853. doi: 10.1016/j.cell.2016.04.007
  275. Wang Z.-W., Wang P., Lin F.-H. Early-life exposure to lipopolysaccharide reduces the severity of experimental autoimmune encephalomyelitis in adulthood and correlated with increased urine corticosterone and apoptotic CD4+ T cells // Neuroscienci. 2011. Vol. 193. P. 283–290. doi: 10.1016/j.neuroscience.2011.07.047
  276. Ellestad K.K., Tsutsui S., Noorbakhsh F. et al. Early life exposure to lipopolysaccharide suppresses experimental autoimmune encephalomyelitis by promoting tolerogenic dendritic cells and regulatory T cells // J. Immunol. 2009. Vol. 183, No. 1. P. 298–309. doi: 10.4049/jimmunol.0803576
  277. Абдурасулова И.Н., Зубарева О.Е., Житнухин Ю.Л. и др. Течение экспериментального аллергического энцефаломиелита у взрослых крыс после введений интерлейкина-1β в разные периоды ранней жизни // Росс. физиол. журн. им. И.М. Сеченова. 2015. Т. 101, № 4. C. 386–399.
  278. Bakker J.M., Kavelaars A., Kamphuis P.J.G.H. et al. Neonatal dexamethasone treatment increases susceptibility to experimental autoimmune disease in adult rats // J. Immunol. 2000. Vol. 165, No. 10. P. 5932–5937. doi: 10.4049/jimmunol.165.10.5932
  279. Stephan M., Straub R.H., Breivik T. et al. Postnatal maternal deprivation aggravates experimental autoimmune encephalomyelitis in adult Lewis rats: reversal by chronic imipramine treatment // Int. J. Devl. Neurosi. 2002. Vol. 20, No. 2. P. 125–132. doi: 10.1016/s0736-5748(02)00007-2
  280. Teunis M.A.T., Heijnen C.J., Sluyter F. et al. Maternal deprivation of rat pups increases clinical symptoms of experimental autoimmune encephalomyelitis at adult age // J. Neuroimmunol. 2002. Vol. 133, No. 1-2. P. 30–38. doi: 10.1016/s0165-5728(02)00351-x
  281. Laban O., Dimitrijevic M., von Hoersten S. et al. Experimental allergic encephalomyelitis in adult DA rats subjected to neonatal handling or gentling // Brain Res. 1995. Vol. 676, No. 1. P. 133–140. doi: 10.1016/0006-8993(95)00106-Z
  282. Dimitrijevic M., Laban O., von Hoersten S. et al. Neonatal sound stress and development of experimental allergic encephalomyelitis in Lewis and DA rats // Int. J. Neurosci. 1994. Vol. 78, No. 1-2. P. 135–143. doi: 10.3109/00207459408986052
  283. Columba-Cabezas S., Iaffaldano G., Chiarotti F. et al. Early handling increases susceptibility to experimental autoimmune encephalomyelitis (EAE) in C57BL/6 male mice // J. Neuroimmunol. 2009. Vol. 212, No. 1-2. P. 10–16. doi: 10.1016/j.jneuroim.2009.05.007
  284. Golubeva A.V., Crampton S., Desbonnet L. et al. Prenatal stress-induced alterations in major physiological systems correlate with gut microbiota composition in adulthood // Psychoneuroendocrinol. 2015. Vol. 60. P. 58–74. doi: 10.1016/j.psyneuen.2015.06.002
  285. Zijlmans M.A.C., Korpela K., Riksen-Walravena J.M. et al. Maternal prenatal stress is associated with the infant intestinal microbiota // Psychoneuroendocrinol. 2015. Vol. 53. P. 233–245. doi: 10.1016/j.psyneuen.2015.01.006
  286. Bailey M.T., Lubach G.R., Coe C.L. Prenatal stress alters bacterial colonization of the gut in infant monkeys // J. Pediatr. Gastroenterol. Nutr. 2004. Vol. 38, No. 4. P. 414–421. doi: 10.1097/00005176-200404000-00009
  287. Bailey M.T., Coe C.L. Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys // Dev. Psychobiol. 1999. Vol. 35, No. 2. P. 146–155.
  288. Bokulich N.A., Chung J., Battaglia T. et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life // Sci. Transl. Med. 2016. Vol. 8, No. 343. P. 343ra82. doi: 10.1126/scitranslmed.aad7121
  289. Miller J.E., Wu C., Pedersen L.H. et al. Maternal antibiotic exposure during pregnancy and hospitalization with infection in offspring: a population-based cohort study // Int. J. Epidemiol. 2018. Vol. 47, No. 2. P. 561–571. doi: 10.1093/ije/dyx272
  290. Keogh C.E., Kim D.H.J., Pusceddu M.M. et al. Myelin as a regulator of development of the microbiota – gut – brain axis // Brain Behav. Immun. 2021. Vol. 91. P. 437–450. doi: 10.1016/j.bbi.2020.11.001
  291. Mirzaei F., Michels K.B., Munger K. et al. Gestational vitamin D and the risk of multiple sclerosis in offspring // Ann. Neurol. 2011. Vol. 70, No. 1. P. 30–40. doi: 10.1002/ana.22456
  292. Fernandes de Abreu D.A., Ibrahim E.C., Boucraut J. et al. Severity of experimental autoimmune encephalomyelitis is unexpectedly reduced in mice born to vitamin D-deficient mothers // J. Steroid. Biochem. Mol. Biol. 2010. Vol. 121, No. 1-2. P. 250–253. doi: 10.1016/j.jsbmb.2010.03.006
  293. Fernandes de Abreu D.A., Landel V., Barnett A.G. Prenatal vitamin D deficiency induces an early and more severe experimental autoimmune encephalomyelitis in the second generation // Int. J. Mol. Sci. 2012. Vol. 13, No. 9. P. 10911–10919. doi: 10.3390/ijms130910911
  294. Fernandes de Abreu D.A., Landel V., Feron F. Seasonal, gestational and postnatal influences on multiple sclerosis: the beneficial role of a vitamin D supplementation during early life // J. Neurol. Sci. 2011. Vol. 311, No. 1-2. P. 64–68. doi: 10.1016/j.jns.2011.08.044
  295. Adzemovic M.Z., Zeitelhofer M., Hochmeister S. et al. Efficacy of vitamin D in treating multiple sclerosis-like neuroinflammation depends on developmental stage // Exp. Neurol. 2013. Vol. 249. P. 39–48. doi: 10.1016/j.expneurol.2013.08.002
  296. Biesalski H.K. Nutrition meets the microbiome: Micronutrients and the microbiota // Ann. N. Y. Acad. Sci. 2016. Vol. 1372, No. 1. P. 53–64. doi: 10.1111/nyas.13145
  297. Smith A.D., Kim Y.I., Refsum H. Is folic acid good for everyone? // Am. J. Clin. Nutr. 2008. Vol. 87, No. 3. P. 517–533. doi: 10.1093/ajcn/87.3.517
  298. Nagy-Szakal D., Ross M.C., Dowd S.E. et al. Maternal micronutrients can modify colonic mucosal microbiota matuartation in murien offspring // Gut Microbes. 2012. Vol. 3, No. 5. P. 426–433. doi: 10.4161/gmic.20697
  299. Steegers-Theunissen R.P., Obermann-Borst S.A., Kremer D. et al. Periconceptional maternal folic acid use of 400 g per day is related to increased methylation of the IGF2 gene in the very young child // PLoS One. 2009. Vol. 4, No. 11. P. e7845. doi: 10.1371/journal.pone.0007845
  300. Collado M.C., Cernada M., Baüerl C. et al. Microbial ecology and host-microbiota interactions during early life stages // Gut Microbes. 2012. Vol. 3, No. 4. P. 352–365. doi: 10.4161/gmic.21215

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рисунок. Фазы ранней колонизации кишечника младенца (модификация M.S. Cooperstock и A.J. Zedd [179]) и влияющие на этот процесс факторы. ФК — фаза колонизации; КС — кесарево сечение; ИВ — искусственное вскармливание. * Фазы ранней колонизации

Скачать (786KB)

© Эко-Вектор, 2023



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».