Роль микробиоты кишечника в патогенезе рассеянного склероза. Часть 2. Кишечная микробиота как фактор предрасположенности к развитию рассеянного склероза
- Авторы: Абдурасулова И.Н.1
-
Учреждения:
- Институт экспериментальной медицины
- Выпуск: Том 23, № 1 (2023)
- Страницы: 5-40
- Раздел: Аналитический обзор
- URL: https://journals.rcsi.science/MAJ/article/view/134194
- DOI: https://doi.org/10.17816/MAJ115019
- ID: 134194
Цитировать
Аннотация
В данной части обзора уделено внимание предполагаемому участию кишечной микробиоты в реализации генетического риска рассеянного склероза, формированию кишечного микробиома в ранней жизни, а также приводятся данные, поддерживающие гипотезу, что аберрантное формирование кишечной микробиоты на ранних этапах жизни может быть предрасполагающим фактором рассеянного склероза.
Полный текст
Открыть статью на сайте журналаОб авторах
Ирина Николаевна Абдурасулова
Институт экспериментальной медицины
Автор, ответственный за переписку.
Email: i_abdurasulova@mail.ru
ORCID iD: 0000-0003-1010-6768
SPIN-код: 5019-3940
Scopus Author ID: 22233604700
канд. биол. наук, заведующая Физиологическим отделом им. И.П. Павлова
Россия, Санкт-ПетербургСписок литературы
- Jostins L., Ripke S., Weersma R.K. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease // Nature. 2012. Vol. 491, No. 7422. P. 119–124. doi: 10.1038/nature11582
- Knights D., Silverberg M.S., Weersma R.K. et al. Complex host genetics influence the microbiome in inflammatory bowel disease // Genome Med. 2014. Vol. 6, No. 12. P. 107. doi: 10.1186/s13073-014-0107-1
- Brestoff J.R., Artis D. Commensal bacteria at the interface of host metabolism and the immune system // Nat. Immunol. 2013. Vol. 14, No. 7. P. 676–684. doi: 10.1038/ni.2640
- Grise E.A., Serge J.A. The human microbiome: our second genome // Annu. Rev. Genomics Hum. Genet. 2012. Vol. 13. P. 151–170. doi: 10.1146/annurev-genom-090711-163814
- Benson A.K., Kelly S.A., Legge R. et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors // Proc. Natl. Acad. Sci. USA. 2010. Vol. 107, No. 44. P. 18933–18938. doi: 10.1073/pnas.1007028107
- Rothschild D., Weissbrod O., Barkan E. et al. Environment dominates over host genetics in shaping human gut microbiota // Nature. 2018. Vol. 555, No. 7695. P. 210–215. doi: 10.1038/nature25973
- Goodrich J.K., Waters J.L., Poole A.C. et al. Human genetics shape the gut microbiome // Cell. 2014. Vol. 159, No. 4. P. 789–799. doi: 10.1016/j.cell.2014.09.053
- Davenport E.R., Cusanovich D.A., Michelini K. et al. Genome-wide association studies of the human gut microbiota // PLoS One. 2015. Vol. 10, No. 11. P. e0140301. doi: 10.1371/journal.pone.0140301
- Goodrich J.K., Davenport E.R., Waters J.L. et al. Cross-species comparisons of host genetic associations with the microbiome // Science. 2016. Vol. 352, No. 6285. P. 532–535. doi: 10.1126/science.aad9379
- Goodrich J.K., Davenport E.R., Beaumont M. et al. Genetic determinants of the gut microbiome in UK twins // Cell Host Microbe. 2016. Vol. 19, No. 5. P. 731–743. doi: 10.1016/j.chom.2016.04.017
- Goodrich J.K., Davenport E.R., Clark A.G., Ley R.E. The relationship between the human genome and microbiome comes into view // Annu. Rev. Genet. 2017. Vol. 51. P. 413–433. doi: 10.1146/annurev-genet-110711-155532
- Turpin W., Espin-Garcia O., Xu W. et al. Association of host genome with intestinal microbial composition in a large healthy cohort // Nat. Genet. 2016. Vol. 48, No. 11. P. 1413–1417. doi: 10.1038/ng.3693
- Lim M.Y., You H.J., Yoon H.S. et al. The effect of heritability and host genetics on the gut microbiota and metabolic syndrome // Gut. 2017. Vol. 66, No. 6. P. 1031–1038. doi: 10.1136/gutjnl-2015-311326
- Wells P.M., Williams F.M.K., Matey-Hernandez M.L. et al. RA and the Microbiome: Do host genetic factors provide the link? // J. Autoimmun. 2019. Vol. 99. P. 104–115. doi: 10.1016/j.jaut.2019.02.004
- He Z., Shao T., Li H. et al. Alterations of the gut microbiome in Chinese patients with systemic lupus erythematosus // Gut Pathog. 2016. Vol. 8. P. 64. doi: 10.1186/s13099-016-0146-9
- Kwon Y.-C., Chun S., Kim K., Mak A. Update on the genetics of systemic lupus erythematosus: genome-wide association studies and beyond // Cells. 2019. Vol. 8, No. 10. P. 1180. doi: 10.3390/cells8101180
- Blekhman R., Goodrich J.K., Huang K. et al. Host genetic variation impacts microbiome composition across human body sites // Genome Biol. 2015. Vol. 16, No. 1. P. 191. doi: 10.1186/s13059-015-0759-1
- Rawls J.F., Mahowald M.A., Ley R.E., Gordon J.I. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection // Cell. 2006. Vol. 127, No. 2. P. 423–433. doi: 10.1016/j.cell.2006.08.043
- Zoetendal E.G., Akkermans A.D.L., Akkermans-van Vliet W.M. et al. The host genotype affects the bacterial community in the human gastrointestinal tract // Microb. Ecol. Health Dis. 2001. Vol. 13, No. 3. P. 129–134. doi: 10.1080/089106001750462669
- Stewart J.A., Chadwick V.S., Murray A. Investigations into the influence of host genetics on the predominant eubacteria in the faecal microflora of children // J. Med. Microbiol. 2005. Vol. 54, No. Pt 12. P. 1239–1242. doi: 10.1099/jmm.0.46189-0
- Xie H., Guo R., Zhong H. et al. Shotgun metagenomics of 250 adult twins reveals genetic and environmental impacts on the gut microbiome // Cell Syst. 2016. Vol. 3, No. 6. P. 572–584. doi: 10.1016/j.cels.2016.10.004
- Dicksved J., Halfvarson J., Rosenquist M. et al. Molecular analysis of the gut microbiota of identical twins with Crohn’s disease // ISME J. 2008. Vol. 2, No. 7. P. 716–727. doi: 10.1038/ismej.2008.37
- Turnbaugh P.J., Ridaura V.K., Faith J.J. et al. The effect of diet on the human gut microbiome: A metagenomic analysis in humanized gnotobiotic mice // Sci. Transl. Med. 2009. Vol. 1, No. 6. P. 6–14. doi: 10.1126/scitranslmed.3000322
- Sandoval-Motta S., Aldana M., Martínez-Romero E., Frank A. The human microbiome and the missing heritability problem // Front. Genet. 2017. Vol. 8. P. 80. doi: 10.3389/fgene.2017.00080
- Rakoff-Nahoum S., Paglino J., Eslami-Varzaneh F. et al. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis // Cell. 2004. Vol. 118, No. 2. P. 229–241. doi: 10.1016/j.cell.2004.07.002
- Petnicki-Ocwieja T., Hrncir T., Liu Y.J. et al. Nod2 is required for the regulation of commensal microbiota in the intestine // Proc. Natl. Acad. Sci. USA. 2009. Vol. 106, No. 37. P. 15813–15818. doi: 10.1073/pnas.0907722106
- Carvalho F.A., Koren O., Goodrich J.K. et al. Transient inability to manage Proteobacteria promotes chronic gut inflammation in TLR5-deficient mice // Cell Host Microbe. 2012. Vol. 12, No. 2. P. 139–152. doi: 10.1016/j.chom.2012.07.004
- Fulde M., Sommer F., Chassaing B. et al. Neonatal selection by Toll-like receptor 5 influences long-term gut microbiota composition // Nature. 2018. Vol. 560, No. 7719. P. 489–493. doi: 10.1038/s41586-018-0395-5
- Rehman A., Sina C., Gavrilova O. et al. Nod2 is essential for temporal development of intestinal microbial communities // Gut. 2011. Vol. 60, No. 10. P. 1354–1362. doi: 10.1136/gut.2010.216259
- Mondot S., Barreau F., Al Nabhani Z. et al. Altered gut microbiota composition in immune-impaired Nod2(-/-) mice // Gut. 2012. Vol. 61, No. 4. P. 634–635. doi: 10.1136/gutjnl-2011-300478
- Gulati A.S., Kruek L., Sartor R.B. Influence of NOD 2 on the protective intestinal commensal bacterium Faecalibacterium prausnitzii // Gastroenterology. 2010. Vol. 138, No. 5. P. S–14. doi: 10.1016/s0016-5085(10)60064-9
- Wen L., Ley R.E., Volchkov P.Y. et al. Innate immunity and intestinal microbiota in the development of type 1 diabetes // Nature. 2008. Vol. 455, No. 7216. P. 1109–1113. doi: 10.1038/nature07336
- Salzman N.H., Hung K., Haribhai D. et al. Enteric defensins are essential regulators of intestinal microbial ecology // Nat. Immunol. 2010. Vol. 11, No. 1. P. 76–83. doi: 10.1038/ni.1825
- McFall-Ngai M. Adaptive immunity: care for the community // Nature. 2007. Vol. 445, No. 7124. P. 153. doi: 10.1038/445153a
- De Palma G., Capilla A., Nadal I. et al. Interplay between Human Leukocyte Antigen genes and the microbial colonization process of the newborn intestine // Curr. Issues Mol. Biol. 2010. Vol. 12, No. 1. P. 1–10. doi: 10.2174/1871528113666140330201056
- Vijay-Kumar M., Aitken J.D., Carvalho F.A. et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5 // Science. 2010. Vol. 328, No. 5975. P. 228–231. doi: 10.1126/science.1179721
- Shulzhenko N., Morgun A., Hsiao W. et al. Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut // Nat. Med. 2011. Vol. 17, No. 12. P. 1585–1593. doi: 10.1038/nm.2505
- Wang J., Thingholm L.B., Skiecevièienë J. et al. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota // Nat. Genet. 2016. Vol. 48, No. 11. P. 1396–1406. doi: 10.1038/ng.3695
- Kolde R., Franzosa E.A., Rahnavard G. et al. Host genetic variation and its microbiome interactions within the Human Microbiome Project // Genome Med. 2018. Vol. 10, No. 1. P 6. doi: 10.1186/s13073-018-0515-8
- Wacklin P., Mäkivuokko H., Alakulppi N. et al. Secretor genotype (FUT2 gene) is strongly associated with the composition of Bifidobacteria in the human intestine // PLoS One. 2011. Vol. 6, No. 5. P. e20113. doi: 10.1371/journal.pone.0020113
- Su D., Nie Y., Zhu A. et al. Vitamin D signaling through induction of paneth cell defensins maintains gut microbiota and improves metabolic disorders and hepatic steatosis in animal models // Front. Physiol. 2016. Vol. 7. P. 498. doi: 10.3389/fphys.2016.00498
- Awany D., Allali I., Dalvie S. et al. Host and microbiome genome-wide association studies: current state and challenges // Front. Genet. 2019. Vol. 9. P. 637. doi: 10.3389/fgene.2018.00637
- Maglione A., Zuccalà M., Tosi M. et al. Host genetics and gut microbiome: perspectives for multiple sclerosis // Genes (Basel). 2021. Vol. 12, No. 8. P. 1181. doi: 10.3390/genes12081181
- Абдурасулова И.Н. Роль микробиоты кишечника в патогенезе рассеянного склероза. Часть 1. Клинические и экспериментальные доказательства вовлечения микробиоты кишечника в развитие рассеянного склероза // Медицинский академический журнал. 2022. Т. 22, № 2. C. 9–36. doi: 10.17816/MAJ108241
- Hall A.B., Tolonen A.C., Xavier R.J. Human genetic variation and the gut microbiome in disease // Nat. Rev. Genet. 2017. Vol. 18, No. 11. P. 690–699. doi: 10.1038/nrg.2017.63
- Imhann F., Vich Vila A., Bonder M.J. et al. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease // Gut. 2018. Vol. 67, No. 1. P. 108–119. doi: 10.1136/gutjnl-2016-312135
- Miller P.G., Bonn M.B., Franklin C.L. et al. TNFR2 deficiency acts in concert with gut microbiota to precipitate spontaneous sex-biased central nervous system demyelinating autoimmune disease // J. Immunol. 2015. Vol. 195, No. 10. P. 4668–4684. doi: 10.4049/jimmunol.1501664
- Abdollahzadeh R., Fard M.S., Rahmani F. et al. Predisposing role of vitamin D receptor (VDR) polymorphisms in the development of multiple sclerosis: A case-control study // J. Neurol. Sci. 2016. Vol. 367. P. 148–151. doi: 10.1016/j.jns.2016.05.053
- Imani D., Razi B., Motallebnezhad M., Rezaei R. Association between vitamin D receptor (VDR) polymorphisms and the risk of multiple sclerosis (MS): an updated meta-analysis // BMC Neurol. 2019. Vol. 19, No. 1. P. 339. doi: 10.1186/s12883-019-1577-y
- Bakke D., Sun J. Ancient Nuclear Receptor VDR with new functions: microbiome and inflammation // Inflamm. Bowel. Dis. 2018. Vol. 24, No. 6. P. 1149–1154. doi: 10.1093/ibd/izy092
- Haussler M.R., Haussler C.A, Bartik L. et al. Vitamin D receptor: molecular signaling and actions of nutritional ligands in disease prevention // Nutr. Rev. 2008. Vol. 66, Suppl. 2. P. S98–S112. doi: 10.1111/j.1753-4887.2008.00093.x
- Makishima M., Lu T.T, Xie W. et al. Vitamin D receptor as an intestinal bile acid sensor // Science. 2002. Vol. 296, No. 5571. P. 1313–1316. doi: 10.1126/science.1070477
- Han S., Li T., Ellis E. et al. A novel bile acid-activated vitamin D receptor signaling in human hepatocytes // Mol. Endocrinol. 2010. Vol. 24, No. 6. P. 1151–1164. doi: 10.1210/me.2009-0482
- Wang K., Liao M., Zhou N. et al. Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids // Cell Rep. 2019. Vol. 25. P. 222–235. doi: 10.1016/j.celrep.2018.12.028
- Tremlett H., Fadrosh D.W., Faruqi A.A. et al. Gut microbiota in early pediatric multiple sclerosis: a case-control study // Eur. J. Neurol. 2016. Vol. 23, No. 8. P. 1308–1321. doi: 10.1111/ene.13026
- Reynders T., Devolder L., Valles-Colomer M. et al. Gut microbiome variation is associated to Multiple Sclerosis phenotypic subtypes // Ann. Clin. Transl. Neurol. 2020. Vol. 7, No. 4. P. 406–419. doi: 10.1002/acn3.51004
- Pellizoni F.P., Leite A.Z., de Campos Rodrigues N. et al. Detection of dysbiosis and increased intestinal permeability in Brazilian patients with relapsing-remitting multiple sclerosis // Int. J. Environ. Res. Public Health. 2021. Vol. 18, No. 9. P. 4621. doi: 10.3390/ijerph18094621
- Oezguen N., Yalcinkaya N., Kücükali C.I. et al. Microbiota stratification identifies disease-specific alterations in neuro-Behçet’s disease and multiple sclerosis // Clin. Exp. Rheumatol. 2019. Vol. 37, Suppl 121, No. 6. P. 58–66.
- Bhargava P., Smith M.D., Mische L. et al. Bile acid metabolism is altered in multiple sclerosis and supplementation ameliorates neuroinflammation // J. Clin. Invest. 2020. Vol. 130, No. 7. P. 3467–3482. doi: 10.1172/JCI129401
- Belkaid Y., Hand T.W. Role of the microbiota in immunity and inflammation // Cell. 2014. Vol. 157, No. 1. P. 121–141. doi: 10.1016/j.cell.2014.03.011
- Schirmer M., Smeekens S.P., Vlamakis H. et al. Linking the human gut microbiome to inflammatory cytokine production capacity // Cell. 2016. Vol. 167, No. 4. P. 1125–1136. doi: 10.1016/j.cell.2016.10.020
- Bevins C.L., Salzman N.H. The potter’s wheel: the host’s role in sculpting its microbiota // Cell. Mol. Life Sci. 2011. Vol. 68, No. 22. P. 3675–3685. doi: 10.1007/s00018-011-0830-3
- Kozhieva M., Naumova N., Alikina T. et al. Primary progressive multiple sclerosis in a Russian cohort: relationship with gut bacterial diversity // BMC Microbiol. 2019. Vol. 19, No. 1. P. 309. doi: 10.1186/s12866-019-1685-2
- Fujiwara M., Anstadt E.J., Flynn B. et al. Enhanced TLR2 responses in multiple sclerosis // Clin. Exp. Immunol. 2018. Vol. 193, No. 3. P. 313–326. doi: 10.1111/cei.13150
- Farez M.F., Quintana F.J., Gandi R. et al. Toll-like receptor 2 and poly(ADP-ribose) polymerase 1 promote central nervous system neuroinflammation in progressive EAE // Nat. Immunol. 2009. Vol. 10, No. 9. P. 958–964. doi: 10.1038/ni.1775
- Miranda-Hernandez S., Gerlach N., Fletcher J.M. et al. Role for MyD88, TLR2 and TLR9 but not TLR1, TLR4 or TLR6 in experimental autoimmune encephalomyelitis // J. Immunol. 2011. Vol. 187, No. 2. P. 791–804. doi: 10.4049/jimmunol.1001992
- Prinz M., Garbe F., Schmidt H. et al. Innate immunity mediated by TLR9 modulates pathogenicity in an animal model of multiple sclerosis // J. Clin. Invest. 2006. Vol. 116, No. 2. P. 456–464. doi: 10.1172/JCI26078
- Horton M.K., McCauley K., Fadrosh D. et al. Gut microbiome is associated with multiple sclerosis activity in children // Ann. Clin. Transl. Neurol. 2021. Vol. 8, No. 9. P. 1867–1883. doi: 10.1002/acn3.51441
- Rezende R.M., Oliveira R.P., Medeiros S.R. et al. Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4+LAP+ regulatory T cells // J. Autoimmun. 2013. Vol. 40. P. 45–57. doi: 10.1016/j.jaut.2012.07.012
- Cox L.M., Maghzi A.H., Liu S. et al. The gut microbiome in progressive multiple sclerosis // Ann. Neurol. 2021. Vol. 89, No. 6. P. 1195–1211. doi: 10.1002/ana.26084
- Абдурасулова И.Н., Тарасова Е.А., Ермоленко Е.И. и др. При рассеянном склерозе изменяется качественный и количественный состав микробиоты кишечника // Медицинский академический журнал. 2015. Т. 15, № 3. С. 55–67. doi: 10.17816/MAJ15355-67
- Cekanaviciute E., Yoo B.B., Runia T.F. et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models // Proc. Natl. Acad. Sci. USA. 2017. Vol. 114, No. 40. P. 10713–10718. doi: 10.1073/pnas.1711235114
- Chiurchiù V., Leuti A., Cencioni M. et al. Modulation of monocytes by bioactive lipid anandamide in multiple sclerosis involves distinct Toll-like receptors // Pharmacol. Res. 2016. Vol. 113, Pt A. P. 313–319. doi: 10.1016/j.phrs.2016.09.003
- Hughes L., Smith P., Bonell S. et al. Cross-reactivity between related sequences found in Acinetobacter sp., Pseudomonas aeruginosa, myelin basic protein and myelin oligodendrocyte glycoprotein in multiple sclerosis // J. Neuroimmunol. 2003. Vol. 144, No. 1–2. P. 105–115. doi: 10.1016/s0165-5728(03)00274-1
- Ebringer A., Hughes L., Rashid T., Wilson C. Acinetobacter immune responses in multiple sclerosis etiopathogenetic role and its possible use as a diagnostic marker // Arch. Neurol. 2005. Vol. 62, No. 1. P. 33–36. doi: 10.1001/archneur.62.1.33
- Ebringer A., Rashid T., Wilson C. The role of Acinetobacter in the pathogenesis of multiple sclerosis examined by using Popper sequences // Med. Hypotheses. 2012. Vol. 78, No. 6. P. 763–769. doi: 10.1016/j.mehy.2012.02.026
- Cuesta C.M., Pascual M., Pérez-Moraga R. et al. TLR4 deficiency affects the microbiome and reduces intestinal dysfunctions and inflammation in chronic alcohol-fed mice // Int. J. Mol. Sci. 2021. Vol. 22, No. 23. P. 12830. doi: 10.3390/ijms222312830
- Forbes J.D., Chen C.-Y., Knox N.C. et al. A comparative study of the gut microbiota in immune-mediated inflammatory diseases – does a common dysbiosis exist? // Microbiome. 2018. Vol. 6, No. 1. P. 221. doi: 10.1186/s40168-018-0603-4
- Cantoni С., Lin Q., Dorsett Y. et al. Alterations of host-gut microbiome interactions in multiple sclerosis // EBioMedicine. 2022. Vol. 76. P. 103798. doi: 10.1016/j.ebiom.2021.103798
- Miyake S., Kim S., Suda W. et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belondind to Clostridia XIVa and IV clusters // PLoS One. 2015. Vol. 10, No. 9. P. e0137429. doi: 10.1371/journal.pone.0137429
- Cantarel B.L., Waubant E., Chehoud C. et al. Gut microbiota in multiple sclerosis: possible influence of immunomodulators // J. Investig. Med. 2015. Vol. 63, No. 5. P. 729–734. doi: 10.1097/JIM.0000000000000192
- Storm-Larsen C., Myhr K.-M., Farbu E. et al. Gut microbiota composition during a 12-week intervention with delayed-release dimethyl fumarate in multiple sclerosis – a pilot trial // Mult. Scler. J. Exp. Transl. Clin. 2019. Vol. 5, No. 4. P. 2055217319888767. doi: 10.1177/2055217319888767
- Ling Z., Cheng Y., Yan X. et al. Alterations of the fecal microbiota in Chinese patients with multiple sclerosis // Front. Immunol. 2020. Vol. 11. P. 590783. doi: 10.3389/fimmu.2020.590783
- Takewaki D., Suda W., Sato W. et al. Alterations of the gut ecological and functional microenvironment in different stages of multiple sclerosis // PNAS. 2020. Vol. 117, No. 36. P. 22402–22412. doi: 10.1073/pnas.2011703117
- Castillo-Álvarez F., Pérez-Matute P., Oteo J.A., Marzo-Sola M.E. The influence of interferon β-1b on gut microbiota composition in patients with multiple sclerosis // Neurologia (Engl Ed). 2021. Vol. 36, No. 7. P. 495–503. doi: 10.1016/j.nrleng.2020.05.006
- Marta M., Andersson A., Isaksson M. et al. Unexpected regulatory roles of TLR4 and TLR9 in experimental autoimmune encephalomyelitis // Eur. J. Immunol. 2008. Vol. 38, No. 2. P. 565–575. doi: 10.1002/eji.200737187
- Zhang Y., Han J., Wu M. et al. Toll-like receptor 4 promotes Th17 lymphocyte infiltration via CCL25/CCR9 in pathogenesis of experimental autoimmune encephalomyelitis // J. Neuroimmune Pharmacol. 2019. Vol. 14, No. 3. P. 493–502. doi: 10.1007/s11481-019-09854-1
- Carrillo-Salinas F.J., Mestre L., Mecha M. et al. Gut dysbiosis and neuroimmune responses to brain infection with Theiler’s murine encephalomyelitis virus // Sci. Rep. 2017. Vol. 7. P. 44377. doi: 10.1038/srep44377
- Абдурасулова И.Н., Тарасова Е.А., Мацулевич А.В. и др. Влияние бифидобактерий в составе кишечной микробиоты на течение рассеянного склероза // Проблемы медицинской микологии. 2022. Т. 24, № 2. С. 38.
- Tan T.G., Sefik E., Geva-Zatorsky N. et al. Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice // Proc. Natl. Acad. Sci. USA. 2016. Vol. 113, No. 50. P. E8141–E8150. doi: 10.1073/pnas.1617460113
- Bouskra D., Brézillon C., Bérard M. et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis // Nat. Lett. 2008. Vol. 456, No. 7221. P. 507–510. doi: 10.1038/nature07450
- Chen G.Y., Núñez G. Gut Immunity: a NOD to the commensals // Curr. Biol. 2009. Vol. 19, No. 4. P. R171–R174. doi: 10.1016/j.cub.2008.12.027
- Galluzzo P., Capri F.C., Vecchioni L. et al. Comparison of the intestinal microbiome of Italian patients with multiple sclerosis and their household relatives // Life (Basel). 2021. Vol. 11, No. 7. P. 620. doi: 10.3390/life11070620
- Ventura R.E., Iizumi1 T., Battaglia T. et al. Gut microbiome of treatment-naïve MS patients of different ethnicities early in disease course // Sci. Rep. 2019. Vol. 9, No. 1. P. 16396. doi: 10.1038/s41598-019-52894-z
- Cekanaviciute E., Pröbstel A.-K., Thomann A. et al. Multiple sclerosis-associated changes in the composition and immune functions of spore-forming bacteria // mSystems. 2018. Vol. 3, No. 6. P. e00083–18. doi: 10.1128/mSystems.00083-18
- Shaw P.J., Barr M.J., Lukens J.R. et al. Signaling via the RIP2 adaptor protein in central nervous system-infiltrating dendritic cells promotes inflammation and autoimmunity // Immunity. 2011. Vol. 34, No. 1. P. 75–84. doi: 10.1016/j.immuni.2010.12.015
- Rumah K.R., Linden J., Fischetti V.A., Vartanian T. Isolation of clostridium perfringens type B in an individual at first clinical presentation of multiple sclerosis provides clues for environmental triggers of the disease // PLoS One. 2013. Vol. 8, No. 10. P. e76359. doi: 10.1371/journal.pone.0076359
- Ochoa-Repáraz J., Mielcarz D.W., Wang Y. et al. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease // Mucosal Immunol. 2010. Vol. 3, No. 5. P. 487–495. doi: 10.1038/mi.2010.29
- Gulati A.S., Kreuk L., Sartor R.B. 69 Influence of NOD2 on the Protective Intestinal Commensal Bacterium Faecalibacterium prausnitzii // Gastroenterology. 2010. Vol. 138. P. S–14. doi: 10.1016/S0016-5085(10)60064-9
- Chen J., Chia N., Kalari K.R. et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls // Sci. Rep. 2016. Vol. 6. P. 28484. doi: 10.1038/srep28484
- Taras D., Simmering R., Collins M.D. et al. Reclassification of Eubacterium formicigenerans Holdeman and Moore 1974 as Dorea formicigenerans gen. nov., comb. nov., and description of Dorea longicatena sp. nov., isolated from human faeces // Int. J. Syst. Evol. Microbiol. 2002. Vol. 52, No. Pt 2. P. 423–428. doi: 10.1099/00207713-52-2-423
- Schirmer M., Smeekens S.P., Vlamakis H. et al. Linking the human gut microbiome to inflammatory cytokine production capacity // Cell. 2016. Vol. 167, No. 4. P. 1897. doi: 10.1016/j.cell.2016.10.020
- Al K.F., Craven L.J., Gibbons S. et al. Fecal microbiota transplantation is safe and tolerable in patients with multiple sclerosis: A pilot randomized controlled trial // Mult. Scler. J. Exp. Transl. Clin. 2022. Vol. 8, No. 2. P. 20552173221086662. doi: 10.1177/20552173221086662
- Chen L., Wilson J.E., Koenigsknecht M.J. et al. NLRP12 attenuates colon inflammation by maintaining colonic microbial diversity and promoting protective commensal bacterial growth // Nat. Immunol. 2017. Vol. 18, No. 5. P. 541–551. doi: 10.1038/ni.3690
- Swidsinski A., Dörffel Y., Loening-Baucke V. et al. Reduced mass and diversity of the colonic microbiome in patients with multiple sclerosis and their improvement with ketogenic diet // Front. Microbiol. 2017. Vol. 8. P. 1141. doi: 10.3389/fmicb.2017.01141
- Vilariño-Güell C., Zimprich A., Martinelli-Boneschi F. et al. Exome sequencing in multiple sclerosis families identifies 12 candidate genes and nominates biological pathways for the genesis of disease // PLoS Genet. 2019. Vol. 15, No. 6. P. e1008180. doi: 10.1371/journal.pgen.1008180
- Gharagozloo M., Mahvelati T.M., Imbeault E. et al. The nod-like receptor, Nlrp12, plays an anti-inflammatory role in experimental autoimmune encephalomyelitis // J. Neuroinflammation. 2015. Vol. 12. P. 198. doi: 10.1186/s12974-015-0414-5
- Gharagozloo M., Mahmoud S., Simard C. et al. The dual immunoregulatory function of Nlrp12 in T cell-mediated immune response: lessons from experimental autoimmune encephalomyelitis // Cells. 2018. Vol. 7, No. 9. P. 119. doi: 10.3390/cells7090119
- Lukens J.R., Gurung P., Shaw P.J. et al. The NLRP12 sensor negatively regulates autoinflammatory disease by modulating interleukin-4 production in T cells // Immunity. 2015. Vol. 42, No. 4. P. 654–664. doi: 10.1016/j.immuni.2015.03.006
- Vacca M., Celano G., Calabrese F.M. et al. The controversial role of human gut Lachnospiraceae // Microorganisms. 2020. Vol. 8, No. 4. P. 573. doi: 10.3390/microorganisms8040573
- Tye H., Yu C.-H., Simms L.A. et al. NLRP1 restricts butyrate producing commensals to exacerbate inflammatory bowel disease // Nat. Commun. 2018. Vol. 9, No. 1. P. 3728. doi: 10.1038/s41467-018-06125-0
- Popplewell L.F., Encarnacion M., Bernales C.Q. et al. Genetic analysis of nucleotide-binding leucine-rich repeat (NLR) receptors in multiple sclerosis // Immunogenetics. 2020. Vol. 72, No. 6–7. P. 381–385. doi: 10.1007/s00251-020-01170-w
- Maver A., Lavtar P., Ristić S. et al. Identification of rare genetic variation of NLRP1 gene in familial multiple sclerosis // Sci. Rep. 2017. Vol. 7, No. 1. P. 3715. doi: 10.1038/s41598-017-03536-9
- Bernales C.Q., Encarnacion M., Criscuoli M.G. et al. Analysis of NOD-like receptor NLRP1 in multiple sclerosis families // Immunogenetics. 2017. Vol. 70, No. 3. P. 205–207. doi: 10.1007/s00251-017-1034-2
- Venkatesh M., Mukherjee S., Wang H. et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4 // Immunity. 2014. Vol. 41, No. 2. P. 296–310. doi: 10.1016/j.immuni.2014.06.014
- Vascellari S., Palmas V., Melis M. et al. Gut microbiota and metabolome alterations associated with Parkinson’s disease // mSystems. 2020. Vol. 15, No. 5. P. e00561–20. doi: 10.1128/mSystems.00561-20
- Bell A., Brunt J., Crost E. et al. Elucidation of a sialic macid metabolism pathway in mucus-foraging Ruminococcus gnavus unravels mechanisms of bacterial adaptation to the gut // Nat. Microbiol. 2019. Vol. 4, No. 12. P. 2393–2404. doi: 10.1038/s41564-019-0590-7
- Zhang Y., Huang R., Cheng M. et al. Gut microbiota from NLRP3-deficient mice ameliorates depressive-like behaviors by regulating astrocyte dysfunction via circHIPK2 // Microbiome. 2019. Vol. 7, No. 1. P. 116. doi: 10.1186/s40168-019-0733-3
- Jha S., Srivastava S.Y., Brickey W.J. et al. The inflammasome sensor, NLRP3, regulates CNS inflammation and demyelination via caspase-1 and interleukin-18 // J. Neurosci. 2010. Vol. 30, No. 47. P. 15811–15820. doi: 10.1523/JNEUROSCI.4088-10.2010
- Inoue M., Williams K.L., Gunn M.D., Shinohara M.L. NLRP3 inflammasome induces chemotactic immune cell migration to the CNS in experimental autoimmune encephalomyelitis // Proc. Natl. Acad. Sci. USA. 2012. Vol. 109, No. 26. P. 10480–10485. doi: 10.1073/pnas.1201836109
- Malhotra S., Rio J., Urcelay E. et al. NLRP3 inflammasome is associated with the response to IFN-β in patients with multiple sclerosis // Brain. 2015. Vol. 138, No. 3. P. 644–652. doi: 10.1093/brain/awu388
- Gris D., Ye Z., Iocca H.A. et al. NLRP3 plays a critical role in the development of experimental autoimmune encephalomyelitis by mediating Th1 and Th17 responses // J. Immunol. 2010. Vol. 185, No. 2. P. 974–981. doi: 10.4049/jimmunol.0904145
- Farrokhi V., Nemati R., Nichols F.C. Bacterial lipodipeptide, Lipid 654, is a microbiome-associated biomarker for multiple sclerosis // Clin. Transl. Immunol. 2013. Vol. 2, No. 11. P. e8. doi: 10.1038/cti.2013.11
- Haghikia A., Jörg S., Duscha A. et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine // Immunity. 2015. Vol. 43, No. 4. P. 817–829. doi: 10.1016/j.immuni.2015.09.007
- Nomura K., Ishikawa D., Okahara K. et al. Bacteroidetes species are correlated with disease activity in ulcerative colitis // J. Clin. Med. 2021. Vol. 10, No. 8. P. 1749. doi: 10.3390/jcm10081749
- Elgendy S.G., Abd-Elhameed R., Daef E. et al. Gut microbiota in forty cases of egyptian relapsing remitting multiple sclerosis // Iran J. Microbiol. 2021. Vol. 13, No. 5. P. 632–641. doi: 10.18502/ijm.v13i5.7428
- Shahi S.K., Jensen S.N., Murra A.C. et al. Human commensal Prevotella histicola ameliorates disease as effectively as interferon-beta in the experimental autoimmune encephalomyelitis // Front. Immunol. 2020. Vol. 11. P. 578648. doi: 10.3389/fimmu.2020.578648
- Scher J.U., Sczesnak A., Longman R.S. et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis // Elife. 2013. Vol. 2. P. e01202. doi: 10.7554/eLife.01202
- Ghaly S., Kaakoush N.O., Lloyd F. et al. Ultraviolet irradiation of skin alters the faecal microbiome independently of vitamin D in mice // Nutrients. 2018. Vol. 10, No. 8. P. 1069. doi: 10.3390/nu10081069
- Elinav E., Strowig T., Kau A.L. et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis // Cell. 2011. Vol. 145, No. 5. P. 745–757. doi: 10.1016/j.cell.2011.04.022
- Ratsimandresy R.A., Dorfleutner A., Stehlik C. An update on PYRIN domain-containing pattern recognition receptors: from immunity to pathology // Front. Immunol. 2013. Vol. 4, No. 440. P. 153–171. doi: 10.3389/fimmu.2013.00440
- Bernard N.J. Rheumatoid arthritis: Prevotella copri associated with new-onset untreated RA // Nat. Rev. Rheumatol. 2014. Vol. 10, No. 1. P. 2. doi: 10.1038/nrrheum.2013.187
- Illescas O., Rodriguez-Sosa M., Gariboldi M. Mediterranean diet to prevent the development of colon diseases: a meta-analysis of gut microbiota studies // Nutrients. 2021. Vol. 13, No 7. P. 2234. doi: 10.3390/nu13072234
- Lavasani S., Dzhambazov B., Nouri M. et al. A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells // PLoS One. 2010. Vol. 5, No. 2. P. e9009. doi: 10.1371/journal.pone.0009009
- Yamashita M., Ukibe K., Matsubara Y. et al. Lactobacillus helveticus SBT2171 attenuates experimental autoimmune encephalomyelitis in mice // Front. Microbiol. 2018. Vol. 8. P. 2596. doi: 10.3389/fmicb.2017.02596
- Larsson E., Tremaroli V., Lee Y.S. et al. Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88 // Gut. 2012. Vol. 61, No. 8. P. 1124–1131. doi: 10.1136/gutjnl-2011-301104
- Gandy K., Zhang J., Nagarkatti P., Nagarkatti M. The role of gut microbiota in shaping the relapse-remitting and chronic-progressive forms of multiple sclerosis in mouse models // Sci. Rep. 2019. Vol. 9, No. 1. P. 6923. doi: 10.1038/s41598-019-43356-7
- Lin X., Singh A., Shan X. et al. Akkermansia muciniphila-mediated degradation of host mucin expands the tryptophan utilizer alistipes and exacerbates autoimmunity by promoting Th17 immune responses // Cell Press. 2022. doi: 10.2139/ssrn.4065073
- Olsen I., Lambris J.D., Hajishengallis G. Porphyromonas gingivalis disturbs host–commensal homeostasis by changing complement function // J. Oral Microbiol. 2017. Vol. 9, No. 1. P. 1340085. doi: 10.1080/20002297.2017.1340085
- Amano A. Disruption of epithelial barrier and impairment of cellular function by Porphyromonas gingivalis // Front. Biosci. 2007. Vol. 12. P. 3965–3974. doi: 10.2741/2363
- Lee Y.-K., Menezes J.S., Umesaki Y., Mazmanian S.K. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis // Proc. Natl. Acad. Sci. USA. 2011. Vol. 108, No. Suppl 1. P. 4615–4622. doi: 10.1073/pnas.1000082107
- Toivanen P., Vaahtovuo J., Eerola E. Influence of major histocompatibility complex on bacterial composition of fecal flora. Infect // Immunity. 2001. Vol. 69, No. 4. P. 2372–2377. doi: 10.1128/IAI.69.4.2372-2377.2001
- Kubinak J.L., Zac Stephens W., Soto R. et al. MHC variation sculpts individualized microbial communities that control susceptibility to enteric infection // Nat. Commun. 2015. Vol. 6. P. 8642. doi: 10.1038/ncomms9642
- Gavalas E., Kountouras J., Boziki M. et al. Relationship between Helicobacter pylori infection and multiple sclerosis // Ann. Gastroenterol. 2015. Vol. 28, No. 3. P. 353–356.
- Lincoln M.R., Montpetit A., Cader M.Z. et al. A predominant role for the HLA class II region in the association of the MHC region with multiple sclerosis // Nat. Genet. 2005. Vol. 37, No. 10. P. 1108–1112. doi: 10.1038/ng1647
- Goris A., Pauwels I., Dubois B. Progress in multiple sclerosis genetics // Curr. Genomics. 2012. Vol. 13, No. 8. P. 646–663. doi: 10.2174/138920212803759695
- Alcina A., Abad-Grau Mdel M., Fedetz M. et al. Multiple sclerosis risk variant HLA-DRB1*1501 associates with high expression of DRB1 gene in different human populations // PLoS One. 2012. Vol. 7, No. 1. e29819. doi: 10.1371/journal.pone.0029819
- Shahi S.K., Soham A., Jaime C.M. et al. HLA class II polymorphisms modulate gut microbiota and EAE phenotype // Immunohorizons. 2022. Vol. 5, No. 8. P. 627–646. doi: 10.4049/immunohorizons.2100024
- Li W., Minohara M., Su J.J. et al. Helicobacter pylori infection is a potential protective factor against conventional multiple sclerosis in the Japanese population // J. Neuroimmunol. 2007. Vol. 184, No. 1–2. P. 227–231. doi: 10.1016/j.jneuroim.2006.12.010
- Pedrini M.J., Seewann A., Bennett K.A. et al. Helicobacter pylori infection as a protective factor against multiple sclerosis risk in females // J. Neurol. Neurosurg. Psychiatry. 2015. Vol. 86, No. 6. P. 603–607. doi: 10.1136/jnnp-2014-309495
- Cook K.W., Crooks J., Hussain K. et al. Helicobacter pylori infection reduces disease severity in an experimental model of multiple sclerosis // Front. Microbiol. 2015. Vol. 6. P. 52. doi: 10.3389/fmicb.2015.00052
- Bonder M.J., Kurilshikov A., Tigchelaar E.F. et al. The effect of host genetics on the gut microbiome // Nat. Genet. 2016. Vol. 48, No. 11. P. 1407–1412. doi: 10.1038/ng.3663
- Kurilshikov A., Medina-Gomez C., Bacigalupe R. et al. Large-scale association analyses identify host factors influencing human gut microbiome composition // Nat. Genet. 2021. Vol. 53, No. 2. P. 156–165. doi: 10.1038/s41588-020-00763-1
- Абдурасулова И.Н., Тарасова Е.А., Кудрявцев И.В. и др. Состав микробиоты кишечника и популяций циркулирующих Th-клеток у пациентов с рассеянным склерозом // Инфекция и иммунитет. 2019. Т. 9, № 3-4. С. 504–522. doi: 10.15789/2220-7619-2019-3-4-504-522
- Zhang Z., Wang M., Yuan S. et al. Genetically predicted milk intake and risk of neurodegenerative diseases // Nutrients. 2021. Vol. 13, No. 8. P. 2893. doi: 10.3390/nu13082893
- Hall A.B., Tolonen A.C., Xavier R.J. Human genetic variation and the gut microbiome in disease // Nat. Rev. Genet. 2017. Vol. 18, No. 11. P. 690–699. doi: 10.1038/nrg.2017.63
- Gampa A., Engen P.A., Shobar R., Mutli E.A. Relationships between gastrointestinal microbiota and blood group antigens // Physiol. Genomics. 2017. Vol. 49, No. 9. P. 473–483. doi: 10.1152/physiolgenomics.00043.2017
- Cosorich I., Dalla-Costa G., Sorini C. et al. High frequency of intestinal TH17 cells correlates with microbiota alterations and disease activity in multiple sclerosis // Sci. Adv. 2017. Vol. 3, No. 7. P. e1700492. doi: 10.1126/sciadv.1700492
- Berer K., Gerdes L.A., Cekanaviciute E. et al. Gut Microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalitis in mice // Proc. Natl. Acad. Sci. USA. 2017. Vol. 114, No. 40. P. 10719–10724. doi: 10.1073/pnas.1711233114
- Wu R., An J., Ding T. et al. The level of peripheral regulatory T cells is associated with the changes of intestinal microbiota in patients with rheumatoid arthritis // Ann. Rheumatic. Dis. 2021. Vol. 80, No. Suppl 1. P. 427. doi: 10.1136/annrheumdis-2021-eular.2783
- Shahi S.K., Freedman S.N., Mangalam A.K. Gut microbiome in multiple sclerosis: The players involved and the roles they play // Gut Microbes. 2017. Vol. 8, No. 6. P. 607–615. doi: 10.1080/19490976.2017.1349041
- Saresella M., Marventano I., Barone M. et al. Alterations in circulating fatty acid are associated with gut microbiota dysbiosis and inflammation in multiple sclerosis // Front. Immunol. 2020. Vol. 11. P. 1390. doi: 10.3389/fimmu.2020.01390
- Zhang Y.-J., Zhang L., Chen S.-Y. et al. Association between VDR polymorphisms and multiple sclerosis: systematic review and updated meta-analysis of case-control studies // Neurol. Sci. 2018. Vol. 39, No. 2. P. 225–234. doi: 10.1007/s10072-017-3175-3
- Eftekharian M.M., Azimi T., Ghafouri-Fard S. et al. Phospholipase D1 expression analysis in relapsing-remitting multiple sclerosis patients // Neurol. Sci. 2017. Vol. 38, No. 5. P. 865–872. doi: 10.1007/s10072-017-2857-1
- Göbel K., Schuhmann M.K., Pankratz S. et al. Phospholipase D1 mediates lymphocyte adhesion and migration in experimental autoimmune encephalomyelitis // Eur. J. Immunol. 2014. Vol. 44, No. 8. P. 2295–2305. doi: 10.1002/eji.201344107
- Ahn M., Min D.S., Kang J. et al. Increased expression of phospholipase D1 in the spinal cords of rats with experimental autoimmune encephalomyelitis // Neurosci. Lett. 2001. Vol. 316, No. 2. P. 95–98. doi: 10.1016/s0304-3940(01)02383-7
- Derrien M., Vaughan E.E., Plugge C.M., de Vos W.M. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium // Int. J. Syst. Evol. Microbiol. 2004. Vol. 54. P. 1469–1476. doi: 10.1099/ijs.0.02873-0
- Levi I., Gurevich M., Perlman G. et al. Potential role of indolelactate and butirate in multiple sclerosis revealed by integrated microbiome-metabolome analysis // Cell Rep. Med. 2021. Vol. 2, No. 4. P. 100246. doi: 10.1016/j.xcrm.2021.100246
- Bell M.E., Bernard K.A., Harrington S.M. et al. Lawsonella clevelandensis gen. nov., sp. nov., a new member of the suborder Corynebacterineae isolated from human abscesses // Int. J. Evol. Microbiol. 2016. Vol. 66, No. 8. P. 2929–2935. doi: 10.1099/ijsem.0.001122
- Alonso R., Pisa D., Carrasco K. Searching for bacteria in neural tissue from amyotrophic lateral sclerosis // Front. Neurosci. 2019. Vol. 13. P. 171. doi: 10.3389/fnins.2019.00171
- Абдурасулова И.Н., Дмитриев А.В. Витамины группы B: От гомеостаза к патогенезу и лечению рассеянного склероза // Успехи физиологических наук. 2023. Т. 54, № 1. doi: 10.31857/S0301179823010034
- Montgomery T.L., Künstner A., Kennedy J.J. et al. Interactions between host genetics and gut microbiota determine susceptibility to CNS autoimmunity // Proc. Natl. Acad. Sci. USA. 2020. Vol. 117, No. 44. P. 27516–27527. doi: 10.1073/pnas.2002817117
- Rodríguez J.M., Murphy K., Stranton C.S. et al. The composition of the gut microbiota throughout life, with an emphasis on early life // Microb. Ecol. Health Dis. 2015. Vol. 26, No. 1. P. 26050. doi: 10.3402/mehd.v26.26050
- Bäckhed F., Roswall J., Peng Y. et al. Dynamics and stabilization of the human gut microbiome during the first year of life // Cell Host Microbe. 2015. Vol. 17, No. 5. P. 690–703. doi: 10.1016/j.chom.2015.04.004
- Köenig J.E., Spor A., Scalfone N. et al. Succession of microbial consortia in the developing infant gut microbiom // Proc. Natl. Acad. Sci. USA. 2011. Vol. 108, No. Suppl 1. P. 4578–4585. doi: 10.1073/pnas.1000081107
- La Rosa P.S., Warner B.B., Zhou Y. et al. Patterned progression of bacterial populations in the premature infant gut // Proc. Natl. Acad. Sci. USA. 2014. Vol. 111, No. 34. P. 12522–12527. doi: 10.1073/pnas.1409497111
- Falk P.G., Hooper L.V., Midtverd T., Gordon J.I. Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology // Microbiol. Mol. Biol. Rev. 1998. Vol. 62, No. 4. P. 1157–1170. doi: 10.1128/MMBR.62.4.1157-1170.1998
- Perez-Muñoz M.E., Arrieta M.-C., Ramer-Tait A.E., Walter J. A critical assessment of the sterile womb and in utero colonization hypotheses: implications for research on the pioneer infant microbiome // Microbiome. 2017. Vol. 5, No. 1. P. 48. doi: 10.1186/s40168-017-0268-4
- Cooperstock M.S.Z., Zedd A.J. Intestinal flora of infants // Human intestinal microflora in health and disease. Ed. by D.J. Hentges. 1983. Chapter 4. P. 79–99. doi: 10.1016/B978-0-12-341280-5.50010-0
- Aagaard K., Ma J., Antony K.M. et al. The placenta harbors a unique microbiome // Sci. Transl. Med. 2014. Vol. 6, No. 237. P. 237ra65. doi: 10.1126/scitranslmed.3008599
- Collado M.C., Rautava S., Aakko J. et al. Human gut colonization may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid // Sci. Rep. 2016. Vol. 6. P. 23129. doi: 10.1038/srep23129
- Satokari R., Gronroos T., Laitinen K. et al. Bifidobacterium and Lactobacillus DNA in the human placenta // Lett. Appl. Microbiol. 2009. Vol. 48, No. 1. P. 8–12. doi: 10.1111/j.1472-765X.2008.02475.x
- Parnell L.A., Briggs C.M., Cao B. et al. Microbial communities in placentas from term normal pregnancy exhibit spatially variable profiles // Sci. Rep. 2017. Vol. 7, No. 1. P. 11200. doi: 10.1038/s41598-017-11514-4
- Mueller N.T., Bakacs E., Combellick J. et al. The infant microbiome development: Mom matters // Trends Mol. Med. 2015. Vol. 21, No. 2. P. 109–117. doi: 10.1016/j.molmed.2014.12.002
- Jimenez E., Fernandez L., Marin M.L. et al. Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section // Curr. Microbiol. 2005. Vol. 51, No. 4. P. 270–274. doi: 10.1007/s00284-005-0020-3
- Bearfield C., Davenport E.S., Sivapathasundaram V., Allaker R.P. Possible association between amniotic fluid microorganism infection and microflora in the mouth // BJOG. 2002. Vol. 109, No. 5. P. 527–533. doi: 10.1111/j.1471-0528.2002.01349.x
- DiGiulio D.B. Diversity of microbes in amniotic fluid // Semin. Fetal. Neonatal. Med. 2012. Vol. 17, No. 1. P. 2–11. doi: 10.1016/j.siny.2011.10.001
- Rautava S., Collado M.C., Salminen S., Isolauri E. Probiotics modulate host-microbe interaction in the placenta and fetal gut: a randomized, double-blind, placebo-controlled trial // Neonatology. 2012. Vol. 102, No. 3. P. 178–184. doi: 10.1159/000339182
- Steel J.H., Malatos S., Kennea N. et al. Bacteria and inflammatory cells in fetal membranes do not always cause preterm labor // Pediatr. Res. 2005. Vol. 57, No. 3. P. 404–411. doi: 10.1203/01.PDR.0000153869.96337.90
- Vazquez-Torres A., Jones-Carson J., Baumler A.J. et al. Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes // Nature. 1999. Vol. 401, No. 6755. P. 804–808. doi: 10.1038/44593
- Rescigno M., Rotta G., Valzasina B., Ricciardi-Castagnoli P. Dendritic cells shuttle microbes across gut epithelial monolayers // Immunobiology. 2001. Vol. 204, No. 5. P. 572–581. doi: 10.1078/0171-2985-00094
- Perez P.F., Dore J., Leclerc M. et al. Bacterial imprinting of the neonatal immune system: lessons from maternal cells? // Pediatrics. 2007. Vol. 119, No. 3. P. e724–e732. doi: 10.1542/peds.2006-1649
- Gosalbes M.J, Abellan J.J, Durbán A. et al. Metagenomics of human microbiome: beyond 16s rDNA // Clin. Microbiol. Infect. 2012. Vol. 18 Suppl, No. 4. P. 47–49. doi: 10.1111/j.1469-0691.2012.03865.x
- Mold J.E., Michaëlsson J., Burt T.D. et al. Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero // Science. 2008. Vol. 322, No. 5907. P. 1562–1565. doi: 10.1126/science.1164511
- Koren O., Goodrich J.K., Cullender T.C. et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy // Cell. 2012. Vol. 150, No. 3. P. 470–480. doi: 10.1016/j.cell.2012.07.008
- Donnet-Hughes A., Perez P.F., Doré J. et al. Potential role of the intestinal microbiota of the mother in neonatal immune education // Proc. Nutr. Soc. 2010. Vol. 69, No. 3. P. 407–415. doi: 10.1017/S0029665110001898
- Collado M.C., Laitinen K., Salminen S., Isolauri E. Maternal weight and excessive weight gain during pregnancy modify the immunomodulatory potential of breast milk // Pediatr. Res. 2012. Vol. 72, No. 1. P. 77–85. doi: 10.1038/pr.2012.42
- Matamoros S., Gras-Leguen C., Le Vacon F. et al. Development of intestinal microbiota in infants and its impact on health // Trends Microbiol. 2013. Vol. 21, No. 4. P. 167–173. doi: 10.1016/j.tim.2012. 12.001
- Dominguez-Bello M.G., Costello E.K., Contreras M. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns // Proc. Natl. Acad. Sci. USA. 2010. Vol. 107, No. 26. P. 11971–11975. doi: 10.1073/pnas.1002601107
- Fernandez L., Langa S., Martin V. et al. The human milk microbiota: origin and potential roles in health and disease // Pharmacol. Res. 2013. Vol. 69. P. 1–10. doi: 10.1016/j.phrs.2012.09.001
- Sanz Y. Gut microbiota and probiotics in maternal and infant health // Am. J. Clin. Nutr. 2011. Vol. 94, No. Suppl. 6. P. 2000S–2005S. doi: 10.3945/ajcn.110.001172
- Hunt K.M., Foster J.A., Forney L.J. et al. Characterization of the diversity and temporal stability of bacterial communities in human milk // PLoS One. 2011. Vol. 6, No. 6. P. e21313. doi: 10.1371/journal.pone.0021313
- Cabrera-Rubio R., Collado M.C., Laitinen K. et al. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery // Am. J. Clin. Nutr. 2012. Vol. 96, No. 3. P. 544–551. doi: 10.3945/ajcn.112.037382
- Hyman R.W., Fukushima M., Diamond L. et al. Microbes on the human vaginal epithelium // Proc. Natl. Acad. Sci. USA. 2005. Vol. 102, No. 22. P. 7952–7957. doi: 10.1073/pnas.0503236102
- Zhou X., Brown C.J., Abdo Z. et al. Differences in the composition of vaginal microbial communities found in healthy Caucasian and black women // ISME J. 2007. Vol. 1, No. 2. P. 121–133. doi: 10.1038/ismej.2007.12
- Palmer C., Bik E.M., Di Giulio D.B. et al. Development of the human infant intestinal microbiota // PLoS Biol. 2007. Vol. 5, No. 7. P. e177. doi: 10.1371/journal.pbio.0050177
- Vael C., Desager K. The importance of the development of the intestinal microbiota in infancy // Curr. Opin. Pediatr. 2009. Vol. 21, No. 6. P. 794–800. doi: 10.1097/MOP.0b013e328332351b
- Quigley E.M.M. Gut bacteria in health and disease // Gastroenterol. Hepatol. (NY). 2013. Vol. 9, No. 9. P. 560–569.
- Mackie R.I., Sghir A., Gaskins H.R. Developmental microbial ecology of the neonatal gastrointestinal tract // Am. J. Clin. Nutr. 1999. Vol. 69, No. 5. P. 1035S–1045S. doi: 10.1093/ajcn/69.5.1035s
- O’Toole P.W., Claesson M.J. Gut microbiota: changes throughout the lifespan from infancy to elderly // Int. Dairy J. 2010. Vol. 20, No. 4. P. 281–291. doi: 10.1016/j.idairyj.2009.11.010
- Balmer S.E., Hanvey L.S., Wharton B.A. Diet and faecal flora in the newborn: nucleotides // Arch. Dis. Child. Fetal. Neonatal. Ed. 1994. Vol. 70, No. 2. P. F137–F140. doi: 10.1136/fn.70.2.f137
- Bennet R., Nord C.E. Development of the faecal anaerobic microflora after caesarean section and treatment with antibiotics in newborn infants // Infection. 1987. Vol. 15, No. 5. P. 332–336. doi: 10.1007/bf01647733
- Ruiz V.E., Battaglia T., Kurtz Z.D. et al. A single early-in-life macrolide course has lasting effects on murine microbial network topology and immunity // Nat. Commun. 2017. Vol. 8. P. 518. doi: 10.1038/s41467-017-00531-6
- Lynn M.A., Tumes D.J., Choo J.M. et al. Early-life antibiotic-driven dysbiosis leads to dysregulated vaccine immune responses in mice // Cell Host Microbe. 2018. Vol. 23. P. 653–660.e5. doi: 10.1016/j.chom.2018.04.009
- Dinan T.G., Cryan J.F. Gut instincts: Microbiota as a key regulator of brain development, ageing and neurodegeneration // J. Physiol. 2017. Vol. 595, No. 2. P. 489–503. doi: 10.1113/JP273106
- Korpela K., Salonen A., Virta L.J. et al. Intestinal microbiome is related to lifetime antibiotic use in finnish pre-school children // Nat. Commun. 2016. Vol. 7. P. 10410. doi: 10.1038/ncomms10410
- Maghzi A.H., Ghazavi H., Ahsan M. et al. Increasing female preponderance of multiple sclerosis in Isfahan, Iran: a population-based study // Mult. Scler. 2010. Vol. 16, No. 3. P. 359–361. doi: 10.1177/1352458509358092
- Di Giulio D.B., Romero R., Amogan H.P. et al. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation // PLoS One. 2008. Vol. 3, No. 8. P. e3056. doi: 10.1371/journal.pone.0003056
- Wahlberg J., Fredriksson J., Nikolic E. et al. Environmental factors related to the induction of beta cell autoantibodies in 1-yr-old healthy children // Pediatr. Diabetes. 2005. Vol. 6, No. 4. P. 199–205. doi: 10.1111/j.1399-543X.2005.00129.x
- Beijers R., Jansen J., Riksen-Walraven M., de Weerth C. Maternal prenatal anxiety and stress predict infant illnesses and health complaints // Pediatrics. 2010. Vol. 12, No. 2. e401–e409. doi: 10.1542/peds.2009-3226
- Aoyama K., Seaward P.G., Lapinsky S.E. Fetal outcome in the critically ill pregnant woman // Crit. Care. 2014. Vol. 18, No. 3. P. 307. doi: 10.1186/cc13895
- Mor G., Cardenas I. The immune system in pregnancy: a unique complexity // Am. J. Reprod. Immunol. 2010. Vol. 63, No. 6. P. 425–433. doi: 10.1111/j.1600-0897.2010.00836.x
- Gomes de Agüero M., Ganal-Vonarburg S.C., Fuhrer T. et al. The maternal microbiota drives early postnatal innate immune development // Science. 2016. Vol. 361, No. 6279. P. 1296–1302. doi: 10.1126/science.aad2571
- Kabat A.M., Srinivasan N., Maloy K.J. Modulation of immune development and function by intestinal microbiota // Trends Immunol. 2014. Vol. 35, No. 11. P. 507–517. doi: 10.1016/j.it.2014.07.010
- Cortessis V.K., Thomas D.C., Levine A.J. et al. Environmental epigenetics: prospects for studying epigenetic mediation of exposure-response relationships // Hum. Genet. 2012. Vol. 131, No. 10. P. 1565–1589. doi: 10.1007/s00439-012-1189-8
- Jirtle R.L., Skinner M.K. Environmental epigenomics and disease susceptibility // Nat. Rew. Gen. 2007. Vol. 8, No. 4. P. 253–262. doi: 10.1038/nrg2045
- Perera F., Herbstman J. Prenatal environmental exposures, epigenetics, and disease // Reprod. Toxicol. 2011. Vol. 31, No. 3. P. 363–373. doi: 10.1016/j.reprotox.2010.12.055
- Luo A., Leach S.T., Barres R. et al. The microbiota and epigenetic regulation of T helper 17 / regulatory T cells: in search of a balanced immune system // Front. Immunol. 2017. Vol. 8. P. 417. doi: 10.3389/fimmu.2017.00417
- Zager A., Peron J.P., Mennecier G. et al. Maternal immune activation in late gestation increases neuroinflammation and aggravates experimental autoimmune encephalomyelitis in the offspring // Brain Behav. Immun. 2015. Vol. 43. P. 159–171. doi: 10.1016/j.bbi.2014.07.021
- Mandal M., Donnelly R., Elkabes S. et al. Maternal immune stimulation during pregnancy shapes the immunological phenotype of offspring // Brain Behav. Immun. 2013. Vol. 33. P. 33–45. doi: 10.1016/j.bbi.2013.04.012
- Solati J., Asiaei M., Hoseini M.H. Using experimental autoimmune encephalomyelitis as a model to study the effect of prenatal stress on fetal programming // Neurol. Res. 2012. Vol. 34, No. 5. P. 478–483. doi: 10.1179/1743132812Y.0000000032
- Stanisavljević S., Čepić A., Bojić S. et al. Oral neonatal antibiotic treatment perturbs gut microbiota and aggravates central nervous system autoimmunity in Dark Agouti rats // Sci. Rep. 2019. Vol. 9, No. 1. P. 918. doi: 10.1038/s41598-018-37505-7
- Ochoa-Reparaz J., Mielcarz D.W., Ditrio L.E. et al. Role of gut commensal microfora in the development of experimental autoimmune encephalomyelitis // J. Immunol. 2009. Vol. 183, No. 10. P. 6041–6050. doi: 10.4049/jimmunol.0900747
- Ochoa-Reparaz J., Mielcarz D.W., Haque-Begum S., Kasper L.H. Induction of a regulatory B cell population in experimental allergic encephalomyelitis by alteration of the gut commensal microbiora // Gut Microbes. 2010. Vol. 1, No. 2. P. 103–108. doi: 10.4161/gmic.1.2.11515
- Yokote H., Miyake S., Croxford J.L. et al. NKT cell-dependent amelioration of a mouse model of multiple sclerosis by altering gut microflora // Am. J. Pathol. 2008. Vol. 173, No. 6. P. 1714–1723. doi: 10.2353/ajpath.2008.080622
- Graves J.S., Chitnis T., Weinstock-Guttman B. et al. Maternal and perinatal exposures are associated with risk for pediatric-onset multiple sclerosis // Pediatrics. 2017. Vol. 139, No. 4. P. e20162838. doi: 10.1542/peds.2016-2838
- Corsini E., Sokooti M., Galli C.L. et al. Pesticide induced immunotoxicity in humans: a comprehensive review of the existing evidence // Toxicology. 2013. Vol. 307. P. 123–135. doi: 10.1016/j.tox.2012.10.009
- Mokarizadeh A., Faryabi M.R., Rezvanfar M.A., Abdollahi M. A comprehensive review of pesticides and the immune dysregulation: mechanisms, evidence and consequences // Toxicol. Mech. Methods. 2015. Vol. 25, No. 4. P. 258–278. doi: 10.3109/15376516.2015.1020182
- Barrett E., Guinane C.M., Ryan C.A. et al. Microbiota diversity and stability of the preterm neonatal ileum and colon of two infants // Microbiologyopen. 2013. Vol. 2, No. 2. P. 215–225. doi: 10.1002/mbo3.64
- Barrett E., Deshpandey A.K., Ryan C.A. et al. The neonatal gut harbours distinct bifidobacterial strains // Arch. Dis. Child Fetal Neonatal. Ed. 2015. Vol. 100, No. 5. P. F405–F410. doi: 10.1136/archdischild-2014-306110
- Goldacre A., Pakpoor J., Goldacre M. Maternal and perinatal characteristics of infants who, later in life, developed multiple sclerosis: Record-linkage study // Mult. Scler. Relat. Disord. 2017. Vol. 13. P. 98–102. doi: 10.1016/j.msard.2017.02.004
- Ramagopalan S.V., Valdar W., Dyment D.A. et al. Canadian collaborative study group. no effect of preterm birth on the risk of multiple sclerosis: a population based study // BMC Neurol. 2008. Vol. 8. P. 30. doi: 10.1186/1471-2377-8-30
- Maghzi A.-H., Etemadifar M., Heshmat-Ghahdarijani K. et al. Cesarean delivery may increase the risk of multiple sclerosis // Mult. Scler. J. 2012. Vol. 18, No. 4. P. 468–471. doi: 10.1177/1352458511424904
- Conradi S., Malzahn U., Paul F. et al. Breastfeeding is associated with lower risk for multiple sclerosis // Mult. Scler. 2013. Vol. 19, No. 5. P. 553–558. doi: 10.1177/1352458512459683
- Norgaard M., Nielsen R.B., Jacobsen J.B. et al. Use of penicillin and other antibiotics and risk of multiple sclerosis: a population-based case-control study // Am. J. Epidemiol. 2011. Vol. 174, No. 8. P. 945–948. doi: 10.1093/aje/kwr201
- Zeissig S., Blumberg R.S. Life at the beginning: perturbation of the microbiota by antibiotics in early life and its role in health and disease // Nat. Immunol. 2014. Vol. 15, No. 4. P. 307–310. doi: 10.1038/ni.2847
- Neu J., Rushing J. Cesarean versus vaginal delivery: long-term infant outcomes and the hygiene hypothesis // Clin. Perinatol. 2011. Vol. 38, No. 2. P. 321–331. doi: 10.1016/j.clp.2011.03.008
- Bokulich N.A., Chung J., Battaglia T. et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life // Sci. Transl. Med. 2016. Vol. 8, No. 343. P. 343ra82. doi: 10.1126/scitranslmed.aad7121
- Yassour M., Vatanen T., Siljander H., et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability // Sci. Transl. Med. 2016. Vol. 8, No. 343. P. 343ra81. doi: 10.1126/scitranslmed.aad0917
- Salminen S., Gibson G., McCartney A., Isolauri E. Influence of mode of delivery on gut microbiota composition in seven year old children // Gut. 2004. Vol. 53, No. 9. P. 1388–1389. doi: 10.1136/gut.2004.041640
- Goedert J.J., Hua X., Yu G., Shi J. Diversity and composition of the adult fecal microbiome associated with history of cesarean birth or appendectomy: Analysis of the American Gut Project // EBioMedicine. 2014. Vol. 1, No. 2–3. P. 167–172. doi: 10.1016/j.ebiom.2014.11.004
- Blaser M.J., Dominguez-Bello M.G. The human microbiome before birth // Cell Host Microbe. 2016. Vol. 20, No. 5. P. 558–560. doi: 10.1016/j.chom.2016.10.014
- Dalla Costa G., Romeo M., Esposito F. et al. Caesarean section and infant formula feeding are associated with an earlier age of onset of multiple sclerosis // Mult. Scler. Relat. Disord. 2019. Vol. 33. P. 75–77. doi: 10.1016/j.msard.2019.05.010
- Nielsen N.M., Bager P., Stenager E. et al. Cesarean section and offspring’s risk of multiple sclerosis: a Danish nationwide cohort study // Mult. Scler. 2013. Vol. 19, No. 11. P. 1473–1477. doi: 10.1177/1352458513480010
- Boehm G., Moro G. Structural and functional aspects of prebiotics used in infant nutrition // J. Nutr. 2008. Vol. 138, No. 9. P. 1818S–1828S. doi: 10.1093/jn/138.9.1818S
- Walker A. Breast milk as the gold standard for protective nutrients // J. Pediatr. 2010. Vol. 156, No. 2 Suppl. P. S3–S7. doi: 10.1016/j.jpeds.2009.11.021
- Fernandez L., Langa S., Martin V. et al. The human milk microbiota: origin and potential roles in health and disease // Pharmacol. Res. 2013. Vol. 69, No. 1. P. 1–10. doi: 10.1016/j.phrs.2012.09.001
- Andersson B., Porras O., Hanson L.A. et al. Inhibition of attachment of Streptococcus pneumoniae and Haemophilus influenzae by human milk and receptor oligosaccharides // J. Infect. Dis. 1986. Vol. 153, No. 2. P. 232–237. doi: 10.1093/infdis/153.2.232
- Cravioto A., Tello A., Villafan H. et al. Inhibition of localized adhesion of enteropathogenic Escherichia coli to HEp-2 cells by immunoglobulin and oligosaccharide fractions of human colostrum and breast milk // J. Infect. Dis. 1991. Vol. 163, No. 6. P. 1247–1255. doi: 10.1093/infdis/163.6.1247
- Gueimonde M., Laitinen K., Salminen S., Isolauri E. Breast milk: a source of bifidobacteria for infant gut development and maturation? // Neonatology. 2007. Vol. 92, No. 1. P. 64–66. doi: 10.1159/000100088
- Martín R., Heilig G., Zoetendal E. et al. Diversity of the Lactobacillus group in breast milk and vagina of healthy women and potential role in the colonization of the infant gut // J. Appl. Microbiol. 2007. Vol. 103, No. 6. P. 2638–2644. doi: 10.1111/j.1365-2672.2007.03497.x
- Penders J., Vink C., Driessen C. et al. Quantification of Bifidobacterium spp., Escherichia coli and Clostridium difficile in faecal samples of breast-fed and formula-fed infants by real-time PCR // FEMS Microbiol. Lett. 2005. Vol. 243, No. 1. P. 141–147. doi: 10.1016/j.femsle.2004.11.052
- Bezirtzoglou E., Tsiotsias A., Welling G.W. Microbiota profile in feces of breast- and formula-fed newborns by using fluorescence in situ hybridization (FISH) // Anaerobe. 2011. Vol. 17, No. 6. P. 478–482. doi: 10.1016/j.anaerobe.2011.03.009
- Ezendam J., de Klerk A., Gremmer E.R., van Loveren H. Effects of Bifidobacterium animalis administered during lactation on allergic and autoimmune responses in rodents // Clin. Exp. Immunol. 2008. Vol. 154, No. 3. P. 424–431. doi: 10.1111/j.1365-2249.2008.03788.x
- Ezendam J., van Loveren H. Lactobacillus casei Shirota administered during lactation increases the duration of autoimmunity in rats and enhances lung inflammation in mice // Br. J. Nutr. 2008. Vol. 99, No. 1. P. 83–90. doi: 10.1017/S0007114507803412
- Conradi S., Malzahn U., Paul F. et al. Breastfeeding is associated with lower risk for multiple sclerosis // Mult. Scler. 2013. Vol. 19, No. 5. P. 553–558. doi: 10.1177/1352458512459683
- Brenton J.N., Engel C.E., Sohn M.W., Goldman M.D. Breastfeeding during infancy is associated with a lower future risk of pediatric multiple sclerosis // Pediart. Neurol. 2017. Vol. 77. P. 67–72. doi: 10.1016/j.pediatrneurol.2017.09.007
- Pisacane A., Impagliazzo N., Russo M. et al. Breast feeding and multiple sclerosis // BMJ. 1994. Vol. 308, No. 6941. P. 1411–1412. doi: 10.1136/bmj.308.6941.1411
- Ragnedda G., Leoni S., Parpinel M. et al. Reduced duration of breastfeeding is associated with a higher risk of multiple sclerosis in both Italian and Norwegian adult males: the EnvI MS study // J. Neurol. 2015. Vol. 262, No. 5. P. 1271–1277. doi: 10.1007/s00415-015-7704-9
- Simon A.K., Hollander G.A., McMichael A. Evolution of the immune system in humans from infancy to old age // Proc. Biol. Sci. 2015. Vol. 282, No. 1821. P. 20143085. doi: 10.1098/rspb.2014.3085
- Martin R., Nauta A.J., Ben Amor K. et al. Early life: Gut microbiota and immune development in infancy // Benef. Microbes. 2010. Vol. 1, No. 4. P. 367–382. doi: 10.3920/BM2010.0027
- Kamada N., Seo S.-U., Chen G.Y., Núñez G. Role of the gut microbiota in immunity and inflammatory disease // Nat. Rev. Immunol. 2013. Vol. 13, No. 5. P. 321–335. doi: 10.1038/nri3430
- Kamada N., Núñez G. Regulation of the immune system by the resident intestinal bacteria // Gastroenterology. 2014. Vol. 146, No. 6. P. 1477–1488. doi: 10.1053/j.gastro.2014.01.060
- Vatanen T., Kostic A.D., d’Hennezel E. et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans // Cell. 2016. Vol. 165, No. 4. P. 842–853. doi: 10.1016/j.cell.2016.04.007
- Wang Z.-W., Wang P., Lin F.-H. Early-life exposure to lipopolysaccharide reduces the severity of experimental autoimmune encephalomyelitis in adulthood and correlated with increased urine corticosterone and apoptotic CD4+ T cells // Neuroscienci. 2011. Vol. 193. P. 283–290. doi: 10.1016/j.neuroscience.2011.07.047
- Ellestad K.K., Tsutsui S., Noorbakhsh F. et al. Early life exposure to lipopolysaccharide suppresses experimental autoimmune encephalomyelitis by promoting tolerogenic dendritic cells and regulatory T cells // J. Immunol. 2009. Vol. 183, No. 1. P. 298–309. doi: 10.4049/jimmunol.0803576
- Абдурасулова И.Н., Зубарева О.Е., Житнухин Ю.Л. и др. Течение экспериментального аллергического энцефаломиелита у взрослых крыс после введений интерлейкина-1β в разные периоды ранней жизни // Росс. физиол. журн. им. И.М. Сеченова. 2015. Т. 101, № 4. C. 386–399.
- Bakker J.M., Kavelaars A., Kamphuis P.J.G.H. et al. Neonatal dexamethasone treatment increases susceptibility to experimental autoimmune disease in adult rats // J. Immunol. 2000. Vol. 165, No. 10. P. 5932–5937. doi: 10.4049/jimmunol.165.10.5932
- Stephan M., Straub R.H., Breivik T. et al. Postnatal maternal deprivation aggravates experimental autoimmune encephalomyelitis in adult Lewis rats: reversal by chronic imipramine treatment // Int. J. Devl. Neurosi. 2002. Vol. 20, No. 2. P. 125–132. doi: 10.1016/s0736-5748(02)00007-2
- Teunis M.A.T., Heijnen C.J., Sluyter F. et al. Maternal deprivation of rat pups increases clinical symptoms of experimental autoimmune encephalomyelitis at adult age // J. Neuroimmunol. 2002. Vol. 133, No. 1-2. P. 30–38. doi: 10.1016/s0165-5728(02)00351-x
- Laban O., Dimitrijevic M., von Hoersten S. et al. Experimental allergic encephalomyelitis in adult DA rats subjected to neonatal handling or gentling // Brain Res. 1995. Vol. 676, No. 1. P. 133–140. doi: 10.1016/0006-8993(95)00106-Z
- Dimitrijevic M., Laban O., von Hoersten S. et al. Neonatal sound stress and development of experimental allergic encephalomyelitis in Lewis and DA rats // Int. J. Neurosci. 1994. Vol. 78, No. 1-2. P. 135–143. doi: 10.3109/00207459408986052
- Columba-Cabezas S., Iaffaldano G., Chiarotti F. et al. Early handling increases susceptibility to experimental autoimmune encephalomyelitis (EAE) in C57BL/6 male mice // J. Neuroimmunol. 2009. Vol. 212, No. 1-2. P. 10–16. doi: 10.1016/j.jneuroim.2009.05.007
- Golubeva A.V., Crampton S., Desbonnet L. et al. Prenatal stress-induced alterations in major physiological systems correlate with gut microbiota composition in adulthood // Psychoneuroendocrinol. 2015. Vol. 60. P. 58–74. doi: 10.1016/j.psyneuen.2015.06.002
- Zijlmans M.A.C., Korpela K., Riksen-Walravena J.M. et al. Maternal prenatal stress is associated with the infant intestinal microbiota // Psychoneuroendocrinol. 2015. Vol. 53. P. 233–245. doi: 10.1016/j.psyneuen.2015.01.006
- Bailey M.T., Lubach G.R., Coe C.L. Prenatal stress alters bacterial colonization of the gut in infant monkeys // J. Pediatr. Gastroenterol. Nutr. 2004. Vol. 38, No. 4. P. 414–421. doi: 10.1097/00005176-200404000-00009
- Bailey M.T., Coe C.L. Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys // Dev. Psychobiol. 1999. Vol. 35, No. 2. P. 146–155.
- Bokulich N.A., Chung J., Battaglia T. et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life // Sci. Transl. Med. 2016. Vol. 8, No. 343. P. 343ra82. doi: 10.1126/scitranslmed.aad7121
- Miller J.E., Wu C., Pedersen L.H. et al. Maternal antibiotic exposure during pregnancy and hospitalization with infection in offspring: a population-based cohort study // Int. J. Epidemiol. 2018. Vol. 47, No. 2. P. 561–571. doi: 10.1093/ije/dyx272
- Keogh C.E., Kim D.H.J., Pusceddu M.M. et al. Myelin as a regulator of development of the microbiota – gut – brain axis // Brain Behav. Immun. 2021. Vol. 91. P. 437–450. doi: 10.1016/j.bbi.2020.11.001
- Mirzaei F., Michels K.B., Munger K. et al. Gestational vitamin D and the risk of multiple sclerosis in offspring // Ann. Neurol. 2011. Vol. 70, No. 1. P. 30–40. doi: 10.1002/ana.22456
- Fernandes de Abreu D.A., Ibrahim E.C., Boucraut J. et al. Severity of experimental autoimmune encephalomyelitis is unexpectedly reduced in mice born to vitamin D-deficient mothers // J. Steroid. Biochem. Mol. Biol. 2010. Vol. 121, No. 1-2. P. 250–253. doi: 10.1016/j.jsbmb.2010.03.006
- Fernandes de Abreu D.A., Landel V., Barnett A.G. Prenatal vitamin D deficiency induces an early and more severe experimental autoimmune encephalomyelitis in the second generation // Int. J. Mol. Sci. 2012. Vol. 13, No. 9. P. 10911–10919. doi: 10.3390/ijms130910911
- Fernandes de Abreu D.A., Landel V., Feron F. Seasonal, gestational and postnatal influences on multiple sclerosis: the beneficial role of a vitamin D supplementation during early life // J. Neurol. Sci. 2011. Vol. 311, No. 1-2. P. 64–68. doi: 10.1016/j.jns.2011.08.044
- Adzemovic M.Z., Zeitelhofer M., Hochmeister S. et al. Efficacy of vitamin D in treating multiple sclerosis-like neuroinflammation depends on developmental stage // Exp. Neurol. 2013. Vol. 249. P. 39–48. doi: 10.1016/j.expneurol.2013.08.002
- Biesalski H.K. Nutrition meets the microbiome: Micronutrients and the microbiota // Ann. N. Y. Acad. Sci. 2016. Vol. 1372, No. 1. P. 53–64. doi: 10.1111/nyas.13145
- Smith A.D., Kim Y.I., Refsum H. Is folic acid good for everyone? // Am. J. Clin. Nutr. 2008. Vol. 87, No. 3. P. 517–533. doi: 10.1093/ajcn/87.3.517
- Nagy-Szakal D., Ross M.C., Dowd S.E. et al. Maternal micronutrients can modify colonic mucosal microbiota matuartation in murien offspring // Gut Microbes. 2012. Vol. 3, No. 5. P. 426–433. doi: 10.4161/gmic.20697
- Steegers-Theunissen R.P., Obermann-Borst S.A., Kremer D. et al. Periconceptional maternal folic acid use of 400 g per day is related to increased methylation of the IGF2 gene in the very young child // PLoS One. 2009. Vol. 4, No. 11. P. e7845. doi: 10.1371/journal.pone.0007845
- Collado M.C., Cernada M., Baüerl C. et al. Microbial ecology and host-microbiota interactions during early life stages // Gut Microbes. 2012. Vol. 3, No. 4. P. 352–365. doi: 10.4161/gmic.21215
Дополнительные файлы
