Coumarins as a base for the drug development: yes or no?
- Authors: Litasova E.V.1, Iljin V.V.1, Myznikov L.V.1, Brusina M.A.1, Piotrovskiy L.B.1
-
Affiliations:
- Institute of Experimental Medicine
- Issue: Vol 22, No 3 (2022)
- Pages: 27-36
- Section: Analytical reviews
- URL: https://journals.rcsi.science/MAJ/article/view/131476
- DOI: https://doi.org/10.17816/MAJ87582
- ID: 131476
Cite item
Abstract
It is well known that coumarin derivatives are widely distributed in nature and have a wide spectrum of biological activity. At the same time, only a few compounds containing a coumarin fragment are used in the clinics. These compounds include for example the anticoagulant warfarin and the anthelmintic drug haloxon. In the present article is discussed the few examples of biological activity of coumarin derivatives, the mechanisms of action of these compounds and the problems that arise in the development of new drugs, as well as the prospects for using coumarins as leader compounds.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Elena V. Litasova
Institute of Experimental Medicine
Email: llitasova@mail.ru
ORCID iD: 0000-0002-0999-8212
SPIN-code: 5568-8939
Cand. Sci. (Biol.), Leading Research Associate of the Laboratory of Drug Design and Nanotechnology, Department of Neuropharmacology
Russian Federation, Saint PetersburgViktor V. Iljin
Institute of Experimental Medicine
Email: victor.iljin@mail.ru
ORCID iD: 0000-0002-1012-7561
SPIN-code: 5559-8089
Cand. Sci. (Chem.), Research Associate of the Laboratory of Drug Design and Nanotechnology, Department of Neuropharmacology
Russian Federation, Saint PetersburgLeonid V. Myznikov
Institute of Experimental Medicine
Email: postleo@mail.ru
ORCID iD: 0000-0002-0863-3027
Dr. Sci. (Chem.), Research Associate, Department of Neuropharmacology
Russian Federation, Saint PetersburgMaria A. Brusina
Institute of Experimental Medicine
Email: mashasemen@gmail.com
ORCID iD: 0000-0001-8433-120X
SPIN-code: 8953-8772
Cand. Sci. (Chem.), Junior Research Associate of the Laboratory of Drug Design and Nanotechnology, Department of Neuropharmacology
Russian Federation, Saint PetersburgLevon B. Piotrovskiy
Institute of Experimental Medicine
Author for correspondence.
Email: levon-piotrovsky@yandex.ru
ORCID iD: 0000-0001-8679-1365
SPIN-code: 2927-6178
Dr. Sci. (Biol.), Head of the Laboratory Drug Design and Nanotechnology, Department of Neuropharmacology
Russian Federation, Saint PetersburgReferences
- Zefirova ON, Balakin KV, Krasavin MJu, et al. Glossarii russkoyazychnykh terminov v meditsinskoi khimii. Russian Chemical Bulletin. 2019:(12):2381–2395. (In Russ.)
- Bourgaud F, Gravot A, Milesi S, Gontier E. Production of plant secondary metabolites: a historical perspective. Plant Science. 2001;161(5):839–851. doi: 10.1016/S0168-9452(01)00490-3
- Dangl J, Jones J. Plant pathogens and integrated defense responses to infection. Nature. 2001;411(6839):826–833. doi: 10.1038/35081161
- Iqbal Z, Iqbal MS, Hashem A, et al. Plant defense responses to biotic stress and its interplay with fluctuating dark/light conditions. Front Plant Sci. 2021;12:631810. doi: 10.3389/fpls.2021.631810
- Link KP. The discovery of dicumarol and its sequels. Circulation. 1959;19(1):97–107. doi: 10.1161/01.CIR.19.1.97
- Jain PK, Joshi H. Coumarin: chemical and pharmacological profile. J Appl Pharm Sci. 2012;2(6):236–240. doi: 10.7324/JAPS.2012.2643
- Medina FG, Marrero JG, Macías-Alonso M, et al. Coumarin heterocyclic derivatives: chemical synthesis and biological activity. Nat Prod Rep. 2015;32(10):1472–1507. doi: 10.1039/c4np00162a
- Deng M, Xie L, Zhong L, et al. Imperatorin: A review of its pharmacology, toxicity and pharmacokinetics. Eur J Pharmacol. 2020;879:173124. doi: 10.1016/j.ejphar.2020.173124
- Bryda J, Zagaja M, Szewczyk A, Andres-Mach M. Coumarins as potential supportive medication for the treatment of epilepsy. Acta Neurobiol Exp (Wars). 2019;79(2):126–132. doi: 10.21307/ane-2019-011
- Kostova I. Studying plant derived coumarins for their pharmacological and therapeutic properties as potential anticancer drugs. Expert Opin Drug Discov. 2007;2(12):1605–1618. doi: 10.1517/17460441.2.12.1605
- Akkol EK, Genc Y, Karpuz B, et al. Coumarins and coumarin-related compounds in pharmacotherapy of cancer. Cancers (Basel). 2020;12(7):1959. doi: 10.3390/cancers12071959
- Al-Warhi T, Sabt A, Elkaeed EB, Eldehna WM. Recent advancements of coumarin-based anticancer agents: An up-to-date review. Bioorg Chem. 2020;103:104163. doi: 10.1016/j.bioorg.2020.104163
- Venkata Sairam K, Gurupadayya BM, Chandan RS, et al. A Review on chemical profile of coumarins and their therapeutic role in the treatment of cancer. Curr Drug Deliv. 2016;13(2):186–201. doi: 10.2174/1567201812666150702102800
- Thakur A, Singla R, Jaitak V. Coumarins as anticancer agents: a review on synthetic strategies, mechanism of action and SAR studies. Eur J Med Chem. 2015;28;101:476–495. doi: 10.1016/j.ejmech.2015.07.010
- Hassan MZ, Osman H, Ali MA, Ahsan MJ. Therapeutic potential of coumarins as antiviral agents. Eur J Med Chem. 2016;123:236–255. doi: 10.1016/j.ejmech.2016.07.056
- Mishra S, Pandey A, Manvati S. Coumarin: an emerging antiviral agent. Heliyon. 2020;6(1):e03217. doi: 10.1016/heliyon.2020.e03217
- Kostova I, Bhatia S, Grigorov P, et al. Coumarins as antioxidants. Curr Med Chem. 2011;18(25):3929–3951. doi: 10.2174/092986711803414395
- Luszczki JJ, Andres-Mach M, Cisowski W, et al. Osthole suppresses seizures in the mouse maximal electroshock seizure model. Eur J Pharmacol. 2009;607(1–3):107–109. doi: 10.1016/j.ejphar.2009.02.022
- Luszczki JJ, Wojda E, Andres-Mach M, et al. Anticonvulsant and acute neurotoxic effects of imperatorin, osthole and valproate in the maximal electroshock seizure and chimney tests in mice: a comparative study. Epilepsy Res. 2009;85(2–3):293–299. doi: 10.1016/j.eplepsyres.2009.03.027
- Mokrov GV, Savel’ev VL, Voronina TA, et al. Synthesis and anticonvulsant activity of N-substituted 4-amino-3-nitrocoumarins. Pharm Chem J. 2019;53(2):118–124. doi: 10.1007/s11094-019-01964-7
- Mokrov GV, Litvinova SA, Voronina TA, et al. Design, synthesis, and anticonvulsant evaluation of 4-GABA-3-nitrocoumarines, 1-thiocoumarines, quinolone-2-ones, and their derivatives. Med Chem Res. 2019;28(11):1901–1911. doi: 10.1007/s00044-019-02422-5
- Yakovleva EE, Myznikov LV, Shabanov PD. Comparison of the anticonvulsant activities of substituted hydroxycoumarins and 4-[(3-nitro-2-oxo-2h-chromen-4-yl)amino] butanoic acid. Pharm Chem J. 2020;54(9):904–908. doi: 10.1007/s11094-020-02294-9
- Woo TS, Yoon SY, de la Pena IC, et al. Anticonvulsant effect of Artemisia capillaris Herba in mice. Biomol Ther. 2011;19(3):342–347. doi: 10.4062/biomolther.2011.19.3.342
- Tosun F, Kızılaya CA, Erol K, et al. Anticonvulsant activity of furanocoumarins and the essential oil obtained from the fruits of Heracleum crenatifolium. Food Chem. 2008;107(3):990–993. doi: 10.1016/j.foodchem.2007.08.085
- Egan D, O’Kennedy R, Moran E, et al. The pharmacology, metabolism, analysis, and applications of coumarin and coumarin-related compounds. Drug Metab Rev. 1990;22(5):503–529. doi: 10.3109/03602539008991449
- Kirsch G, Abdelwahab AB, Chaimbault P. Natural and synthetic coumarins with effects on inflammation. Molecules. 2016;21(10):1322. doi: 10.3390/molecules21101322
- Zhao D, Islam MN, Ahn BR, et al. In vitro antioxidant and anti-inflammatory activities of Angelica decursiva. Arch Pharm Res. 2012;35(1):179–192. doi: 10.1007/s12272-012-0120-0
- Liang C, Ju W, Pei S, et al. Pharmacological activities and synthesis of esculetin and its derivatives: a mini-review. Molecules. 2017;22(3):387. doi: 10.3390/molecules22030387
- Iranshahi M, Askari M, Sahebkar A, et al. Evaluation of antioxidant, anti-inflammatory and lipoxygenase inhibitory activities of the prenylated coumarin umbelliprenin. DARU J Pharm Sci. 2015;17(2):99–103.
- Jarboe CH, Zirvi KA, Nicholson JA, et al. Scopoletin, an antispasmodic component of Viburnum opulus and Prunifolium. J Med Chem. 1967;10(3):488–489. doi: 10.1021/jm00315a045
- Khan S, Shehzad O, Cheng MS, et al. Pharmacological mechanism underlying anti-inflammatory properties of two structurally divergent coumarins through the inhibition of pro-inflammatory enzymes and cytokines. J Inflamm (Lond). 2015;12:47. doi: 10.1186/s12950-015-0087-y
- Fylaktakidou KC, Hadjipavlou-Litina DJ, Litinas KE, et al. Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities. Curr Pharm Des. 2004;10(30):3813–3833. doi: 10.2174/1381612043382710
- Kancheva VD, Slavova-Kazakova AK, Angelova SE, et al. Protective effects of 4-methylcoumarins and related compounds as radical scavengers and chain-breaking antioxidants. Biochimie. 2017;140:133–145. doi: 10.1016/j.biochi.2017.07.010
- Li H, Yao Y, Li L. Coumarins as potential antidiabetic agents. J Pharm Pharmacol. 2017;69(10):1253–1264. doi: 10.1111/jphp.12774
- Seema PV, Sudha B, Padayatti PS, et al Kinetic studies of purified malate dehydrogenase in liver of streptozotocin-diabetic rats and the effect of leaf extract of Aegle marmelose (L.) Correa ex Roxb. Indian J Exp Biol. 1996;34(6):600–602.
- Kamalakkannan N, Prince PS. Hypoglycaemic effect of water extracts of Aegle marmelos fruits in streptozotocin diabetic rats. J Ethnopharmacol. 2003;87(2–3):207–210. doi: 10.1016/s0378-8741(03)00148-x
- Yao Y, Zhao X, Xin J, et al. Coumarins improved type 2 diabetes induced by high-fat diet and streptozotocin in mice via antioxidation. Can J Physiol Pharmacol. 2018;96(8):765–771. doi: 10.1139/cjpp-2017-0612
- Nurul Islam M, Jung HA, Sohn HS, et al. Potent α-glucosidase and protein tyrosine phosphatase 1B inhibitors from Artemisia capillaris. Arch Pharm Res. 2013;36(5):542–552. doi: 10.1007/s12272-013-0069-7
- Wu SJ. Osthole attenuates inflammatory responses and regulates the expression of inflammatory mediators in hepg2 cells grown in differentiated medium from 3T3-L1 preadipocytes. J Med Food. 2015;18(9):972–979. doi: 10.1089/jmf.2014.3314
- Prabakaran D, Ashokkumar N. Protective effect of esculetin on hyperglycemia-mediated oxidative damage in the hepatic and renal tissues of experimental diabetic rats. Biochimie. 2013;95(2):366–373. doi: 10.1016/j.biochi.2012.10.008
- Liang HJ, Suk FM, Wang CK, et al. Osthole, a potential antidiabetic agent, alleviates hyperglycemia in db/db mice. Chem Biol Interact. 2009;181(3):309–315. doi: 10.1016/j.cbi.2009.08.003
- Zhang WY, Lee JJ, Kim Y, et al. Amelioration of insulin resistance by scopoletin in high-glucose-induced, insulin-resistant HepG2 cells. Horm Metab Res. 2010;42(13):930–935. doi: 10.1055/s-0030-1265219
- Hammerschmidt R. Phytoalexins: what have we learned after 60 years? Annu Rev Phytopathol. 1999;37:285–306. doi: 10.1146/annurev.phyto.37.1.285
- Asif M. Pharmacological activities and phytochemistry of various plants containing coumarin derivatives. Curr Sci Perspectives. 2015;1(3):77–90.
- Davis RA, Vullo D, Supuran CT, Poulsen SA. Natural product polyamines that inhibit human carbonic anhydrases. Biomed Res Int. 2014;2014:374079. doi: 10.1155/2014/374079
- Pochet L, Frédérick R, Masereel B. Coumarin and isocoumarin as serine protease inhibitors. Curr Pharm Des. 2004;10(30):3781–3796. doi: 10.2174/1381612043382684
- Tan X, Soualmia F, Furio L, et al. Toward the first class of suicide inhibitors of kallikreins involved in skin diseases. J Med Chem. 2015;58:598–612. doi: 10.1021/jm500988d
- Xu Z, Chen Q, Zhang Y, Liang C. Coumarin-based derivatives with potential.anti-HIV activity. Fitoterapia. 2021;150:104863. doi: 10.1016/j.fitote.2021.104863
- Kang SY, Kim YC. Neuroprotective coumarins from the root of Angelica gigas: structure-activity relationships. Arch Pharm Res. 2007;30(11):1368–1373. doi: 10.1007/BF02977358
- Marumoto S, Miyazawa M. Structure-activity relationships for naturally occurring coumarins as β-secretase inhibitor. Bioorg Med Chem. 2012;20(2):784–788. doi: 10.1016/j.bmc.2011.12.002
- Holbrook AM, Pereira JA, Labiris R, et al. Systematic overview of warfarin and its drug and food interactions. Arch Intern Med. 2005;165(10):1095–1106. doi: 10.1001/archinte.165.10.1095
- Gage BF, Fihn SD, White RH. Management and dosing of warfarin therapy. Am J Med. 2000;109(6):481–488. doi: 10.1016/S0002-9343(00)00545-3
Supplementary files
