脑洞畸形的放射诊断

封面

如何引用文章

详细

目前,脑海绵状畸形是相当普遍的血管病理:近年来发现的病例数量急剧增加。这是由于将其引入临床实践并广泛传播了现代神经成像方法,例如计算机断层扫描(CT)和磁共振成像(MRI)断层扫描。CT和MRI出现之前,很难诊断出这种病理,诊断通常是在术中或根据尸检数据进行的。文献综述致力于脑海绵状畸形(CM)的放射学诊断。分析了神经影像学方法对海绵状畸形的诊断的重要性,以及使用MRI对骨髓进行可视化的重要性。相比于这种病理学的其他神经影像学检查方法,MRI具有优势。根据形态学底物,对MRI的脉冲序列和各种类型灶的信号特征进行了表征。分析 SWI (susceptibility weighted imaging)序列的值 用于检测家族性CM病例中的多灶性病变。对MRI的主要脉冲序列进行可视化以研究海绵状畸形的研究将有助于优化协议算法,以便及时诊断这种病理状况并选择治疗策略。

作者简介

Elena Girya

Sklifosovsky Research Institute for Emergency Medicine

编辑信件的主要联系方式.
Email: mishka_77@list.ru
ORCID iD: 0000-0001-5875-1489
SPIN 代码: 4793-7748

Radiologist of Radiosurgery Department

俄罗斯联邦, Moscow, Bol'shaya Sukharevskaya ploshcad', 3, 129010

Valentin Sinitsyn

Lomonosov Moscow State University

Email: vsini@mail.ru
ORCID iD: 0000-0002-5649-2193
SPIN 代码: 8449-6590

MD, PhD, DSc, Professor, Head of the Department of Radiation Diagnostics

 
俄罗斯联邦, Moscow, Lomonosovsky prospect, 27, bldg. 10, 119192

Alexey Tokarev

Sklifosovsky Research Institute for Emergency Medicine; Moscow Health Department

Email: alex_am_00@mail.ru
ORCID iD: 0000-0002-8415-5602
SPIN 代码: 1608-0630

MD, Cand. Sci. (Med.), Deputy Head of Moscow Health Department, Neurosurgeon of Radiosurgery Department 

俄罗斯联邦, Moscow; Moscow, Oruzheyny lane, 43, 127006

参考

  1. Mukha AM, Dashyan VG, Krylov VV. Cavernous malformations of the brain. Nevrologicheskii zhurnal. 2013;18(5):46–51. (In Russ).
  2. Popov VE, Livshits MI, Bashlachev MG, Nalivkin AE. Cavernous malformations in children: a literature review. Almanach klinicheskoj mediciny. 2018;46(2):146–159. (In Russ).
  3. Caton MT, Shenoy VS. Cerebral Cavernous Malformations. In: StatPearls [Internet]. Treasure Island(FL): StatPearls Publishing; 2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK538144
  4. Flemming KD, Brown RD. Epidemiology and natural history of intracranial vascular malformations. In: H.R. Winn, ed. Youmans and Winn neurological surgery, 7th ed. Amsterdam: Elsevier; 2017. Р. 3446–3463е7.
  5. Gotko AV, Kivelev JV, Sleep AS. Cavernous malformations of the brain and spinal cord. Ukrainskij nejroxirurgicheskij zhurnal. 2013;(3):10–15. (In Russ).
  6. Rodich A, Smeyanovich A, Sidorovich R, et al. Modern approaches to the surgical treatment of cavernous angiomas of the brain. Nauka i innovacii. 2018;10(188):70–73. (In Russ).
  7. Gross BA, Du R. Natural history of cerebral arteriovenous malformations: a meta-analysis. J. Neurosurg. 2013;118(2):437–443. doi: 10.3171/2012.10.JNS121280
  8. Kearns KN, Chen CJ, Tvrdik P, et al. Outcomes of Surgery for Brainstem Cavernous Malformations: A Systematic Review. Stroke. 2019;50(10):2964–2966. doi: 10.1161/STROKEAHA.119.026120
  9. Sazonov IA, Belousova OB. Cavernous malformation, which caused the development of extensive acute subdural hematoma. Case study and literature review. Voprosy nejrokhirurgii imeni N.N. Burdenko. 2019;3(3):73–76. (In Russ).
  10. Mouchtouris N, Chalouhi N, Chitale A, et al. Management of cerebral cavernous malformations: from diagnosis to treatment. Scientific World Journal. 2015;2015:808314. doi: 10.1155/2015/808314
  11. Negoto T, Terachi S, Baba Y, et al. Symptomatic brainstem cavernoma of elderly patients: timing and strategy of surgical treatment. Two case reports and review of the literature. World Neurosurg. 2018;111:227–234. doi: 10.1016/j.wneu.2017.12.111
  12. Runnels JB, Gifford DB, Forsberg PL, et al. Dense calcification in a large cavernous angioma. Case report. J Neurosurg. 1969;30(3):293–298. doi: 10.3171/jns.1969.30.3part1.0293
  13. Batra S, Lin D, Recinos PF, et al. Cavernous malformations: natural history, diagnosis and treatment. Nat Rev Neurol. 2009;5(12):659–670. doi: 10.1038/nrneurol.2009.177
  14. Vaquero J, Leunda G, Martinez R, et al. Cavernomas of the brain. Neurosurgery. 1983;12:208–210. doi: 10.1227/00006123-198302000-00013
  15. Tagle P, Huete I, Mendez J, et al. Intracranial cavernous angioma: presentation and management. J Neurosurg. 1986;64:720–723. doi: 10.3171/jns.1986.64.5.0720
  16. Rigamonti D, Drayer BP, Johnson PC, et al. The MRI appearance of cavernous malformations (angiomas). J Neurosurg. 1987;67(4):518–524. doi: 10.3171/jns.1987.67.4.0518
  17. Cortés V, Concepción A, Ballenilla M, et al. Cerebral cavernous malformations: Spectrum of neuroradiological findings. Radiologia. 2012;54(5):401–409. doi: 10.1016/j.rx.2011.09.016
  18. Pozzati E, Padovani R, Morrone B, et al. Cerebral cavernous angiomas in children. J Neurosurg. 1980;5(3):826–832. doi: o10.3171/jns.1980.53.6.0826
  19. Jonutis AJ, Sondheimer FK, Klein HZ, et al. Intracerebral cavernous hemangioma with angiographically demonstrated pathologic vasculature. Neuroradiology. 1971;3(3):57–63. doi: 10.1007/BF00339895
  20. Kamrin RB, Buchsbaum HW. Large vascular malformations of the brain not visualized by serial angiography. Arch Neurol. 1965;13(4):413–420. doi: 10.1001/archneur.1965.00470040079013
  21. Jain KK, Robertson E. Recurrence of an excised cavernous hemangioma in the opposite cerebral hemisphere. Case report. J Neurosurg. 1970;33(4):453–456. doi: 10.3171/jns.1970.33.4.0453
  22. Batra S, Lin D, Recinos PF, et al. Cavernous malformations: natural history, diagnosis and treatment. Nat Rev Neurol. 2009;5(12):659–670. doi: 10.1038/nrneurol.2009.177.
  23. Yun TJ, Na DG, Kwon BJ, et al. A T1 hyperintense perilesional signal aids in the differentiation of a cavernous angioma from other hemorrhagic masses. AJNR Am J Neuroradiol. 2008;29(3):494–500. doi: 10.3174/ajnr.A0847
  24. Petersen TA, Morrison LA, Schrader RM, et al. Familial versus sporadic cavernous malformations: differences in developmental venous anomaly association and lesion phenotype. AJNR Am J Neuroradiol. 2019;31(2):377–382. doi: 10.3174/ajnr.A1822
  25. Zabramski JM, Wascher TM, Spetzler RF, et al. The natural history of familial cavernous malformations: results of an ongoing study. J Neurosurg. 1994;80(3):422–432. doi: 10.3171/jns.1994.80.3.0422
  26. Essig M, Reichenbach JR, Schad LR, et al. High-resolution MR venography of cerebral arteriovenous malformations. Magn Reson Imaging. 1999;17(3):1417–1425. doi: 10.1007/s001170050989
  27. Lee BC, Vo KD, Kido DK, et al. MR high-resolution blood oxygenation level-dependent venography of occult (low-flow) vascular lesions. AJNR Am. J. Neuroradiol. 1999;20(7):1239–1242.
  28. Cooper AD, Campeau NG, Meissner I. Susceptibility-weighted imaging in familial cerebral cavernous malformations. Neurology. 2008;71(5):382. doi: 10.1212/01.wnl.0000319659.86629.c8
  29. De Souza JM, Domingues RC, Cruz J, et al. Susceptibility-weighted imaging for the evaluation of patients with familial cerebral cavernous malformations: a comparison with t2-weighted fast spin-echo and gradient-echo sequences. AJNR Am J Neuroradiol. 2008;29(1):154–158. doi: 10.3174/ajnr.A0748
  30. Bulut HT, Sarica MA, Baykan AH. The value of susceptibility weighted magnetic resonance imaging in evaluation of patients with familial cerebral cavernous angioma. Int J Clin Exp Med. 2014;7(12):5296–5302.
  31. De Champfleur NM, Langlois C, Ankenbrandt WJ, et al. Magnetic resonance imaging evaluation of cerebral cavernous malformations with susceptibility-weighted imaging. Neurosurgery. 2011;68(3):641–648. doi: 10.1227/NEU.0b013e31820773cf
  32. Campbell PG, Jabbour P, Yadla S, Awad IA. Emerging clinical imaging techniques for cerebral cavernous malformations: a systematic review. Neurosurg Focus. 2010;29(3):E6. doi: 10.3171/2010.5.FOCUS10120
  33. Pinker K, Stavrou I, Szomolanyi P, et al. Improved preoperative evaluation of cerebral cavernomas by high-field, high-resolution susceptibility-weighted magnetic resonance imaging at 3 Tesla: comparison with standard (1.5 T) magnetic resonance imaging and correlation with histopathological findings – preliminary results. Invest Radiol. 2007;42(6):346–351. doi: 10.1097/01.rli.0000262744.85397.fc
  34. Flores BC, Whittemore AR, Samson DS, Barnett SL. The utility of preoperative diffusion tensor imaging in the surgical management of brainstem cavernous malformations. J Neurosurg. 2015;122(3):653–662. doi: 10.3171/2014.11.JNS13680

补充文件

附件文件
动作
1. JATS XML
2. 图1 轴向平面上进行的大脑CT断层检查-(a), 并且在 施用造影剂(b)之后。图像确定了在右额叶上的一个超 密度中心,没有明确的轮廓,不积累反差药物。

下载 (85KB)
3. 图2 大脑在轴平面的MR断层图,在模式T1-VI(a,c),T2- VI(b),T2 * GRE(d)中执行展示CM结构的更详细的可视 化 (与图1相同的情况)。图像显示了特征性细胞结构 的局灶性形成,在T2加权时有一个低信号的外周信号。T2 * GRE序列强调铁血黄素的“开花”作用。

下载 (148KB)
4. 图3 T2 * GRE轴向 图像显示左枕叶有 大的海绵状血管瘤。 尽管形成物的大小令 人印象深刻,但未检 测到焦周水肿和对 周围结构的“质量” 效应。 REVIEWS

下载 (66KB)
5. 图4 T2 * GRE(a)和SWI(b)模式下执行的大脑 在轴平面的MR断层图。SWI图像可以识别在T2 * GRE模式下不可见的其他CM病变。

下载 (115KB)

版权所有 © Girya E., Sinitsyn V., Tokarev A., 2021

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

##common.cookie##